Classification of MSH6 Variants of Uncertain Significance Using Functional Assays
Abstract
:1. Disorders of MMR Deficiency
2. MSH6 Structure
3. MSH6 Function
4. Variant Interpretation
5. MMR Activity Assays
6. 6-Thioguanine Selection Assay in Murine Embryonic Stem Cells (mESCs)
7. Nuclear Localization Assay
8. Mechanistic Assays
9. RNA Splicing Analysis
10. Discussion
11. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lynch, H.T.; Snyder, C.L.; Shaw, T.G.; Heinen, C.D.; Hitchins, M.P. Milestones of Lynch syndrome: 1895–2015. Nat. Rev. Cancer 2015, 15, 181–194. [Google Scholar] [CrossRef]
- Fishel, R.; Kolodner, R.D. Identification of mismatch repair genes and their role in the development of cancer. Curr. Opin. Genet. Dev. 1995, 5, 382–395. [Google Scholar] [CrossRef]
- Loeb, L.A.; Springgate, C.F.; Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 1974, 34, 2311–2321. [Google Scholar] [PubMed]
- Grzymski, J.J.; Elhanan, G.; Morales Rosado, J.A.; Smith, E.; Schlauch, K.A.; Read, R.; Rowan, C.; Slotnick, N.; Dabe, S.; Metcalf, W.J.; et al. Population genetic screening efficiently identifies carriers of autosomal dominant diseases. Nat. Med. 2020, 26, 1235–1239. [Google Scholar] [CrossRef]
- Wimmer, K.; Kratz, C.P.; Vasen, H.F.; Caron, O.; Colas, C.; Entz-Werle, N.; Gerdes, A.M.; Goldberg, Y.; Ilencikova, D.; Muleris, M.; et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: Suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J. Med. Genet. 2014, 51, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moller, P. The Prospective Lynch Syndrome Database reports enable evidence-based personal precision health care. Hered. Cancer Clin. Pract. 2020, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Hughes, K.S.; Parmigiani, G.; Braun, D. Penetrance of Colorectal Cancer Among Mismatch Repair Gene Mutation Carriers: A Meta-Analysis. JNCI Cancer Spectr. 2020, 4, pkaa027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Win, A.K.; Lindor, N.M.; Young, J.P.; Macrae, F.A.; Young, G.P.; Williamson, E.; Parry, S.; Goldblatt, J.; Lipton, L.; Winship, I.; et al. Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J. Natl. Cancer Inst. 2012, 104, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Watson, P.; Vasen, H.F.; Mecklin, J.P.; Jarvinen, H.; Lynch, H.T. The risk of endometrial cancer in hereditary nonpolyposis colorectal cancer. Am. J. Med. 1994, 96, 516–520. [Google Scholar] [CrossRef]
- Watson, P.; Vasen, H.F.A.; Mecklin, J.P.; Bernstein, I.; Aarnio, M.; Jarvinen, H.J.; Myrhoj, T.; Sunde, L.; Wijnen, J.T.; Lynch, H.T. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int. J. Cancer 2008, 123, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Kastrinos, F.; Mukherjee, B.; Tayob, N.; Wang, F.; Sparr, J.; Raymond, V.M.; Bandipalliam, P.; Stoffel, E.M.; Gruber, S.B.; Syngal, S. Risk of pancreatic cancer in families with Lynch syndrome. JAMA 2009, 302, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.M.; Ray, A.M.; Halstead-Nussloch, B.A.; Dekker, R.G.; Raymond, V.M.; Gruber, S.B.; Cooney, K.A. Hereditary prostate cancer as a feature of Lynch syndrome. Fam. Cancer 2011, 10, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Raymond, V.M.; Mukherjee, B.; Wang, F.; Huang, S.C.; Stoffel, E.M.; Kastrinos, F.; Syngal, S.; Cooney, K.A.; Gruber, S.B. Elevated risk of prostate cancer among men with Lynch syndrome. J. Clin. Oncol. 2013, 31, 1713–1718. [Google Scholar] [CrossRef] [Green Version]
- Senter, L.; Clendenning, M.; Sotamaa, K.; Hampel, H.; Green, J.; Potter, J.D.; Lindblom, A.; Lagerstedt, K.; Thibodeau, S.N.; Lindor, N.M.; et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 2008, 135, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Giardiello, F.M.; Allen, J.I.; Axilbund, J.E.; Boland, C.R.; Burke, C.A.; Burt, R.W.; Church, J.M.; Dominitz, J.A.; Johnson, D.A.; Kaltenbach, T.; et al. Guidelines on genetic evaluation and management of Lynch syndrome: A consensus statement by the US Multi-society Task Force on colorectal cancer. Am. J. Gastroenterol. 2014, 109, 1159–1179. [Google Scholar] [CrossRef]
- Abedalthagafi, M. Constitutional mismatch repair-deficiency: Current problems and emerging therapeutic strategies. Oncotarget 2018, 9, 35458–35469. [Google Scholar] [CrossRef] [Green Version]
- Miyaki, M.; Konishi, M.; Tanaka, K.; Kikuchi-Yanoshita, R.; Muraoka, M.; Yasuno, M.; Igari, T.; Koike, M.; Chiba, M.; Mori, T. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat. Genet. 1997, 17, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppala, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.J.; Pohlhaus, T.J.; Changela, A.; Iyer, R.R.; Modrich, P.L.; Beese, L.S. Structure of the human MutSalpha DNA lesion recognition complex. Mol. Cell 2007, 26, 579–592. [Google Scholar] [CrossRef]
- Flores-Rozas, H.; Clark, D.; Kolodner, R.D. Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat. Genet. 2000, 26, 375–378. [Google Scholar] [CrossRef]
- Iyer, R.R.; Pohlhaus, T.J.; Chen, S.; Hura, G.L.; Dzantiev, L.; Beese, L.S.; Modrich, P. The MutSalpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair. J. Biol. Chem. 2008, 283, 13310–13319. [Google Scholar] [CrossRef] [Green Version]
- Kleczkowska, H.E.; Marra, G.; Lettieri, T.; Jiricny, J. hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev. 2001, 15, 724–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassman, N.R.; Clodfelter, J.E.; McCauley, A.K.; Bonin, K.; Salsbury, F.R., Jr.; Scarpinato, K.D. Cooperative nuclear localization sequences lend a novel role to the N-terminal region of MSH6. PLoS ONE 2011, 6, e17907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrette, S.; Wilson, T.; Gradia, S.; Fishel, R. Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: Examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol. Cell. Biol. 1998, 18, 6616–6623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, K.C.; Wilkins, H.; Hao, P.; Li, Z.M.; Wang, B.; Burke, D.; Wu, D.; Smith, A.E.; Spaller, L.; Du, C.; et al. Dynamic human MutSalpha-MutLalpha complexes compact mismatched DNA. Proc. Natl. Acad. Sci. USA 2020, 117, 16302–16312. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.H.; Perrakis, A.; Enzlin, J.H.; Winterwerp, H.H.; de Wind, N.; Sixma, T.K. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 2000, 407, 711–717. [Google Scholar] [CrossRef]
- Obmolova, G.; Ban, C.; Hsieh, P.; Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 2000, 407, 703–710. [Google Scholar] [CrossRef]
- Martik, D.; Baitinger, C.; Modrich, P. Differential specificities and simultaneous occupancy of human MutSalpha nucleotide binding sites. J. Biol. Chem. 2004, 279, 28402–28410. [Google Scholar] [CrossRef] [Green Version]
- Pluciennik, A.; Dzantiev, L.; Iyer, R.R.; Constantin, N.; Kadyrov, F.A.; Modrich, P. PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc. Natl. Acad. Sci. USA 2010, 107, 16066–16071. [Google Scholar] [CrossRef] [Green Version]
- Li, G.M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena-Diaz, J.; Jiricny, J. Mammalian mismatch repair: Error-free or error-prone? Trends Biochem. Sci. 2012, 37, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Kadyrov, F.A.; Dzantiev, L.; Constantin, N.; Modrich, P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006, 126, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Liberti, S.E.; Andersen, S.D.; Wang, J.; May, A.; Miron, S.; Perderiset, M.; Keijzers, G.; Nielsen, F.C.; Charbonnier, J.B.; Bohr, V.A.; et al. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. DNA Repair 2011, 10, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.C.; Jager, A.C.; Lutzen, A.; Bundgaard, J.R.; Rasmussen, L.J. Characterization of human exonuclease 1 in complex with mismatch repair proteins, subcellular localization and association with PCNA. Oncogene 2004, 23, 1457–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Frederiksen, J.H.; Liberti, S.E.; Lutzen, A.; Keijzers, G.; Pena-Diaz, J.; Rasmussen, L.J. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro. Nucleic Acids Res. 2017, 45, 9427–9440. [Google Scholar] [CrossRef] [Green Version]
- Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V.; et al. Sequence variant classification and reporting: Recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 2008, 29, 1282–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B.A.; Spurdle, A.B.; Plazzer, J.P.; Greenblatt, M.S.; Akagi, K.; Al-Mulla, F.; Bapat, B.; Bernstein, I.; Capella, G.; den Dunnen, J.T.; et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 2014, 46, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Jia, X.; Burugula, B.B.; Chen, V.; Lemons, R.M.; Jayakody, S.; Maksutova, M.; Kitzman, J.O. Massively parallel functional testing of MSH2 missense variants conferring Lynch syndrome risk. Am. J. Hum. Genet. 2021, 108, 163–175. [Google Scholar] [CrossRef]
- Kantelinen, J.; Hansen, T.V.; Kansikas, M.; Krogh, L.N.; Korhonen, M.K.; Ollila, S.; Nystrom, M.; Gerdes, A.M.; Kariola, R. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one. Fam. Cancer 2011, 10, 515–520. [Google Scholar] [CrossRef]
- Kantelinen, J.; Kansikas, M.; Candelin, S.; Hampel, H.; Smith, B.; Holm, L.; Kariola, R.; Nystrom, M. Mismatch repair analysis of inherited MSH2 and/or MSH6 variation pairs found in cancer patients. Hum. Mutat. 2012, 33, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Kariola, R.; Hampel, H.; Frankel, W.L.; Raevaara, T.E.; de la Chapelle, A.; Nystrom-Lahti, M. MSH6 missense mutations are often associated with no or low cancer susceptibility. Br. J. Cancer 2004, 91, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Kariola, R.; Otway, R.; Lonnqvist, K.E.; Raevaara, T.E.; Macrae, F.; Vos, Y.J.; Kohonen-Corish, M.; Hofstra, R.M.; Nystrom-Lahti, M. Two mismatch repair gene mutations found in a colon cancer patient--which one is pathogenic? Hum. Genet. 2003, 112, 105–109. [Google Scholar] [CrossRef]
- Kariola, R.; Raevaara, T.E.; Lonnqvist, K.E.; Nystrom-Lahti, M. Functional analysis of MSH6 mutations linked to kindreds with putative hereditary non-polyposis colorectal cancer syndrome. Hum. Mol. Genet. 2002, 11, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hays, J.B. Mismatch repair in human nuclear extracts. Quantitative analyses of excision of nicked circular mismatched DNA substrates, constructed by a new technique employing synthetic oligonucleotides. J. Biol. Chem. 2002, 277, 26136–26142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, H.; Du, C.; Chen, S.; Salerno, V.; Manfredi, C.; Hsieh, P. In vitro studies of DNA mismatch repair proteins. Anal. Biochem. 2011, 413, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, H.; Sakato, M.; DeRocco, V.; Yamane, K.; Du, C.; Erie, D.A.; Hingorani, M.; Hsieh, P. Biochemical analysis of the human mismatch repair proteins hMutSalpha MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). J. Biol. Chem. 2012, 287, 9777–9791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drost, M.; Zonneveld, J.B.; van Hees, S.; Rasmussen, L.J.; Hofstra, R.M.; de Wind, N. A rapid and cell-free assay to test the activity of lynch syndrome-associated MSH2 and MSH6 missense variants. Hum. Mutat. 2012, 33, 488–494. [Google Scholar] [CrossRef]
- Drost, M.; Tiersma, Y.; Thompson, B.A.; Frederiksen, J.H.; Keijzers, G.; Glubb, D.; Kathe, S.; Osinga, J.; Westers, H.; Pappas, L.; et al. A functional assay-based procedure to classify mismatch repair gene variants in Lynch syndrome. Genet. Med. 2019, 21, 1486–1496. [Google Scholar] [CrossRef]
- Drost, M.; Tiersma, Y.; Glubb, D.; Kathe, S.; van Hees, S.; Calleja, F.; Zonneveld, J.B.M.; Boucher, K.M.; Ramlal, R.P.E.; Thompson, B.A.; et al. Two integrated and highly predictive functional analysis-based procedures for the classification of MSH6 variants in Lynch syndrome. Genet. Med. 2020, 22, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.A.; Walters, R.; Parsons, M.T.; Dumenil, T.; Drost, M.; Tiersma, Y.; Lindor, N.M.; Tavtigian, S.V.; de Wind, N.; Spurdle, A.B.; et al. Contribution of mRNA Splicing to Mismatch Repair Gene Sequence Variant Interpretation. Front. Genet. 2020, 11, 798. [Google Scholar] [CrossRef]
- Wielders, E.A.; Dekker, R.J.; Holt, I.; Morris, G.E.; Te Riele, H. Characterization of MSH2 variants by endogenous gene modification in mouse embryonic stem cells. Hum. Mutat. 2011, 32, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Wielders, E.A.; Houlleberghs, H.; Isik, G.; te Riele, H. Functional analysis in mouse embryonic stem cells reveals wild-type activity for three MSH6 variants found in suspected Lynch syndrome patients. PLoS ONE 2013, 8, e74766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houlleberghs, H.; Goverde, A.; Lusseveld, J.; Dekker, M.; Bruno, M.J.; Menko, F.H.; Mensenkamp, A.R.; Spaander, M.C.W.; Wagner, A.; Hofstra, R.M.W.; et al. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity. PLoS Genet. 2017, 13, e1006765. [Google Scholar] [CrossRef]
- de Wind, N.; Dekker, M.; Claij, N.; Jansen, L.; van Klink, Y.; Radman, M.; Riggins, G.; van der Valk, M.; van’t Wout, K.; te Riele, H. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat. Genet. 1999, 23, 359–362. [Google Scholar] [CrossRef]
- Yan, T.; Berry, S.E.; Desai, A.B.; Kinsella, T.J. DNA mismatch repair (MMR) mediates 6-thioguanine genotoxicity by introducing single-strand breaks to signal a G2-M arrest in MMR-proficient RKO cells. Clin. Cancer Res. 2003, 9, 2327–2334. [Google Scholar] [PubMed]
- Mojas, N.; Lopes, M.; Jiricny, J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes. Dev. 2007, 21, 3342–3355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parc, Y.R.; Halling, K.C.; Wang, L.; Christensen, E.R.; Cunningham, J.M.; French, A.J.; Burgart, L.J.; Price-Troska, T.L.; Roche, P.C.; Thibodeau, S.N. HMSH6 alterations in patients with microsatellite instability-low colorectal cancer. Cancer Res. 2000, 60, 2225–2231. [Google Scholar] [PubMed]
- Mastrocola, A.S.; Heinen, C.D. Nuclear reorganization of DNA mismatch repair proteins in response to DNA damage. DNA Repair 2010, 9, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Christmann, M.; Kaina, B. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. J. Biol. Chem. 2000, 275, 36256–36262. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.P.; Sevi, L.A.; Feldt, M.C.; Rose, M.D.; Gammie, A.E. Reciprocal regulation of nuclear import of the yeast MutSalpha DNA mismatch repair proteins Msh2 and Msh6. DNA Repair 2009, 8, 739–751. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.D.; Liberti, S.E.; Lutzen, A.; Drost, M.; Bernstein, I.; Nilbert, M.; Dominguez, M.; Nystrom, M.; Hansen, T.V.; Christoffersen, J.W.; et al. Functional characterization of MLH1 missense variants identified in Lynch syndrome patients. Hum. Mutat. 2012, 33, 1647–1655. [Google Scholar] [CrossRef]
- Belvederesi, L.; Bianchi, F.; Galizia, E.; Loretelli, C.; Bracci, R.; Catalani, R.; Amati, M.; Cellerino, R. MSH2 missense mutations and HNPCC syndrome: Pathogenicity assessment in a human expression system. Hum. Mutat. 2008, 29, E296–E309. [Google Scholar] [CrossRef]
- Belvederesi, L.; Bianchi, F.; Loretelli, C.; Bracci, R.; Cascinu, S.; Cellerino, R. Sub-cellular localization analysis of MSH6 missense mutations does not reveal an overt MSH6 nuclear transport impairment. Fam. Cancer 2012, 11, 675–680. [Google Scholar] [CrossRef]
- Cyr, J.L.; Heinen, C.D. Hereditary cancer-associated missense mutations in hMSH6 uncouple ATP hydrolysis from DNA mismatch binding. J. Biol. Chem. 2008, 283, 31641–31648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baralle, D.; Lucassen, A.; Buratti, E. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 2009, 10, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.H.; Ferraris, L.; Filloux, M.E.; Raphael, B.J.; Fairbrother, W.G. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc. Natl. Acad. Sci. USA 2011, 108, 11093–11098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne-Weiler, T.; Howard, J.; Mort, M.; Cooper, D.N.; Sanford, J.R. Loss of exon identity is a common mechanism of human inherited disease. Genome Res. 2011, 21, 1563–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soukarieh, O.; Gaildrat, P.; Hamieh, M.; Drouet, A.; Baert-Desurmont, S.; Frebourg, T.; Tosi, M.; Martins, A. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet. 2016, 12, e1005756. [Google Scholar]
- Rhine, C.L.; Cygan, K.J.; Soemedi, R.; Maguire, S.; Murray, M.F.; Monaghan, S.F.; Fairbrother, W.G. Hereditary cancer genes are highly susceptible to splicing mutations. PLoS Genet. 2018, 14, e1007231. [Google Scholar] [CrossRef] [Green Version]
- Karam, R.; Conner, B.; LaDuca, H.; McGoldrick, K.; Krempely, K.; Richardson, M.E.; Zimmermann, H.; Gutierrez, S.; Reineke, P.; Hoang, L.; et al. Assessment of Diagnostic Outcomes of RNA Genetic Testing for Hereditary Cancer. JAMA Netw. Open 2019, 2, e1913900. [Google Scholar] [CrossRef] [Green Version]
- Cartegni, L.; Chew, S.L.; Krainer, A.R. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat. Rev. Genet. 2002, 3, 285–298. [Google Scholar] [CrossRef]
- Scotti, M.M.; Swanson, M.S. RNA mis-splicing in disease. Nat. Rev. Genet. 2016, 17, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Morak, M.; Schaefer, K.; Steinke-Lange, V.; Koehler, U.; Keinath, S.; Massdorf, T.; Mauracher, B.; Rahner, N.; Bailey, J.; Kling, C.; et al. Full-length transcript amplification and sequencing as universal method to test mRNA integrity and biallelic expression in mismatch repair genes. Eur. J. Hum. Genet. 2019, 27, 1808–1820. [Google Scholar] [CrossRef]
- Landrith, T.; Li, B.; Cass, A.A.; Conner, B.R.; LaDuca, H.; McKenna, D.B.; Maxwell, K.N.; Domchek, S.; Morman, N.A.; Heinlen, C.; et al. Splicing profile by capture RNA-seq identifies pathogenic germline variants in tumor suppressor genes. NPJ Precis. Oncol. 2020, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Klift, H.M.; Jansen, A.M.; van der Steenstraten, N.; Bik, E.C.; Tops, C.M.; Devilee, P.; Wijnen, J.T. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol. Genet. Genomic Med. 2015, 3, 327–345. [Google Scholar] [CrossRef]
- Petersen, S.M.; Dandanell, M.; Rasmussen, L.J.; Gerdes, A.M.; Krogh, L.N.; Bernstein, I.; Okkels, H.; Wikman, F.; Nielsen, F.C.; Hansen, T.V. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients. BMC Med. Genet. 2013, 14, 103. [Google Scholar] [CrossRef] [Green Version]
- Sjursen, W.; McPhillips, M.; Scott, R.J.; Talseth-Palmer, B.A. Lynch syndrome mutation spectrum in New South Wales, Australia, including 55 novel mutations. Mol. Genet. Genomic Med. 2016, 4, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charames, G.S.; Millar, A.L.; Pal, T.; Narod, S.; Bapat, B. Do MSH6 mutations contribute to double primary cancers of the colorectum and endometrium? Hum. Genet. 2000, 107, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Plaschke, J.; Linnebacher, M.; Kloor, M.; Gebert, J.; Cremer, F.W.; Tinschert, S.; Aust, D.E.; von Knebel Doeberitz, M.; Schackert, H.K. Compound heterozygosity for two MSH6 mutations in a patient with early onset of HNPCC-associated cancers, but without hematological malignancy and brain tumor. Eur. J. Hum. Genet. 2006, 14, 561–566. [Google Scholar] [CrossRef]
- Etzler, J.; Peyrl, A.; Zatkova, A.; Schildhaus, H.U.; Ficek, A.; Merkelbach-Bruse, S.; Kratz, C.P.; Attarbaschi, A.; Hainfellner, J.A.; Yao, S.; et al. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference. Hum. Mutat. 2008, 29, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Barnetson, R.A.; Cartwright, N.; van Vliet, A.; Haq, N.; Drew, K.; Farrington, S.; Williams, N.; Warner, J.; Campbell, H.; Porteous, M.E.; et al. Classification of ambiguous mutations in DNA mismatch repair genes identified in a population-based study of colorectal cancer. Hum. Mutat. 2008, 29, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Lucci-Cordisco, E.; Rovella, V.; Carrara, S.; Percesepe, A.; Pedroni, M.; Bellacosa, A.; Caluseriu, O.; Forasarig, M.; Anti, M.; Neri, G.; et al. Mutations of the ‘minor’ mismatch repair gene MSH6 in typical and atypical hereditary nonpolyposis colorectal cancer. Fam. Cancer 2001, 1, 93–99. [Google Scholar] [CrossRef]
- Jansen, A.M.; van der Klift, H.M.; Roos, M.A.; van Eendenburg, J.D.; Tops, C.M.; Wijnen, J.T.; Hes, F.J.; Morreau, H.; van Wezel, T. RNA analysis of cancer predisposing genes in formalin-fixed paraffin-embedded tissue determines aberrant splicing. Eur. J. Hum. Genet. 2018, 26, 1143–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B.A.; Martins, A.; Spurdle, A.B. A review of mismatch repair gene transcripts: Issues for interpretation of mRNA splicing assays. Clin. Genet. 2015, 87, 100–108. [Google Scholar] [CrossRef]
- Brandao, R.D.; Mensaert, K.; Lopez-Perolio, I.; Tserpelis, D.; Xenakis, M.; Lattimore, V.; Walker, L.C.; Kvist, A.; Vega, A.; Gutierrez-Enriquez, S.; et al. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int. J. Cancer 2019, 145, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Brnich, S.E.; Abou Tayoun, A.N.; Couch, F.J.; Cutting, G.R.; Greenblatt, M.S.; Heinen, C.D.; Kanavy, D.M.; Luo, X.; McNulty, S.M.; Starita, L.M.; et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 2019, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Brieger, A.; Plotz, G.; Hinrichsen, I.; Passmann, S.; Adam, R.; Zeuzem, S. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins. PLoS ONE 2012, 7, e31863. [Google Scholar] [CrossRef] [Green Version]
- Whiley, P.J.; de la Hoya, M.; Thomassen, M.; Becker, A.; Brandao, R.; Pedersen, I.S.; Montagna, M.; Menendez, M.; Quiles, F.; Gutierrez-Enriquez, S.; et al. Comparison of mRNA splicing assay protocols across multiple laboratories: Recommendations for best practice in standardized clinical testing. Clin. Chem. 2014, 60, 341–352. [Google Scholar] [CrossRef] [Green Version]
- de la Hoya, M.; Soukarieh, O.; Lopez-Perolio, I.; Vega, A.; Walker, L.C.; van Ierland, Y.; Baralle, D.; Santamarina, M.; Lattimore, V.; Wijnen, J.; et al. Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Hum. Mol. Genet. 2016, 25, 2256–2268. [Google Scholar] [CrossRef]
- Findlay, G.M.; Daza, R.M.; Martin, B.; Zhang, M.D.; Leith, A.P.; Gasperini, M.; Janizek, J.D.; Huang, X.; Starita, L.M.; Shendure, J. Accurate classification of BRCA1 variants with saturation genome editing. Nature 2018, 562, 217–222. [Google Scholar] [CrossRef]
- Starita, L.M.; Islam, M.M.; Banerjee, T.; Adamovich, A.I.; Gullingsrud, J.; Fields, S.; Shendure, J.; Parvin, J.D. A Multiplex Homology-Directed DNA Repair Assay Reveals the Impact of More Than 1,000 BRCA1 Missense Substitution Variants on Protein Function. Am. J. Hum. Genet. 2018, 103, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Giacomelli, A.O.; Yang, X.; Lintner, R.E.; McFarland, J.M.; Duby, M.; Kim, J.; Howard, T.P.; Takeda, D.Y.; Ly, S.H.; Kim, E.; et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 2018, 50, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Kotler, E.; Shani, O.; Goldfeld, G.; Lotan-Pompan, M.; Tarcic, O.; Gershoni, A.; Hopf, T.A.; Marks, D.S.; Oren, M.; Segal, E. A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol. Cell 2018, 71, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mighell, T.L.; Evans-Dutson, S.; O’Roak, B.J. A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. Am. J. Hum. Genet. 2018, 102, 943–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matreyek, K.A.; Starita, L.M.; Stephany, J.J.; Martin, B.; Chiasson, M.A.; Gray, V.E.; Kircher, M.; Khechaduri, A.; Dines, J.N.; Hause, R.J.; et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet. 2018, 50, 874–882. [Google Scholar]
- Yue, P.; Li, Z.; Moult, J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 2005, 353, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Redler, R.L.; Das, J.; Diaz, J.R.; Dokholyan, N.V. Protein Destabilization as a Common Factor in Diverse Inherited Disorders. J. Mol. Evol. 2016, 82, 11–16. [Google Scholar] [PubMed] [Green Version]
- Pejaver, V.; Babbi, G.; Casadio, R.; Folkman, L.; Katsonis, P.; Kundu, K.; Lichtarge, O.; Martelli, P.L.; Miller, M.; Moult, J.; et al. Assessment of methods for predicting the effects of PTEN and TPMT protein variants. Hum. Mutat. 2019, 40, 1495–1506. [Google Scholar] [CrossRef] [Green Version]
Software | Description | Website |
---|---|---|
CADD | CADD is a freely available tool from the University of Washington and HudsonAlpha Institute for Biotechnology for scoring the deleteriousness of single-nucleotide variants as well as insertion/deletions variants in the human genome. | https://cadd.gs.washington.edu/snv (accessed on 24 May 2021) |
REVEL | REVEL is a new ensemble method for predicting the pathogenicity of missense variants based on a combination of scores from the following 13 individual tools: MutPred, FATHMM v2.3, VEST 3.0, Polyphen-2, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP++, SiPhy, phyloP, and phastCons. | https://sites.google.com/site/revelgenomics/ (accessed on 24 May 2021) |
Polyphen2 | PolyPhen-2 (Polymorphism Phenotyping v2) is a tool from Harvard University which predicts possible impact of an amino acid substitution on the structure and function of a human protein. | http://genetics.bwh.harvard.edu/pph2/ (accessed on 24 May 2021) |
Align-GVGD | Align-GVGD is a freely available, web-based program that combines the biophysical characteristics of amino acids and protein multiple sequence alignments to predict where missense substitutions in genes of interest fall in a spectrum from enriched deleterious to enriched neutral. | http://agvgd.hci.utah.edu/agvgd_input.php (accessed on 24 May 2021) |
HCI database of prior probability | The Huntsman Cancer Institute Database of Prior Probabilities of Pathogenicity for single-nucleotide substitutions in cancer genes provides the prior probability of pathogenicity estimates for MSH6 variants. | http://priors.hci.utah.edu/PRIORS/ (accessed on 24 May 2021) |
SpliceAI | SpliceAI is a deep learning-based tool from Broad Institute to identify splice variants. | https://spliceailookup.broadinstitute.org/ (accessed on 24 May 2021) |
MaxEntScan | MaxEntScan is based on the approach for modeling the sequences of short sequence motifs such as those involved in RNA splicing, which simultaneously accounts for non-adjacent as well as adjacent dependencies between positions. | http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html (accessed on 24 May 2021) |
gnomAD | The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition of investigators, with the goal of aggregating and harmonizing both exome and genome sequencing data from a wide variety of large-scale sequencing projects, and making summary data available for the wider scientific community. | https://gnomad.broadinstitute.org/ (accessed on 24 May 2021) |
Entrez-pubmed | Web-based search engine to search for research publications containing specific variants. | http://www.ncbi.nlm.nih.gov/pubmed (accessed on 24 May 2021) |
InSiGHT variants databases | InSiGHT houses and curates the most comprehensive database of DNA variants re-sequenced in the genes that contribute to gastrointestinal cancer. | https://www.insight-group.org/variants/databases/ (accessed on 24 May 2021) |
ClinVar | ClinVar aggregates information about genomic variation and its relationship to human health. | https://www.ncbi.nlm.nih.gov/clinvar (accessed on 24 May 2021) |
Assay | MMR Activity | 6-TG Selection | Nuclear Localization | Mechanistic | Splicing | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | [44] | [43] | [42] | [40] | [48] | [41] | [47] | [50] | [51] | [53] | [54] | [23] | [64] | [65] | [47] | [51,71,74,75,76,77,78,79,80,81,82,83,84,85,86] |
Material used | Human cDNA in baculovirus vector | Human cDNA in baculovirus vector | Human cDNA in baculovirus vector | Human cDNA in baculovirus vector | Human cDNA in pCITE4a | Human cDNA in baculovirus vector | Human cDNA in baculovirus vector | Human cDNA in pCITE4a | Human cDNA in pCITE4a | Mouse DNA | Mouse DNA | Human cDNA in EGFP-C1 | Human cDNA in pEGFP-N1 | Human cDNA in baculovirus vector | Human cDNA in baculovirus vector | Human mRNA or minigene DNA constructs |
Expression system | Sf9 insect cells | Sf9 insect cells | Sf9 insect cells | Sf9 insect cells | IVTT | Sf9 insect cells | Sf9 insect cells | IVTT | IVTT | mESC | mESC | DLD-1 cells | HEK293 cells | Sf9 insect cells | Sf9 insect cells | RT-PCR |
Functional output | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Mismatch repair activity | Sequencing of 6TG resistant colonies | Sequencing of 6TG resistant colonies | Nuclear/cytoplasmic localization | Nuclear/cytoplasmic localization | Multiple outputs | Multiple outputs | cDNA sequence |
Wild-type control | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | - | yes | yes | Yes | Yes | Yes | - |
Positive control | Yes (HCT- 15 cells) | Yes (HCT- 15 cells) | Yes (HCT- 15 cells) | Yes (LoVo cells) | 2 pathogenic variants | Yes (LoVo cells) | Yes (LoVo cells) | 52 pathogenic variants | 1 pathogenic variant | 1 pathogenic variant | 5 pathogenic variants | - | - | - | - | - |
Negative control | Yes (TK6 cells) | Yes (TK6 cells) | Yes (TK6 cells) | Yes (HeLa cells) | 3 benign variants | Yes (HeLa cells) | Yes (HeLa cells) | 31 benign variants | - | - | 4 benign variants | - | - | - | - | - |
No. of VUS examined | 4 | 2 | 5 | 1 | 15 | 6 | 1 | 7 | 10 | 3 | 26 | 4 | 10 | 7 | 1 | - |
Technical replicates | 2 | 2 | 2 | 3 | 3-4 for VUS and >6 for controls | 3 | - | >3 | 3-4 | - | - | - | 3 | 3 | 3 | - |
Biological replicates | - | - | - | - | - | - | - | - | - | yes | yes | - | - | - | - | - |
PS3/BS3 criterion [87] | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Supporting/Max BS3_Supporting | Max PS3_Very_Strong/Max BS3 | Max PS3_Very_Strong/Max BS3 | Do no use PS3/BS3 | Max PS3_Supporting/Max BS3_Supporting | Do no use PS3/BS3 | Do no use PS3/BS3 | Do no use PS3/BS3 | Do no use PS3/BS3 | Max PS3_Very_Strong/Max BS3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frederiksen, J.H.; Jensen, S.B.; Tümer, Z.; Hansen, T.v.O. Classification of MSH6 Variants of Uncertain Significance Using Functional Assays. Int. J. Mol. Sci. 2021, 22, 8627. https://doi.org/10.3390/ijms22168627
Frederiksen JH, Jensen SB, Tümer Z, Hansen TvO. Classification of MSH6 Variants of Uncertain Significance Using Functional Assays. International Journal of Molecular Sciences. 2021; 22(16):8627. https://doi.org/10.3390/ijms22168627
Chicago/Turabian StyleFrederiksen, Jane H., Sara B. Jensen, Zeynep Tümer, and Thomas v. O. Hansen. 2021. "Classification of MSH6 Variants of Uncertain Significance Using Functional Assays" International Journal of Molecular Sciences 22, no. 16: 8627. https://doi.org/10.3390/ijms22168627
APA StyleFrederiksen, J. H., Jensen, S. B., Tümer, Z., & Hansen, T. v. O. (2021). Classification of MSH6 Variants of Uncertain Significance Using Functional Assays. International Journal of Molecular Sciences, 22(16), 8627. https://doi.org/10.3390/ijms22168627