Adiponectin and Asthma: Knowns, Unknowns and Controversies
Abstract
:1. Introduction
2. General Considerations
3. Physiological Role
3.1. Main Roles of ADPN
3.2. Mechanism of Action
3.3. Circulating ADPN
4. Adiponectin and Asthma
4.1. Epidemiological Studies
4.2. Mechanistic Studies
4.2.1. Dysfunctional Airway Epithelium
4.2.2. Hyperresponsiveness of the Airway Smooth Muscle
4.2.3. Enhanced Mucus Hypersecretion
4.2.4. Inflammation and Immune Response
4.2.5. Airway Remodeling
4.2.6. Vascular Modifications
4.2.7. Reduction in Respiratory Muscle Strength
4.2.8. Obesity-Related Asthma
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, S.; Prakash, Y.S.; Linneberg, A.; Agrawal, A. Insulin and the Lung: Connecting Asthma and Metabolic Syndrome. J. Allergy 2013, 2013, 627384. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, M. ADPN: A versatile player of innate immunity. J. Mol. Cell Biol. 2016, 8, 120–128. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q; produced exclusively in adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.J.; Bian, X.; Lim, J.; Medzhitov, R. ADPN and related C1q/TNF-related proteins bind selectively to anionic phospholipids and sphingolipids. Proc. Natl. Acad. Sci. USA 2020, 117, 17381–17388. [Google Scholar] [CrossRef]
- Wang, Y.; Lam, K.S.L.; Yau, M.; Xu, A. Post-translational modifications of ADPN: Mechanisms and functional implications. Biochem. J. 2008, 409, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Swarbrick, M.M.; Havel, P.J. Physiological; pharmacological; and nutritional regulation of circulating ADPN concentrations in humans. Metab. Syndr. Relat. Disord. 2008, 6, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Qiang, L.; Wang, H.; Farmer, S.R. ADPN secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol. Cell Biol. 2007, 27, 4698–4707. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; O’Reilly, C.P.; Chapes, S.K.; Mora, S. ADPN and leptin are secreted through distinct trafficking pathways in adipocytes. Biochim. Biophys. Acta 2008, 1782, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.Y.; Hong, W.; Han, W. ADPN is released via a unique regulated exocytosis pathway from a pre-formed vesicle pool on insulin stimulation. Biochem. J. 2015, 471, 381–389. [Google Scholar] [CrossRef]
- El Hachmane, M.F.; Komai, A.M.; Olofsson, C.S. Cooling reduces cAMP-stimulated exocytosis and ADPN secretion at a Ca2+-dependent step in 3T3-L1 adipocytes. PLoS ONE 2015, 10, e0119530. [Google Scholar] [CrossRef] [Green Version]
- Musovic, S.; Olofsson, C.S. Adrenergic stimulation of ADPN secretion in visceral mouse adipocytes is blunted in high-fat diet induced obesity. Sci. Rep. 2019, 9, 10680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komai, A.M.; Musovic, S.; Peris, E.; Alrifaiy, A.; El Hachmane, M.F.; Johansson, M.; Wernstedt Asterholm, I.; Olofsson, C.S. White Adipocyte ADPN Exocytosis Is Stimulated via β3-Adrenergic Signaling and Activation of Epac1: Catecholamine Resistance in Obesity and Type 2 Diabetes. Diabetes 2016, 65, 3301–3313. [Google Scholar] [CrossRef] [Green Version]
- Kovacova, Z.; Vitkova, M.; Kovacikova, M.; Klimcakova, E.; Bajzova, M.; Hnevkovska, Z.; Rossmeislova, L.; Stich, V.; Langin, D.; Polak, J. Secretion of ADPN multimeric complexes from adipose tissue explants is not modified by very low calorie diet. Eur. J. Endocrinol. 2009, 160, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerre-Millo, M. ADPN: An update. Diabetes Metab. 2008, 34, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Kralisch, S.; Klier, M.; Lossner, U.; Bluher, M.; Klein, J.; Paschke, R. ADPN gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2003, 301, 1045–1050. [Google Scholar] [CrossRef]
- Yuan, G.; Chen, X.; Ma, Q.; Qiao, J.; Li, R.; Li, X.; Li, S.; Tang, J.; Zhou, L.; Song, H.; et al. C-reactive protein inhibits ADPN gene expression and secretion in 3T3-L1 adipocytes. J. Endocrinol. 2007, 194, 275–281. [Google Scholar]
- Juan, C.C.; Chuang, T.Y.; Chang, C.L.; Huang, S.W.; Ho, L.T. Endothelin-1 Regulates ADPN Gene Expression and Secretion in 3T3-L1 Adipocytes via Distinct Signaling Pathways. Endocrinology 2007, 148, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. ADPN stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef]
- Fruebis, J.; Tsao, T.S.; Javorschi, S.; Ebbets-Reed, D.; Erickson, M.R.; Yen, F.T.; Bihain, B.E.; Lodish, H.F. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 2001, 98, 2005–2010. [Google Scholar] [CrossRef]
- Combs, T.P.; Berg, A.H.; Obici, S.; Scherer, P.E.; Rossetti, L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Investig. 2001, 108, 1875–1881. [Google Scholar] [CrossRef]
- Tomas, E.; Tsao, T.S.; Saha, A.K.; Murrey, H.E.; Zhang, C.C.; Itani, S.I.; Lodish, H.F.; Ruderman, N.B. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 2002, 99, 16309–16313. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.P.; Milne, K.J.; Hawke, T.J. ADPN-Consideration for its Role in Skeletal Muscle Health. Int. J. Mol. Sci. 2019, 20, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Takahashi, N.; Hileman, S.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. ADPN acts in the brain to decrease body weight. Nat. Med. 2004, 10, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Kubota, N.; Yano, W.; Kubota, T.; Yamauchi, T.; Itoh, S.; Kumagai, H.; Kozono, H.; Takamoto, I.; Okamoto, S.; Shiuchi, T.; et al. ADPN stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007, 6, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheatley, K.E.; Nogueira, L.M.; Perkins, S.N.; Hursting, S.D. Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J. Obes. 2011, 2011, 265417. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.M.; Lacorte, J.M.; Viguerie, N.; Poitou, C.; Pelloux, V.; Guy-Grand, B.; Coussieu, C.; Langin, D.; Basdevant, A.; Clément, K. ADPN gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding. J. Clin. Endocrinol. Metab. 2003, 88, 5881–5886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.; Shao, J. ADPN and energy homeostasis. Rev. Endocr. Metab. Disord. 2014, 15, 149–156. [Google Scholar] [CrossRef]
- 28Ajuwon, K.M.; Spurlock, M.E. ADPN inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1220–R1225. [Google Scholar] [CrossRef]
- Okamoto, Y.; Folco, E.J.; Minami, M.; Wara, A.K.M.K.; Feinberg, M.W.; Sukhova, G.K.; Colvin, R.A.; Kihara, S.; Funahashi, T.; Luster, A.D.; et al. ADPN inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ. Res. 2008, 102, 218–225. [Google Scholar] [CrossRef]
- Fayad, R.; Pini, M.; Sennello, J.A.; Cabay, R.J.; Chan, L.; Xu, A.; Fantuzzi, G. ADPN deficiency protects mice from chemically induced colonic inflammation. Gastroenterology 2007, 132, 601–614. [Google Scholar] [CrossRef]
- Tang, C.H.; Chiu, Y.C.; Tan, T.W.; Yang, R.S.; Fu, W.M. ADPN enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor; AMPK; p38; and NF-kappa B pathway. J. Immunol. 2007, 179, 5483–5492. [Google Scholar] [CrossRef] [Green Version]
- Lovren, F.; Pan, Y.; Quan, A.; Szmitko, P.E.; Singh, K.K.; Shukla, P.C.; Gupta, M.; Chan, L.; Al-Omran, M.; Teoh, H.; et al. ADPN primes human monocytes into alternative anti-inflammatory M2 macrophages. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H656–H663. [Google Scholar] [CrossRef] [Green Version]
- Tilija, P.N.; Subedi, A.; Kim, M.J.; Park, P.-H. Globular ADPN Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis. PLoS ONE 2015, 10, e0124636. [Google Scholar] [CrossRef] [Green Version]
- Luo, N.; Chung, B.H.; Wang, X.; Klein, K.L.; Tang, C.K.; Garvey, W.T.; Fua, Y. Enhanced ADPN actions by overexpression of ADPN receptor 1 in macrophages. Atherosclerosis 2013, 228, 124–135. [Google Scholar] [CrossRef] [Green Version]
- van Stijn, C.M.; Kim, J.; Lusis, A.J.; Barish, G.D.; Tangirala, R.K. Macrophage polarization phenotype regulates ADPN receptor expression and ADPN anti-inflammatory response. FASEB J. 2015, 29, 636–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumada, M.; Kihara, S.; Ouchi, N.; Kobayashi, H.; Okamoto, Y.; Ohashi, K.; Maeda, K.; Nagaretani, H.; Kishida, K.; Maeda, N.; et al. ADPN specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 2004, 109, 2046–2049. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.M.; Wolf, D.; Rumpold, H.; Enrich, B.; Tilg, H. ADPN induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004, 323, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ramírez, P.; Malmhäll, C.; Tliba, O.; Rådinger, M.; Bossios, A. ADPN/AdipoR1 Axis Promotes IL-10 Release by Human Regulatory T Cells. Front. Immunol. 2021, 12, 677550. [Google Scholar] [CrossRef]
- Cheng, X.; Folco, E.J.; Shimizu, K.; Libby, P. ADPN induces pro-inflammatory programs in human macrophages and CD4+ T cells. J. Biol. Chem. 2012, 287, 36896–36904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsatsanis, C.; Zacharioudaki, V.; Androulidaki, A.; Dermitzaki, E.; Charalampopoulos, I.; Minas, V.; Gravanis, A.; Margioris, A.N. ADPN induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochem. Biophys. Res. Commun. 2005, 335, 1254–1263. [Google Scholar] [CrossRef]
- Hug, C.; Wang, J.; Ahmad, N.S.; Bogan, J.S.; Tsao, T.S.; Lodish, H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/ADPN. Proc. Natl. Acad. Sci. USA 2004, 101, 10308e10313. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.S.; Kasahara, D.I.; Verbout, N.G.; Fedulov, A.V.; Zhu, M.; Si, H.; Wurmbrand, A.P.; Hug, C.; Ranscht, B.; Shore, S.A. Role of the ADPN binding protein; T-cadherin (Cdh13); in allergic airways responses in mice. PLoS ONE 2012, 7, e41088. [Google Scholar] [CrossRef]
- Takemura, Y.; Ouchi, N.; Shibata, R.; Aprahamian, T.; Kirber, M.T.; Summer, R.S.; Kihara, S.; Walsh, K. ADPN modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Investig. 2007, 117, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, J.; Wankell, M.; Subramaniam, V.N.; Hebbard, L.W. The functional roles of T-cadherin in mammalian biology. AIMS Molec. Sci. 2017, 4, 62–81. [Google Scholar] [CrossRef]
- Parker-Duffen, J.L.; Nakamura, K.; Silver, M.; Kikuchi, R.; Tigges, U.; Yoshida, S.; Denzel, M.S.; Ranscht, B.; Walsh, K. T-cadherin is essential for ADPN mediated revascularization. J. Biol. Chem 2013, 288, 24886–24897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchi, N.; Walsh, K. ADPN as an anti-inflammatory factor. Clin. Chim. Acta 2007, 380, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, G.R.; Carling, D. AMP-activated protein kinase: The current landscape for drug development. Nat. Rev. Drug Discov. 2019, 18, 527–551. [Google Scholar] [CrossRef]
- Mancini, S.J.; White, A.D.; Bijland, S.; Rutherford, C.; Graham, D.; Richter, E.A.; Viollet, B.; Touyz, R.M.; Palmer, T.M.; Salt, I.P. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol. Cell Endocrinol. 2017, 440, 44–56. [Google Scholar] [CrossRef]
- Michalek, R.D.; Gerriets, V.A.; Jacobs, S.R.; Macintyre, A.N.; MacIver, N.J.; Mason, E.F.; Sullivan, S.A.; Nichols, A.G.; Rathmell, J.C. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 2011, 186, 3299–3303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Song, L.; Wang, J.; Meng, C.; Cui, X. ADPN protects against lung ischemia-reperfusion injury in rats with type 2 diabetes mellitus. Mol. Med. Rep. 2018, 17, 7191–7201. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Li, Y.N.; Liu, Y.H.; Yi, B.; Tian, J.W.; Liu, F.Y. ADPN inhibits the generation of reactive oxygen species induced by high glucose and promotes endothelial NO synthase formation in human mesangial cells. Mol. Med. Rep. 2012, 6, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, Y.; Yang, W.; Yuan, J.; Mo, Z. ADPN inhibits NLRP3 inflammasome by modulating the AMPK-ROS pathway. Int. J. Clin. Exp. Pathol. 2018, 11, 3338–3347. [Google Scholar]
- Li, R.; Wang, W.Q.; Zhang, H.; Yang, X.; Fan, Q.; Christopher, T.A.; Lopez, B.L.; Tao, L.; Goldstein, B.J.; Gao, F.; et al. ADPN improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1703–E1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Zhou, L.; Reyes, C.M.; Liu, F.; Dong, L.Q. APPL1 mediates ADPN-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E103–E110. [Google Scholar] [CrossRef] [Green Version]
- Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation; function and role in human diseases. Biochim. Biophys. Acta 2007, 1773, 1358–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, M.J.; Lee, G.Y.; Chung, J.J.; Ahn, Y.H.; Hong, S.H.; Kim, J.B. ADPN increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase; p38 mitogen-activated protein kinase; and peroxisome proliferator-activated receptor alpha. Diabetes 2006, 55, 2562–2570. [Google Scholar]
- Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Kadowaki, T. ADPN receptors: A review of their structure; function and how they work. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Heiker, J.T.; Kosel, D.; Beck-Sickinger, A.G. Molecular mechanisms of signal transduction via ADPN and ADPN receptors. Biol. Chem. 2010, 391, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Devchand, P.R.; Keller, H.; Peters, J.M.; Vazquez, M.; Gonzalez, F.J.; Wahli, W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 1996, 384, 39–43. [Google Scholar] [CrossRef]
- Narala, V.R.; Adapala, R.K.; Suresh, M.V.; Brock, T.G.; Peters-Golden, M.; Reddy, R.C. Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-alpha agonist. J. Biol. Chem. 2010, 285, 22067–22074. [Google Scholar] [CrossRef] [Green Version]
- Koeberle, A.; Siemoneit, U.; Northoff, H.; Hofmann, B.; Schneider, G.; Werz, O. MK-886; an inhibitor of the 5-lipoxygenase-activating protein; inhibits cyclooxygenase-1 activity and suppresses platelet ag-gregation. Eur. J. Pharmacol. 2009, 608, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Delayre-Orthez, C.; Becker, J.; Auwerx, J.; Frossard, N.; Pons, F. Suppression of allergen-induced airway inflammation and immune response by the peroxisome proliferator-activated receptor-alpha agonist fenofibrate. Eur. J. Pharmacol. 2008, 581, 177–184. [Google Scholar] [CrossRef]
- Elaidy, S.M.; Essawy, S.S.; Hussain, M.A.; El-Kherbetawy, M.K.; Hamed, E.R. Modulation of the IL-23/IL-17 axis by fenofibrate ameliorates the ovalbumin/lipopolysaccharide-induced airway inflammation and bronchial asthma in rats. Naunyn. Schmiedebergs Arch. Pharmacol. 2018, 391, 309–321. [Google Scholar] [CrossRef]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellabianca, A.; Beretta, C.; Faniglione, M.; De Angelis, S.; Colucci, M.; Cervio, M.; Tonini, S.; Candura, S.M. A PPAR-α agonist protects the non-adrenergic; non-cholinergic inhibitory system of guinea pig trachea from the effect of inhaled ammonium persulphate: A pilot study. G Ital. Med. Lav. Ergon. 2020, 42, 153–159. [Google Scholar]
- Okayasu, T.; Tomizawa, A.; Suzuki, K.; Manaka, K.; Hattori, Y. PPARalpha activators upregulate eNOS activity and inhibit cytokine-induced NF-kappaB activation through AMP-activated protein kinase activation. Life Sci. 2008, 82, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sánchez, K.; Vargas, L.; Urrutia, Y.; Beltrán, I.; Rossi, A.B.; Lozano, H.Y.; Guarín, J.; Losada-Barragán, M. PPARα and PPARβ/δ are negatively correlated with proinflammatory markers in leukocytes of an obese pediatric population. J. Inflamm. 2020, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Kim, J.H.; Shim, J.W.; Kim, D.S.; Jung, H.L.; Park, M.S.; Lee, W.Y.; Kim, S.Y.; Shim, J.Y. Peroxisome proliferator-activated receptor-gamma expression in the lung tissue of obese rats. Yonsei Med. J. 2011, 52, 495–501. [Google Scholar] [CrossRef]
- Sugii, S.; Olson, P.; Sears, D.D.; Saberi, M.; Atkins, A.R.; Barish, G.D.; Hong, S.H.; Castro, G.L.; Yin, Y.Q.; Nelson, M.C.; et al. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc. Natl. Acad. Sci. USA 2009, 106, 22504–22509. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Hao, J.; Feng, Z.; Tian, C.; Chen, W.; Packer, L.; Shi, X.; Zang, W.; Liu, J. Lipoamide or lipoic acid stimulates mitochondrial biogenesis in 3T3-L1 adipocytes via the endothelial NO synthase-cGMP-protein kinase G signalling pathway. Br. J. Pharmacol. 2011, 162, 1213–1224. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Quiles, M.; Broekema, M.F.; Kalkhoven, E. PPARgamma in Metabolism; Immunity; and Cancer: Unified and Diverse Mechanisms of Action. Front. Endocrinol. 2021, 12, 624112. [Google Scholar] [CrossRef]
- Astapova, O.; Leff, T. ADPN and PPARγ: Cooperative and interdependent actions of two key regulators of metabolism. Vitam. Horm. 2012, 90, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Koenen, T.B.; Tack, C.J.; Kroese, J.M.; Hermus, A.R.; Sweep, F.C.G.; van der Laak, J.; Stalenhoef, A.F.; de Graaf, J.; van Tits, L.J.; Stienstra, R. Pioglitazone treatment enlarges subcutaneous adipocytes in insulin-resistant patients. J. Clin. Endocrinol. Metab. 2009, 94, 4453–4457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kita, A.; Yamasaki, H.; Kuwahara, H.; Moriuchi, A.; Fukushima, K.; Kobayashi, M.; Fukushima, T.; Takahashi, R.; Abiru, N.; Uotani, S.; et al. Identification of the promoter region required for human ADPN gene transcription: Association with CCAAT/enhancer binding protein-beta and tumor necrosis factor-alpha. Biochem. Biophys. Res. Commum. 2005, 331, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Lei, T.; Feng, B.; Yin, C.; Jin, D.; Wu, Y.; Zhu, X.; Chen, X.; Gan, L.; Yang, Z. Peroxisome proliferatoractivated receptor-gamma increases ADPN secretion via transcriptional repression of endoplasmic reticulum chaperone protein ERp44. Endocrinology 2010, 151, 3195–3203. [Google Scholar] [CrossRef]
- Riera-Guardia, N.; Rothenbacher, D. The effect of thiazolidinediones on ADPN serum level: A meta-analysis. Diabetes Obes. Metab. 2008, 10, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Park, S.H.; Ko, J.W.; Cho, Y.K.; Lee, I.C.; Kim, J.C.; Shin, I.S.; Kim, J.S. Lobeglitazone Attenuates Airway Inflammation and Mucus Hypersecretion in a Murine Model of Ovalbumin-Induced Asthma. Front. Pharmacol. 2018, 9, 906. [Google Scholar] [CrossRef]
- Halberg, N.; Schraw, T.D.; Wang, Z.V.; Kim, J.Y.; Yi, J.; Hamilton, M.P.; Luby-Phelps, K.; Scherer, P.E. Systemic fate of the adipocyte-derived factor ADPN. Diabetes 2009, 58, 1961–1970. [Google Scholar] [CrossRef] [Green Version]
- Shimotomai, T.; Kakei, M.; Narita, T.; Koshimura, J.; Hosoba, M.; Kato, M.; Komatsuda, A.; Ito, S. Enhanced urinary ADPN excretion in IgA-nephropathy patients with proteinuria. Ren. Fail. 2005, 27, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Heidari, M.; Nasri, P.; Nasri, H. ADPN and chronic kidney disease; a review on recent findings. J. Nephropharmacol. 2015, 4, 63–68. [Google Scholar] [PubMed]
- Lausten-Thomsen, U.; Christiansen, M.; Fonvig, C.E.; Trier, C.; Pedersen, O.; Hansen, T.; Holm, J.C. Reference values for serum total ADPN in healthy non-obese children and adolescents. Clin. Chim. Acta 2015, 450, 11–14. [Google Scholar] [CrossRef]
- Cnop, M.; Havel, P.J.; Utzschneider, K.M.; Carr, D.B.; Sinha, M.K.; Boyko, E.J.; Retzlaff, B.M.; Knopp, R.H.; Brunzell, J.D.; Kahn, S.E. Relationship of ADPN to body fat distribution; insulin sensitivity and plasma lipoproteins: Evidence for independent roles of age and sex. Diabetologia 2003, 46, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nien, J.K.; Mazaki-Tovi, S.; Romero, R.; Erez, O.; Kusanovic, J.P.; Gotsch, F.; Pineles, B.L.; Gomez, R.; Edwin, S.; Mazor, M.; et al. Plasma ADPN concentrations in non-pregnant; normal and overweight pregnant women. J. Perinat. Med. 2007, 35, 522–531. [Google Scholar] [CrossRef]
- Gavrila, A.; Chan, J.L.; Yiannakouris, N.; Kontogianni, M.; Miller, L.C.; Orlova, C.; Mantzoros, C.S. Serum ADPN Levels Are Inversely Associated with Overall and Central Fat Distribution but Are Not Directly Regulated by Acute Fasting or Leptin Administration in Humans: Cross-Sectional and Interventional Studies. J. Clin. Endocrinol. Metab. 2003, 88, 4823–4831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Nunes, J.; Oliveira, A.; Duarte, L.; Barradas, M.; Melão, A.; Brito, M.; Veiga, L. Factors related with adiponectinemia in obese and normalweight women and with its variation in weight loss programs. Obes. Facts 2013, 6, 124–133. [Google Scholar] [CrossRef]
- Salem, A.M.; Latif, R.; Rafique, N. Comparison of ADPN Levels During the Menstrual Cycle Between Normal Weight and Overweight/Obese Young Females. Physiol. Res. 2019, 68, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, J.; Gu, W.; Wang, B.; Wan, F.; Dai, B.; Zhang, H.; Shi, G.; Shen, Y.; Zhu, Y.; et al. Serum ADPN Level May be an Independent Predictor of Clear Cell Renal Cell Carcinoma. J. Cancer. 2016, 7, 1340–1346. [Google Scholar] [CrossRef] [Green Version]
- Allison, M.A.; Criqui, M.H.; Maisel, A.S.; Daniels, L.B.; Roberts, C.K.; Polak, J.F.; Cushman, M. ADPN is independently associated with NT-proBNP: The Multi-Ethnic Study of Atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, S.G.; Welsh, P.; Whincup, P.H.; Sawar, N.; Thomas, M.C.; Gudnarsson, V.; Sattar, N. High ADPN and increased risk of cardiovascular disease and mortality in asymptomatic older men: Does NT-proBNP help to explain this association? Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, J.M.; Pastor, J.; Sun, K.; Park, S.K.; Bobulescu, I.A.; Chen, C.T.; Moe, O.W.; Scherer, P.E. ADPN alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney Int. 2017, 91, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Komici, K.; Iacono, A.D.; De Luca, A.; Perrotta, F.; Bencivenga, L.; Rengo, G.; Rocca, A.; Guerra, G. ADPN and Sarcopenia: A Systematic Review with Meta-Analysis. Front. Endocrinol. 2021, 12, 576619. [Google Scholar] [CrossRef]
- Li, S.; Shin, H.J.; Ding, E.L.; van Dam, R.M. ADPN Levels and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA 2009, 302, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Sook Lee, E.; Park, S.S.; Kim, E.; Sook Yoon, Y.; Ahn, H.Y.; Park, C.Y.; Ho Yun, Y.; Woo Oh, S. Association between ADPN levels and coronary heart disease and mortality: A systematic review and meta-analysis. Int. J. Epidemiol. 2013, 42, 1029–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Li, L.; Wang, X.; Greene, T.; Balakrishnan, V.; Madero, M.; Pereira, A.A.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; et al. ADPN and mortality in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2599–2606. [Google Scholar] [CrossRef] [Green Version]
- Borges, M.C.; Barros, A.J.D.; Ferreira, D.L.S.; Casas, J.P.; Horta, B.L.; Kivimaki, M.; Kumari, M.; Menon, U.; Gaunt, T.R.; Ben-Shlomo, Y.; et al. Metabolic Profiling of ADPN Levels in Adults: Mendelian Randomization Analysis. Circ. Cardiovasc. Genet. 2017, 10, e001837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sood, A.; Qualls, C.; Schuyler, M.; Thyagarajan, B.; Steffes, M.W.; Smith, L.J.; Jacobs, D.R., Jr. Low serum ADPN predicts future risk for asthma in women. Am. J. Respir. Crit Care Med. 2012, 186, 41–47. [Google Scholar] [CrossRef]
- Barton, J.H.; Ireland, A.; Fitzpatrick, M.; Kessinger, C.; Camp, D.; Weinman, R.; McMahon, D.; Leader, J.K.; Holguin, F.; Wenzel, S.E.; et al. Adiposity influences airway wall thickness and the asthma phenotype of HIV-associated obstructive lung disease: A cross-sectional study. BMC Pulm. Med. 2016, 16, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Andiappan, A.K.; Lee, B.; Ho, R.; Lim, T.K.; Kuan, W.S.; Goh, D.Y.; Mahadevan, M.; Sim, T.B.; Wang, Y.; et al. Neuropeptide Y associated with asthma in young adults. Neuropeptides 2016, 59, 117–121. [Google Scholar] [CrossRef]
- Capelo, A.V.; da Fonseca, V.M.; Peixoto, M.V.; de Carvalho, S.R.; Azevedo, C.M.; Elsas, M.I.; Marques, B. Visceral adiposity is associated with cytokines and decrease in lung function in women with persistent asthma. Rev. Port. Pneumol. 2006, 22, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Magrone, T.; Simone, M.; Altamura, M.; Munno, I. Characterization of the immune inflammatory profile in obese asthmatic children. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M.; Koca, C.; Ozol, D.; Uysal, S.; Yildirim, Z.; Kavakli, H.S.; Yigitoglu, M.R. Interaction of metabolic syndrome with asthma in postmenopausal women: Role of adipokines. Inflammation 2013, 36, 1232–1238. [Google Scholar] [CrossRef]
- Jensen, M.E.; Gibson, P.G.; Collins, C.E.; Wood, L.G. Airway and systemic inflammation in obese children with asthma. Eur. Respir. J. 2013, 42, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Carpio, C.; Villasante, C.; Galera, R.; Romero, D.; de Cos, A.; Hernanz, A.; García-Río, F. Systemic inflammation and higher perception of dyspnea mimicking asthma in obese subjects. J. Allergy Clin. Immunol. 2016, 137, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Ozde, C.; Dogru, M.; Erdogan, F.; Ipek, I.O.; Ozde, S.; Karakaya, O. The relationship between adiponectin levels and epicardial adipose tissue thickness in non-obese children with asthma. Asian Pac. J. Allergy Immunol. 2015, 33, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Van Bever, H.P.; Lim, T.K.; Kuan, W.S.; Goh, D.Y.; Mahadevan, M.; Sim, T.B.; Ho, R.; Larbi, A.; Ng, T.P. Obesity, asthma prevalence and IL-4: Roles of inflammatory cytokines, adiponectin and neuropeptide Y. Pediatr. Allergy Immunol. 2015, 26, 530–536. [Google Scholar] [CrossRef]
- Baltieri, L.; Cazzo, E.; de Souza, A.L.; Alegre, S.M.; de Paula Vieira, R.; Antunes, E.; de Mello, G.C.; Claudio Martins, L.; Chaim, E.A. Influence of weight loss on pulmonary function and levels of adipokines among asthmatic individuals with obesity: One-year follow-up. Respir. Med. 2018, 145, 48–56. [Google Scholar] [CrossRef]
- van Huisstede, A.; Rudolphus, A.; Castro Cabezas, M.; Biter, L.U.; van de Geijn, G.J.; Taube, C.; Hiemstra, P.S.; Braunstahl, G.J. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax 2015, 70, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Sideleva, O.; Suratt, B.T.; Black, K.E.; Tharp, W.G.; Pratley, R.E.; Forgione, P.; Dienz, O.; Irvin, C.G.; Dixon, A.E. Obesity and asthma: An inflammatory disease of adipose tissue not the airway. Am. J. Respir. Crit. Care Med. 2012, 186, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Leão da Silva, P.; de Mello, M.T.; Cheik, N.C.; Sanches, P.L.; Munhoz da Silveira Campos, R.; Carnier, J.; Inoue, D.; do Nascimento, C.M.; Oyama, L.M.; Tock, L.; et al. Reduction in the leptin concentration as a predictor of improvement in lung function in obese adolescents. Obes. Facts 2012, 5, 806–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Kader, M.S.; Al-Jiffri, O.; Ashmawy, E.M. Impact of weight loss on markers of systemic inflammation in obese Saudi children with asthma. Afr. Health Sci. 2013, 13, 682–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsaroucha, A.; Daniil, Z.; Malli, F.; Georgoulias, P.; Minas, M.; Kostikas, K.; Bargiota, A.; Zintzaras, E.; Gourgoulianis, K.I. Leptin, adiponectin, and ghrelin levels in female patients with asthma during stable and exacerbation periods. J. Asthma. 2013, 50, 188–197. [Google Scholar] [CrossRef]
- Mikalsen, I.B.; Byberg, K.; Forman, M.R.; Øymar, K. Adipokines in adolescence; the associations with lung function and atopy—A cross-sectional study. Respir. Med. 2020, 170, 106063. [Google Scholar] [CrossRef]
- Huang, F.; Del-Río-Navarro, B.E.; Torres-Alcántara, S.; Pérez-Ontiveros, J.A.; Ruiz-Bedolla, E.; Saucedo-Ramírez, O.J.; Villafaña, S.; Sánchez Muñoz, F.; Bravo, G.; Hong, E. Adipokines, asymmetrical dimethylarginine, and pulmonary function in adolescents with asthma and obesity. J. Asthma. 2017, 54, 153–161. [Google Scholar] [CrossRef]
- Grotta, M.B.; Squebola-Cola, D.M.; Toro, A.A.; Ribeiro, M.A.; Mazon, S.B.; Ribeiro, J.D.; Antunes, E. Obesity increases eosinophil activity in asthmatic children and adolescents. BMC Pulm. Med. 2013, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Song, W.J.; Kim, S.H.; Lim, S.; Park, Y.J.; Kim, M.H.; Lee, S.M.; Lee, S.B.; Kim, K.W.; Jang, H.C.; Cho, S.H.; et al. Association between obesity and asthma in the elderly population: Potential roles of abdominal subcutaneous adiposity and sarcopenia. Ann. Allergy Asthma Immunol. 2012, 109, 243–248. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Toyomasu, K.; Uchimura, N.; Ishitake, T. Low-molecular-weight adiponectin is more closely associated with episodes of asthma than high-molecular-weight ADPN. Endocr. J. 2013, 60, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Hayashikawa, Y.; Iwata, M.; Inomata, M.; Kawagishi, Y.; Tokui, K.; Taka, C.; Kambara, K.; Okazawa, S.; Yamada, T.; Hayashi, R.; et al. Association of serum adiponectin with asthma and pulmonary function in the Japanese population. Endocr. J. 2015, 62, 695–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Wang, Y.; Xue, M. Correlations of severity of asthma in children with body mass index, adiponectin and leptin. J. Clin. Lab. Anal. 2019, 33, e22915. [Google Scholar] [CrossRef]
- Ceylan, E.; Bulut, S.; Yilmaz, M.; Örün, H.; Karadağ, F.; Ömürlü, İ.K.; Kirdar, S.; Karul, A. The Levels of Serum Biomarkers in Stable Asthma Patients with Comorbidities. Iran. J. Allergy Asthma Immunol. 2019, 18, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Kalmarzi, R.N.; Ataee, P.; Mansori, M.; Moradi, G.; Ahmadim, S.; Kaviani, Z.; Khalafi, B.; Kooti, W. Serum levels of adiponectin and leptin in asthmatic patients and its relation with asthma severity, lung function and BMI. Allergol. Immunopathol. 2017, 45, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, J.; Zhang, L.; Liu, Y.; Chen, G.P.; Zhang, H.P.; Wang, L.; Kang, Y.; Wood, L.G.; Wang, G. Systemic inflammation mediates the detrimental effects of obesity on asthma control. Allergy Asthma Proc. 2018, 39, 43–50. [Google Scholar] [CrossRef]
- Ballantyne, D.; Scott, H.; MacDonald-Wicks, L.; Gibson, P.G.; Wood, L.G. Resistin is a predictor of asthma risk and resistin:adiponectin ratio is a negative predictor of lung function in asthma. Clin. Exp. Allergy 2016, 46, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yang, H.; He, H.; Shi, H.; He, P.; Yan, S.; Jin, T. Plasma Adiponectin Concentrations and Adiponectin Gene Polymorphisms Are Associated with Bronchial Asthma in the Chinese Li Population. Iran. J. Allergy Asthma Immunol. 2015, 14, 292–297. [Google Scholar]
- de Lima Azambuja, R.; da Costa Santos Azambuja, L.S.; Costa, C.; Rufino, R. Adiponectin in Asthma and Obesity: Protective Agent or Risk Factor for More Severe Disease? Lung 2015, 193, 749–755. [Google Scholar] [CrossRef]
- Dogru, M.; Ozde, S.; Aktas, A.; Yuksel Karatoprak, E. The Adiponectin levels and asthma control in non-obese children with asthma. J. Asthma 2015, 52, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Newson, R.B.; Jones, M.; Forsberg, B.; Janson, C.; Bossios, A.; Dahlen, S.E.; Toskala, E.M.; Al-Kalemji, A.; Kowalski, M.L.; Rymarczyk, B.; et al. The association of asthma, nasal allergies, and positive skin prick tests with obesity, leptin, and adiponectin. Clin. Exp. Allergy 2014, 44, 250–260. [Google Scholar] [CrossRef]
- Biagioni, B.J.; Pui, M.M.; Fung, E.; Wong, S.; Hosseini, A.; Dybuncio, A.; Alexis, N.E.; Carlsten, C. Sputum adiponectin as a marker for western red cedar asthma. J. Allergy Clin. Immunol. 2014, 134, 1446–1448. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Seagrave, J.; Herbert, G.; Harkins, M.; Alam, Y.; Chiavaroli, A.; Shohreh, R.; Montuschi, P.; Campen, M.; Harmon, M.; et al. High sputum total adiponectin is associated with low odds for asthma. J. Asthma. 2014, 51, 459–466. [Google Scholar] [CrossRef]
- Dorevitch, S.; Conroy, L.; Karadkhele, A.; Rosul, L.; Stacewicz-Sapuntzakis, M.; Fantuzzi, G. Associations between obesity and asthma in a low-income, urban, minority population. Ann. Allergy Asthma Immunol. 2013, 110, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Qin, X.Q.; Xiang, Y.; Tan, Y.R.; Qu, X.P.; Liu, H.J. Adipokine ADPN is a potential protector to human bronchial epithelial cell for regulating proliferation, wound repair and apoptosis: Comparison with leptin and resistin. Peptides 2013, 40, 34–41. [Google Scholar] [CrossRef]
- Salvator, H.; Grassin-Delyle, S.; Naline, E.; Brollo, M.; Fournier, C.; Couderc, L.J.; Devillier, P. Contrasting Effects of Adipokines on the Cytokine Production by Primary Human Bronchial Epithelial Cells: Inhibitory Effects of ADPN. Front. Pharmacol. 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, X.; Lau, W.B.; Yuan, Y.; Booth, D.; Li, J.J.; Scalia, R.; Preston, K.; Gao, E.; Koch, W.; et al. ADPN inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 2014, 114, 792–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summer, R.; Little, F.F.; Ouchi, N.; Takemura, Y.; Aprahamian, T.; Dwyer, D.; Fitzsimmons, K.; Suki, B.; Parameswaran, H.; Fine, A.; et al. Alveolar macrophage activation and an emphysema-like phenotype in ADPN-deficient mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 294, L1035–L1042. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Sypek, J.; Tavendale, R.; Gartner, U.; Winter, J.; Li, W.; Page, K.; Fleming, M.; Brady, J.; O’Toole, M.; et al. Matrix metalloproteinase-12 is a therapeutic target for asthma in children and young adults. J. Allergy Clin. Immunol. 2010, 126, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, R.E.; Dejonckheere, E.; Libert, C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur. Respir. J. 2011, 38, 1200–1214. [Google Scholar] [CrossRef] [PubMed]
- Zappalà, G.; Rechler, M.M. IGFBP-3, hypoxia and TNF-alpha inhibit ADPN transcription. Biochem. Biophys. Res. Commun. 2009, 382, 785–789. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Lu, L.; Wei, X.; Jin, D.; Qian, T.; Yu, A.; Sun, J.; Cui, J.; Yang, Z. The multimerization and secretion of ADPN are regulated by TNF-alpha. Endocrine 2016, 51, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Suganami, T.; Satoh, N.; Tanimoto-Koyama, K.; Yuan, X.; Tanaka, M.; Kawano, H.; Yano, T.; Aoe, S.; Takeya, M.; et al. Increased ADPN secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1918–1925. [Google Scholar] [CrossRef] [Green Version]
- Suganami, T.; Nishida, J.; Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor α. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2062–2068. [Google Scholar] [CrossRef] [Green Version]
- Chambrier, C.; Bastard, J.P.; Rieusset, J.; Chevillotte, E.; Bonne-font-Rousselot, D.; Therond, P.; Hainque, B.; Riou, J.P.; Laville, M.; Vidal, H. Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obes. Res. 2002, 10, 518–525. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Orellano, P.; Lin, H.L.; Jiang, M.; Guan, W.J. Short-term exposure to ozone, nitrogen dioxide, and sulphur dioxide and emergency department visits and hospital admissions due to asthma: A systematic review and meta-analysis. Environ. Int. 2021, 150, 106435. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, D.I.; Kim, H.Y.; Williams, A.S.; Verbout, N.G.; Tran, J.; Si, H.; Wurmbrand, A.P.; Jastrab, J.; Hug, C.; Umetsu, D.T. Pulmonary inflammation induced by subacute ozone is augmented in ADPN-deficient mice: Role of IL-17A. J. Immunol. 2012, 188, 4558–4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozier, A.; Allard, B.; Bara, I.; Girodet, P.O.; Trian, T.; Marthan, R.; Berger, P. The pivotal role of airway smooth muscle in asthma pathophysiology. J. Allergy 2011, 2011, 742710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahn, K.; Hirst, S.J.; Ying, S.; Holt, M.R.; Lavender, P.; Ojo, O.O.; Siew, L.; Simcock, D.E.; McVicker, C.G.; Kanabar, V.; et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc. Natl. Acad. Sci. USA 2009, 106, 10775–10780. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Bian, Y.; Bai, R.; Li, H.; Fu, M.; Xiao, C. Globular ADPN attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca2⁺-ATPase activity and inhibiting endoplasmic reticulum stress. J. Cardiovasc. Pharmacol. 2013, 62, 143–153. [Google Scholar] [CrossRef]
- Manson, M.L.; Säfholm, J.; James, A.; Johnsson, A.K.; Bergman, P.; Al-Ameri, M.; Orre, A.C.; Kärrman-Mårdh, C.; Dahlén, S.E.; Adner, M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 2020, 145, 808–817. [Google Scholar] [CrossRef] [Green Version]
- Moynihan, B.; Tolloczko, B.; Michoud, M.C.; Tamaoka, M.; Ferraro, P.; Martin, J.G. MAP kinases mediate interleukin-13 effects on calcium signaling in human airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L171–L177. [Google Scholar] [CrossRef] [Green Version]
- Verbout, N.G.; Benedito, L.; Williams, A.S.; Kasahara, D.I.; Wurmbrand, A.P.; Si, H.; Halayko, A.J.; Hug, C.; Shore, S.A. Impact of ADPN overexpression on allergic airways responses in mice. J. Allergy (Cairo) 2013, 2013, 349520. [Google Scholar] [CrossRef] [Green Version]
- Kerr, S.C.; Carrington, S.D.; Oscarson, S.; Gallagher, M.E.; Solon, M.; Yuan, S.; Ahn, J.N.; Dougherty, R.H.; Finkbeiner, W.E.; Peters, M.C.; et al. Intelectin-1 is a prominent protein constituent of pathologic mucus associated with eosinophilic airway inflammation in asthma. Am. J. Respir. Crit Care Med. 2014, 189, 1005–1007. [Google Scholar] [CrossRef] [Green Version]
- Bonser, L.R.; Erle, D.J. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J. Clin. Med. 2017, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.W.; Balzar, S.; Westcott, J.Y.; Trudeau, J.B.; Sunm, Y.; Conrad, D.J.; Wenzel, S.E. Expression and activation of 15-lipoxygenase pathway in severe asthma: Relationship to eosinophilic phenotype and collagen deposition. Clin. Exp. Allergy 2002, 32, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Chibana, K.; Shiobara, T.; Tei, R.; Koike, R.; Nakamura, Y.; Arai, R.; Horigane, Y.; Shimizu, Y.; Takemasa, A.; et al. Expression of intelectin-1 in bronchial epithelial cells of asthma is correlated with T-helper 2 (Type-2) related parameters and its function. Allergy Asthma Clin. Immunol. 2017, 13, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015, 6, 297–310. [Google Scholar] [CrossRef] [Green Version]
- James, A.L.; Noble, P.B.; Drew, S.A.; Mauad, T.; Bai, T.R.; Abramson, M.J.; McKay, K.O.; Green, F.H.Y.; Elliot, J.G. Airway smooth muscle proliferation and inflammation in asthma. J. Appl. Physiol. 2018, 125, 1090–1096. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Song, Y.; Su, X.; Ke, R.; Yang, L.; Gao, L.; Li, M. Activation of AMPK α2 inhibits airway smooth muscle cells proliferation. Eur. J. Pharmacol. 2016, 791, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, L.; Li, S.; Wang, K.; Ke, R.; Shi, W.; Wang, J.; Yan, X.; Zhang, Q.; Wang, Q. Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci. Rep. 2018, 8, 3624. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Xie, Y.; Wagner, R.J.; Jin, Y.; Carrao, A.C.; Liu, L.S.; Guzman, A.K.; Powell, R.J.; Hwa, J.; Rzucidlo, E.M.; et al. Adiponectin induces vascular smooth muscle cell differentiation via repression of mammalian target of rapamycin complex 1 and FoxO4. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1403–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, M.; Raher, M.J.; Leyton, P.; Combs, T.P.; Scherer, P.E.; Bloch, K.D.; Medoff, B.D. ADPN decreases pulmonary arterial remodeling in murine models of pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 2011, 45, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Li, Z.; Zhao, D.; Hui, B.; Zheng, Z. SOX18 enhances the proliferation and migration of airway smooth muscle cells induced by tumor necrosis factor-α via the regulation of Notch1 signaling. Int. Immunopharmacol. 2021, 96, 107746. [Google Scholar] [CrossRef]
- Li, X.; Zou, F.; Lu, Y.; Fan, X.; Wu, Y.; Feng, X.; Sun, X.; Liu, Y. Notch1 contributes to TNF-α-induced proliferation and migration of airway smooth muscle cells through regulation of the Hes1/PTEN axis. Int. Immunopharmacol. 2020, 88, 106911. [Google Scholar] [CrossRef]
- Wen, X.; Yan, J.; Han, X.R.; Zheng, G.H.; Tang, R.; Liu, L.F.; Wu, D.M.; Lu, J.; Zheng, Y.L. PTEN gene silencing contributes to airway remodeling and induces airway smooth muscle cell proliferation in mice with allergic asthma. J. Thorac Dis. 2018, 10, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.M.; Raclawska, D.S.; Ttofali, F.; Liptzin, D.R.; Fletcher, A.A.; Harper, D.N.; McGing, M.A.; McElwee, M.M.; Williams, O.W.; Sanchez, E.; et al. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat. Commun. 2015, 6, 6281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Cui, J.; Yi, L.; Qin, J.; Tulake, W.; Teng, F.; Tang, W.; Wei, Y.; Dong, J. The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediators Inflamm. 2020, 2020, 7835284. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Gibson, P.; Pekkanen, J.; Pearce, N. Non-eosinophilic asthma: Importance and possible mechanisms. Thorax 2002, 57, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Sze, E.; Bhalla, A.; Nair, P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020, 75, 311–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draijer, C.; Peters-Golden, M. Alveolar Macrophages in Allergic Asthma: The Forgotten Cell Awakes. Curr. Allergy Asthma Rep. 2017, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- van der Veen, T.A.; de Groot, L.E.S.; Melgert, B.N. The different faces of the macrophage in asthma. Curr. Opin. Pulmon. Med. 2020, 26, 62–68. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, X.; Chong, L.; Kong, L.; Wen, S.; Zhang, H.; Zhang, W.; Li, C. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int. Immunopharmacol. 2019, 67, 396–407. [Google Scholar] [CrossRef]
- Jung, M.Y.; Kim, H.S.; Hong, H.J.; Youn, B.S.; Kim, T.S. ADPN induces dendritic cell activation via PLCγ/JNK/NF-κB pathways, leading to Th1 and Th17 polarization. J. Immunol. 2012, 188, 2592–2601. [Google Scholar] [CrossRef] [Green Version]
- Tsang, J.Y.; Li, D.; Ho, D.; Peng, J.; Xu, A.; Lamb, J.; Chen, Y.; Tam, P.K. Novel immunomodulatory effects of ADPN on dendritic cell functions. Int. Immunopharmacol. 2011, 11, 604–609. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Luo, L.; Wu, D.; Ding, X.; Zheng, H.; Wu, H.; Liu, B.; Yang, X.; Silva, F.; et al. ADPN restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J. Exp. Med. 2021, 218, e20191054. [Google Scholar] [CrossRef]
- Amarsaikhan, N.; Stolz, D.J.; Wilcox, A.; Sands, E.M.; Tsoggerel, A.; Gravely, H.; Templeton, S.P. Reciprocal Inhibition of ADPN and Innate Lung Immune Responses to Chitin and Aspergillus fumigatus. Front. Immunol. 2019, 10, 1057. [Google Scholar] [CrossRef]
- Surendar, J.; Frohberger, S.J.; Karunakaran, I.; Schmitt, V.; Stamminger, W.; Neumann, A.L.; Wilhelm, C.; Hoerauf, A.; Hübner, M.P. ADPN Limits IFN-γ and IL-17 Producing CD4 T Cells in Obesity by Restraining Cell Intrinsic Glycolysis. Front. Immunol. 2019, 10, 2555. [Google Scholar] [CrossRef] [PubMed]
- Wilk, S.; Scheibenbogen, C.; Bauer, S.; Jenke, A.; Rother, M.; Guerreiro, M.; Kudernatsch, R.; Goerner, N.; Poller, W.; Elligsen-Merkel, D.; et al. Adiponectin is a negative regulator of antigen-activated T cells. Eur. J. Immunol. 2011, 41, 2323–2332. [Google Scholar] [CrossRef]
- Shore, S.A.; Terry, R.D.; Flynt, L.; Xu, A.; Hug, C. ADPN attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 2006, 118, 389–395. [Google Scholar] [CrossRef]
- Ramos-Ramírez, P.; Malmhäll, C.; Johansson, K.; Adner, M.; Lötvall, J.; Bossios, A. Lung Regulatory T Cells Express ADPN Receptor 1: Modulation by Obesity and Airway Allergic Inflammation. Int. J. Mol. Sci. 2020, 21, 8990. [Google Scholar] [CrossRef]
- Helou, D.G.; Shafiei-Jahani, P.; Lo, R.; Howard, E.; Hurrell, B.P.; Galle-Treger, L.; Painter, J.D.; Lewis, G.; Soroosh, P.; Sharpe, A.H.; et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat. Commun. 2020, 11, 3998. [Google Scholar] [CrossRef]
- Singh, A.K.; Stock, P.; Akbari, O. Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy 2011, 66, 155–162. [Google Scholar] [CrossRef]
- Nasiri Kalmarzi, R.; Fattahi, N.; Kaviani, Z.; Ataee, P.; Mansouri, M.; Moradi, G.; Yousefzade, A.; Abbassi, J.M. Inverse correlation of soluble programmed cell death-1 ligand-1 (sPD-L1) with eosinophil count and clinical severity in allergic rhinitis patients. Allergol. Int. 2017, 66, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, X.; An, X.; Zhang, L.; Li, X.; Wang, L.; Zhu, G. Continuous exposure of PM2.5 exacerbates ovalbumin-induced asthma in mouse lung via a JAK-STAT6 signaling pathway. Adv. Clin. Exp. Med. 2020, 29, 825–832. [Google Scholar] [CrossRef]
- Steinke, J.W.; Lawrence, M.G.; Teague, W.G.; Braciale, T.J.; Patrie, J.T.; Borish, L. Bronchoalveolar lavage cytokine patterns in children with severe neutrophilic and paucigranulocytic asthma. J. Allergy Clin. Immunol. 2021, 147, 686–693. [Google Scholar] [CrossRef]
- Doherty, T.A.; Broide, D.H. Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 2019, 68, 9–16. [Google Scholar] [CrossRef]
- Schuijs, M.J.; Png, S.; Richard, A.C.; Tsyben, A.; Hamm, G.; Stockis, J.; Garcia, C.; Pinaud, S.; Nicholls, A.; Ros, X.R.; et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat. Immunol. 2020, 21, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Stier, M.T.; Zhang, J.; Goleniewska, K.; Cephus, J.Y.; Rusznak, M.; Wu, L.; Van Kaer, L.; Zhou, B.; Newcomb, D.C.; Peebles, R.S., Jr. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J. Exp. Med. 2018, 215, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, S.; Mindt, B.C.; Fritz, J.H.; Duerr, C.U. Group 2 Innate Lymphoid Cells in Respiratory Allergic Inflammation. Front. Immunol. 2019, 10, 930. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, O.; Bajénoff, M.; Guerder, S. IL-4-mediated inhibition of IFN-gamma production by CD4+ T cells proceeds by several developmentally regulated mechanisms. Int. Immunol. 2004, 16, 501–508. [Google Scholar] [CrossRef]
- Hasegawa, T.; Okazawa, T.; Uga, H.; Kurata, H.; Mori, A. Serum CXCL9 as a potential marker of Type 1 inflammation in the context of eosinophilic asthma. Allergy 2019, 74, 2515–2518. [Google Scholar] [CrossRef] [PubMed]
- Bocek, P., Jr.; Foucras, G.; Paul, W.E. Interferon gamma enhances both in vitro and in vivo priming of CD4+ T cells for IL-4 production. J. Exp. Med. 2004, 199, 1619–1630. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Lee, T.J.; Reader, B.F.; Kim, J.Y.; Lee, Y.G.; Park, G.Y.; Karpurapu, M.; Ballinger, M.N.; Qian, F.; Rusu, L.; et al. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype. Oncotarget 2016, 5, 17532–17546. [Google Scholar] [CrossRef]
- Yamamoto, R.; Ueki, S.; Moritoki, Y.; Kobayashi, Y.; Oyamada, H.; Konno, Y.; Tamaki, M.; Itoga, M.; Takeda, M.; Ito, W.; et al. ADPN attenuates human eosinophil adhesion and chemotaxis: Implications in allergic inflammation. J. Asthma. 2013, 50, 828–835. [Google Scholar] [CrossRef]
- Weng, M.; Baron, D.M.; Bloch, K.D.; Luster, A.D.; Lee, J.J.; Medoff, B.D. Eosinophils are necessary for pulmonary arterial remodeling in a mouse model of eosinophilic inflammation-induced pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L927–L936. [Google Scholar] [CrossRef] [Green Version]
- Martín-Orozco, E.; Norte-Muñoz, M.; Martínez-García, J. Regulatory T Cells in Allergy and Asthma. Front. Pediatr. 2017, 5, 117. [Google Scholar] [CrossRef] [PubMed]
- Baru, A.M.; Hartl, A.; Lahl, K.; Krishnaswamy, J.K.; Fehrenbach, H.; Yildirim, A.O.; Garn, H.; Renz, H.; Behrens, G.M.; Sparwasser, T. Selective depletion of Foxp3+ Treg during sensitization phase aggravates experimental allergic airway inflammation. Eur. J. Immunol. 2010, 40, 2259–2266. [Google Scholar] [CrossRef]
- Kearley, J.; Barker, J.E.; Robinson, D.S.; Lloyd, C.M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med. 2005, 202, 1539–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortola, L.; Pawelski, H.; Sonar, S.S.; Ampenberger, F.; Kurrer, M.; Kopf, M. IL-21 promotes allergic airway inflammation by driving apoptosis of FoxP3+ regulatory T cells. J. Allergy Clin. Immunol. 2019, 143, 2178–2189. [Google Scholar] [CrossRef]
- Sivakoti, K.; Chaya, S.K.; Jayaraj, B.S.; Lokesh, K.S.; Veerapaneni, V.V.; Madhunapantula, S.; Mahesh, P. Evaluation of inflammatory markers MMP-2 and TIMP-1 in Asthma. Eur. Respir. J. 2018, 52, PA5044. [Google Scholar] [CrossRef]
- Sands, M.F.; Ohtake, P.J.; Mahajan, S.D.; Takyar, S.S.; Aalinkeel, R.; Fang, Y.V.; Blume, J.W.; Mullan, B.A.; Sykes, D.E.; Lachina, S.; et al. Tissue inhibitor of metalloproteinase-1 modulates allergic lung inflammation in murine asthma. Clin. Immunol. 2009, 130, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Procaccini, C.; Carbone, F.; Di Silvestre, D.; Brambilla, F.; De Rosa, V.; Galgani, M.; Faicchia, D.; Marone, G.; Tramontano, D.; Corona, M.; et al. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity 2016, 44, 406–421. [Google Scholar] [CrossRef] [Green Version]
- Hough, K.P.; Curtiss, M.L.; Blain, T.J.; Rui-Ming, L.; Trevor, J.; Deshane, J.S.; Thannickal, V.J. Airway Remodeling in Asthma. Front. Med. 2020, 7, 191. [Google Scholar] [CrossRef]
- Maslov, L.N.; Naryzhnaya, N.V.; Boshchenko, A.A.; Popov, S.V.; Ivanov, V.V.; Oeltgen, P.R. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? J. Clin. Transl. Endocrinol. 2018, 15, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Liu, H.; Zhang, T.; Xu, J. Different forms of ADPN reduce the apoptotic and damaging effect of cigarette smoke extract on human bronchial epithelial cells. Exp. Ther. Med. 2016, 12, 4168–4174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzela, K.; Litwiniuk, M.; Zagorska, W.; Grzela, T. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: The Role of Matrix Metalloproteinase-9. Arch. Immunol. Ther. Exp. (Warsz) 2016, 64, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.R.; Sutcliffe, A.; Kaur, D.; Gupta, S.; Desai, D.; Saunders, R.; Brightling, C.E. CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration. Allergy 2014, 69, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, L.I.; Alphonse, R.S.; Arizmendi, N.; Morgan, B.; Abel, M.; Eaton, F.; Duszyk, M.; Vliagoftis, H.; Aprahamian, T.R.; Walsh, K.; et al. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. Am. J. Respir. Cell Molec. Biol. 2012, 46, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Liu, L.; Yang, Y.; Tamaki, Z.; Wei, J.; Marangoni, R.G.; Bhattacharyya, S.; Summer, R.S.; Ye, B.; Varga, J. The adipokine ADPN has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: Novel target for fibrosis therapy. Arthritis Res. Ther. 2012, 14, R229. [Google Scholar] [CrossRef] [Green Version]
- Park, P.H.; Sanz-Garcia, C.; Nagy, L.E. ADPN as an anti-fibrotic and anti-inflammatory adipokine in the liver. Curr. Pathobiol. Rep. 2015, 3, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xie, L.; Yang, M.; Tan, X.; Zeng, Y.; Zheng, G.; Chen, Y.; Chen, P. PPAR-α improves the recovery of lung function following acute respiratory distress syndrome by suppressing the level of TGF-β1. Mol. Med. Rep. 2017, 16, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, N.; Oyama, Y.; Yasui, H.; Karayama, M.; Hozumi, H.; Suzuki, Y.; Kono, M.; Furuhashi, K.; Fujisawa, T.; Inui, N.; et al. Analysis of serum ADPN and leptin in patients with acute exacerbation of idiopathic pulmonary fibrosis. Sci. Rep. 2019, 9, 10484. [Google Scholar] [CrossRef] [Green Version]
- Paw, M.; Wnuk, D.; Kądziołka, D.; Sęk, A.; Lasota, S.; Czyż, J.; Madeja, Z.; Michalik, M. Fenofibrate Reduces the Asthma-Related Fibroblast-To-Myofibroblast Transition by TGF-Β/Smad2/3 Signaling Attenuation and Connexin 43-Dependent Phenotype Destabilization. Int. J. Mol. Sci. 2018, 19, 2571. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Lv, Z.; Teng, F.; Yi, L.; Tang, W.; Wang, W.; Tulake, W.; Qin, J.; Zhu, X.; Wei, Y. RNA-Seq Expression Analysis of Chronic Asthmatic Mice with Bu-Shen-Yi-Qi Formula Treatment and Prediction of Regulated Gene Targets of Anti-Airway Remodeling. Evidence-Based Complem. Altern. Med. 2021, 2021, 3524571. [Google Scholar] [CrossRef] [PubMed]
- Green, C.E.; Turner, A.M. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir. Res. 2017, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Miao, J.; Yuan, F.; Zhao, Y.; Tang, Y.; Wang, Y.; Zhao, Y.; Yang, G.-Y. Overexpression of ADPN promotes focal angiogenesis in the mouse brain following middle cerebral artery occlusion. Gene Ther. 2013, 20, 93–101. [Google Scholar] [CrossRef]
- Mahadev, K.; Wu, X.; Donnelly, S.; Ouedraogo, R.; Eckhart, A.D.; Goldstein, B.J. ADPN inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc. Res. 2008, 78, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Asosingh, K.; Weiss, K.; Queisser, K.; Wanner, N.; Yin, M.; Aronica, M.; Erzurum, S. Endothelial cells in the innate response to allergens and initiation of atopic asthma. J. Clin. Investig. 2018, 128, 3116–3128. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Kita, S.; Nishizawa, H.; Fukuda, S.; Fujishima, Y.; Obata, Y.; Nagao, H.; Masuda, S.; Nakamura, Y.; Shimizu, Y.; et al. ADPN promotes muscle regeneration through binding to T-cadherin. Sci. Rep. 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Ito, R.; Higa, M.; Goto, A.; Aoshima, M.; Ikuta, A.; Ohashi, K.; Yokoyama, S.; Ohno, Y.; Egawa, T.; Miyata, H.; et al. Activation of ADPN receptors has negative impact on muscle mass in C2C12 myotubes and fast-type mouse skeletal muscle. PLoS ONE 2018, 13, e0205645. [Google Scholar] [CrossRef] [Green Version]
- Matos Salame, F.; Fontoura Moreira, M.A.; Tesser, L. Respiratory muscle strength evaluation in adults with asthma through maximal respiratory pressures measurements. Eur. Respir. J. 2015, 46, PA2248. [Google Scholar] [CrossRef]
- Ather, J.L.; Van Der Vliet, K.E.; Mank, M.M.; Reed, L.F.; Dixon, A.E.; Poynter, M.E. Obese adipose tissue modulates proinflammatory responses of mouse airway epithelial cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R79–R90. [Google Scholar] [CrossRef]
- Sood, A.; Cui, X.; Qualls, C.; Beckett, W.S.; Gross, M.D.; Steffes, M.W.; Smith, L.J.; Jacobs, D.R. Association between asthma and serum ADPN concentration in women. Thorax 2008, 63, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Koksal, B.T.; Ozbek, O.Y.; Bayraktar, N.; Kinik, S.T.; Yazici, A.C. Evaluation of Serum Leptin and ADPN Levels in Obese and Lean Asthmatic Children. Pediatr. Allergy Immunol. Pulmonol. 2015, 28, 96–101. [Google Scholar] [CrossRef]
- Juel, C.T.; Ali, Z.; Nilas, L.; Ulrik, C.S. Asthma and obesity: Does weight loss improve asthma control? A systematic review. J. Asthma Allergy 2012, 5, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, J.H.T.; Poynter, M.E.; Frodella, C.M.; Peters, U.; Dixon, A.E.; Suratt, B.T. Pathophysiology to Phenotype in the Asthma of Obesity. Ann. Am. Thorac Soc. 2017, 14, S395–S398. [Google Scholar] [CrossRef] [PubMed]
- Vezir, E.; Civelek, E.; Dibek Misirlioglu, E.; Toyran, M.; Capanoglu, M.; Karakus, E.; Kahraman, T.; Ozguner, M.; Demirel, F.; Gursel, I.; et al. Effects of Obesity on Airway and Systemic Inflammation in Asthmatic Children. Int. Arch. Allergy Immunol. 2021, 182, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Santos Coelho, R.; Castro Melo, P.A.; Dos Santos Silva, H.; De Cassia Ribeiro Silva, R.; Alvim Matos, M.S.; Lima Barreto, M.; Alcântara-Neves, M.N.; Viana de Figueiredo, A.C.; do Santos Costa, R. ADIPOQ and LEP variants on asthma and atopy: Genetic association modified by overweight. Gene 2021, 781, 145540. [Google Scholar] [CrossRef] [PubMed]
- Ramya, K.; Ayyappa, K.A.; Ghosh, S.; Mohan, V.; Radha, V. Genetic association of ADIPOQ gene variants with type 2 diabetes, obesity and serum ADPN levels in south Indian population. Gene 2013, 532, 253–262. [Google Scholar] [CrossRef]
- Fenger, R.V.; Linneberg, A.; Vidal, C.; Vizcaino, L.; Husemoen, L.L.; Aadahl, M.; Gonzalez-Quintela, A. Determinants of serum tryptase in a general population: The relationship of serum tryptase to obesity and asthma. Int. Arch. Allergy Immunol. 2012, 157, 151–158. [Google Scholar] [CrossRef]
- Farzan, S. The Asthma Phenotype in the Obese: Distinct or Otherwise? J. Allergy 2013, 2013, 602908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götz, A.A.; Rozman, J.; Rödel, H.G.; Fuchs, H.; Gailus-Durner, V.; de Angelis, M.H.; Klingenspor, M.; Stoeger, T. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets. Part. Fibre Toxicol. 2011, 27, 30. [Google Scholar] [CrossRef] [Green Version]
- Dixon, A.E.; Johnson, S.E.; Griffes, L.V.; Raymond, D.M.; Ramdeo, R.; Soloveichik, A.; Suratt, B.T.; Cohen, R.I. Relationship of adipokines with immune response and lung function in obese asthmatic and non-asthmatic women. J. Asthma 2011, 48, 811–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, J.; Warren, L.; Helfner, L.; Xue, X.; Chatterjee, P.K.; Gupta, M.; Solanki, M.H.; Esposito, M.; Bonagura, V.; Metz, C.N. Obesity shifts house dust mite-induced airway cellular infiltration from eosinophils to macrophages: Effects of glucocorticoid treatment. Immunol. Res. 2015, 63, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.L.; Shim, J.W.; Kim, D.S.; Jung, H.L.; Park, M.S.; Park, S.H.; Lee, J.; Lee, W.Y.; Shim, J.Y. Expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ in the lung tissue of obese mice and the effect of rosiglitazone on proinflammatory cytokine expressions in the lung tissue. Korean J. Pediatr. 2013, 56, 151–158. [Google Scholar] [CrossRef] [PubMed]
Study | Type | Study Population | Directionality of Asthma—ADPN Relation | Main Results |
---|---|---|---|---|
Baltieri, L. et al., 2018 [106] | Longitudinal | 80 bariatric surgery patients with asthma |
↑ ADPN parallel to clinical status Association with clinical status and indirect relation with weight loss |
↑ ADPN in parallel with weight loss and clinical status improvement No lung function improvement after 1 year of follow-up. |
van Huisstede, A. et al., 2015 [107] | Longitudinal | 27 bariatric surgery patients with asthma (BS + A) compared with 12 obese with asthma without bariatric intervention (NBS + A) |
In relation with weight loss | ↑ ADPN in BS + A and did not change in NBS + A after 1 year of follow-up |
Sideleva, O. et al., 2012 [108] | Longitudinal | 11 obese women with asthma and 15 obese women without asthma bariatric intervention | No association with weight loss |
At baseline: APDN in visceral fat significantly lower in asthma After 12 months: (a) no modification in ADPN expression in SAT (b) no modification of AdipoR1, AdipoR2 and T-cadherin expression in bronchial epithelial cells (c) no significant difference in BAL ADPN (d) BAL ADPN not correlated with VAT ADPN |
Leão da Silva, P. et al., 2012 [109] | Longitudinal | 84 asthmatic adolescents, follow-up 1 year after a weight loss intervention | ↑ ADPN parallel to clinical status Association with clinical status | ↑ ADPN and ADPN/leptin (A/L) ratio and improved asthma symptoms after moderate (8–14 kg) and massive (>14 kg) weight loss |
Abd El-Kader, M.S., 2013 [110] | Longitudinal | 80 obese asthmatic children | Indirect relation with weight loss | ↑ ADPN in serum after weight loss in obese asthma (8 weeks of follow-up) |
Tsaroucha, A. 2013 [111] | Longitudinal | 32 stable adult asthmatics, 37 asthmatics during exacerbation, 22 controls | Indirect relation with severity and exacerbations | ↓ ADPN in severe asthma ↓ ADPN during exacerbations |
Mikalsen, I.B. et al., 2020 [112] | Cross-sectional | 384 adolescents with atopy | No association with sensitization or lung function | No association between ADPN and lung function and atopic sensitization |
Huang, F. et al., 2017 [113] | Cross-sectional | 28 obese adolescents with asthma, 46 obese adolescents without asthma, 58 normal-weight adolescents with asthma and 63 healthy controls | Lower levels in obesity but no relation with lung function in asthmatics | ↓ HMW ADPN in obese subjects than the normal-weight subjects with or without asthma HMW ADPN not correlated with ↓ FEV1/FVC ratio |
Grotta, M.B. et al., 2013 [114] | Cross-sectional | 16 asthmatic obese, 16 asthmatic non-obese, 5 non-asthmatic obese, 5 non-asthmatic non-obese | No differences in asthma and in obesity | Levels of ADPN did not significantly differ among these groups |
Song, W.J. et al., 2012 [115] | Cross-sectional | 994 participants from the general population, age ≥65 y | No association with asthma | No association between asthma and serum ADPN levels |
Barton, J.H. et al, 2016 [97] | Cross-sectional | HIV patients, 33 with asthma and 23 with COPD | Lower level in asthma compared to COPD | ↓ ADPN in asthma vs. COPD |
Lu, Y. et al., 2016 [98] | Case–control | 79 asthma versus 69 controls | Lower ADPN in asthma | ↓ ADPN in asthma No direct interaction with BMI was checked, but the group with asthma had higher BMI |
Capelo, A.V. et al., 2006 [99] | Cross-sectional | 83 asthma patients, women | Indirect relation with BMI in asthmatics | ADPN serum level inversely associated with BMI and SAT |
Magrone, T. et al., 2014 [100] | Cross-sectional | 80 children: 17 non-asthmatics and non-obese, 19 obese, 28 obese asthmatics and 16 non-obese asthmatics | Lower ADPN in obese asthmatics | ↓ ADPN in serum in asthmatic obese compared to non-obese asthmatics and controls |
Aydin, M. et al., 2013 [101] | Case–control | 45 asthmatic vs. 30 healthy controls | Lower ADPN in asthma | ↓ ADPN levels lower in asthma patients compared to controls |
Jensen, M.E. et al., 2013 [102] | Case–control | 361 particpants: 74 obese asthma, 249 non-obese asthma, 9 obese control, 29 non-obese control children | Lower ADPN in obese asthmatics | ↓ ADPN in obese asthma versus non-obese controls No difference in ADPN between obese and non-obese asthma |
Carpio, C. et al., 2016 [103] | Case–control | 25 asthma, 23 dyspnea perceived by patients as asthma (misdiagnosed), 27 controls | No significant relation | Higher (but not significantly) ADPN in asthma compared to control and misdiagnosed (self-reported) asthma |
Ozde, C. et al., 2015 [104] | Case–control | 68 non-obese asthma children and 39 controls | Higher ADPN in asthmatics | ↑ ADPN in asthma compared to controls, associated with higher epicardial adipose tissue |
Lu, Y. et al., 2015 [105] | Case–control | 70 asthmatics and 69 controls | Higher ADPN in asthmatics | ↑ ADPN in asthma (both obese and non-obese groups comparison) A positive association with asthma prevalence was observed for medium and high tertiles of ADPN |
Matsumoto, Y. et al., 2013 [116] | Cross-sectional | 79 young adults (14 asthmatics/62 non-asthmatics), non-smokers | Lower HMW and LMW ADPN in asthmatics |
↓
MMW
and LMW
ADPN in asthmatics Differences in HMW ADPN were not significant Multivariate regression analysis of the MMW and LMW ADPN levels, asthma was found to be more significantly associated with the LMW ADPN level than age, waist circumference or HDL-C |
Hayashikawa, Y. et al., 2015 [117] | Case–control | 61 asthmatics versus 175 controls | Higher LMW ADPN and lower MMW in asthmatics | Significantly ↑ LMW ADPN level and significantly ↓ MMW /total ADPN in asthmatics vs. controls after adjustments for confounding factors in both sexes |
Ma, C. et al., 2019 [118] | Cross-sectional | 122 children with asthma | Lower ADPN in severe asthma | ↓ ADPN in severe asthma Asthma severity was positively correlated with BMI |
Ceylan, E. et al., 2019 [119] | Case–control | 120 asthmatic patients (47 with comorbidities and 73 without comorbidities) + 35 healthy controls | No association |
No difference in ADPN in asthmatic and controls No difference in ADPN in asthmatics with or without comorbidities |
Kalmarzi, R. et al., 2017 [120] | Cross-sectional | 90 asthmatic women | Leptin/ADPN levels correlated positively with asthma severity |
(a) No correlation between ADPN level with asthma severity and BMI (b) Serum leptin and leptin/ADPN levels correlated positively with asthma severity and BMI and correlated inversly with FEV1 and FVC |
Zhang, X. et al., 2018 [121] | Cross-sectional | 108 asthmatic patients | No relation with obesity and asthma control | No relation between ADPN, obesity and asthma control |
Ballantyne, D. et al., 2016 [122] | Case–control | 96 asthmatics and 46 controls | High resistin:ADPN ratio associated with severity | ↑ Resistin:ADPN ratio in asthma and in severe vs. mild-to-moderate asthma |
Ding, Y. et al., 2015 [123] | Case–control | 120 asthmatics and 120 controls, adults | Low ADPN during exacerbations |
↓
ADPN in acute exacerbation A positive association between the rs1501299 SNP of the ADIPOQ gene and acute exacerbation |
de Lima Azambuja, R. et al., 2015 [124] | Cross-sectional | 75 asthmatic patients (25 in each BMI category) |
Lower ADPN with increased BMI in asthmatics Indirect association of ADPN and lung function | ↓ ADPN serum level with increase in BMI Higher ADPN levels associated with lower FEV1 and FVC |
Dogru, M. et al., 2015 [125] | Cross sectional | 82 non-obese asthmatic children and 28 controls | Lower ADPN in uncontrolled asthma |
ADPN levels in non-obese asthmatics were not different from controls ↓ ADPN associated with uncontrolled asthma |
Newson, R.B. et al., 2014 [126] | Cross-sectional | 1370 patients: 532 with asthma only, 522 with chronic rhinosinusitis only, 316 with asthma and chronic sinusitis and 585 controls | Leptin/ADPN ratio positively associated with the severity of asthma | Leptin/ADPN ratio positively associated with the severity of asthma, especially in females |
Biagioni, B.J. et al., 2014 [127] | Cross-sectional | 19 asthmatic patients | Increase in sputum ADPN after specific inhalation challenge with plicatic acid | ↑ sputum ADPN after plicatic acid challenge, particularly in non-obese |
Sood, A. et al., 2014 [128] | Case–control | 44 asthmatics and 44 controls | Inverse relation of sputum ADPN with asthma | (a) Sputum total ADPN was not correlated with serum ADPN or BMI (b) ↓ Sputum total ADPN among asthmatics than controls (c) ↑ Sputum total ADPN associated with ↓ odds for asthma, even after adjustment for systemic adiposity measures including serum ADPN |
Dorevitch, S. et al., 2013 [129] | Cross-sectional | 350 non-smoking adults and children | Direct relation with the total antioxidant capacity in exhaled breath | ADPN associated with total antioxidant capacity in exhaled breath |
Cell | Cellular mechanism of ADPN | Cellular effect | General effect | Reference |
---|---|---|---|---|
Macrophages | AdipoR1 and AdipoR2 suppression (by M1 macrophages) or activation (by M2 macrophages) | In M1 macrophages, induce TNFα, IL-6 and IL-12 In M2 macrophages, induce IL-10 | Pro- or anti-inflammatory depending on the polarization of the macrophages | van Stijn, C.M. et al., 2015 [35] |
38 MAPKs | 28 of the 46 M1 markers (including TNFα and IL-6) and only 3 of the 43 M2 markers | Predominantly proinflammatory | Cheng, X. et al., 2012 [39] | |
Nuclear translocation of FoxO3A and Atg5 and microtubule-associated protein light chain (LC3B), expression with ↑ formation of autophagosome | Inhibition of TNFα formation induced by LPS | Anti-inflammatory | Tilija, P.N. et al., 2015 [33] | |
AMPK | ↓ NFα, IL-6, mieloperoxidase, eotaxin | Anti-inflammatory | Zhu, L. et al., 2019 [169] | |
AdipoR1 | ↑ IL-10, IL-1R and TIMP-1 | Anti-inflammatory | Kumada, M. et al., 2004 [36] | |
PPAR | Antioxidative effects | Reduction in the epithelial damage | Dellabianca, A. et al., 2020 [65] | |
Binding to calreticulin | ↑ Efferocytosis | Resolution in the inflammation | Takemura, Y. et el, 2007 [43] | |
Adipo −/− mice with high resting NF, MM-12 | ↓ NFα, MM-12 | Reduction in the inflammatory process | Summer, R. et al., 2008 [123] | |
Dendritic cells | AdipoR1 and AdipoR2? | PolarizationCD4+ lymphocytes towards Th1 and Th17 Induction of IL-12 and IL-1β/IL-23 | Ag-specific Th1 and Th17 response | Jung, M.Y. et al., 2012 [170] |
AMPK-mTOR? PPAR? | ↓ IL-12, Il-6, IL-10 expression of ↑ PDL-1 in T lymphocytes | Increase in Treg, limitation of the Th2 response | Tsang, J.Y. et al., 2011 [171] | |
ILC2 | AMPK | ↓ IL-33-NF-κB signaling | ↓ Traffic of IL-33 from marrow | Wang, L. et al., 2021 [172] |
Eosinophils | AdipoR1? | ↓ in and eotaxin | ↓ in eosinophils in the lung | Amarsaikhan, N. et al., 2019 [173] |
Lymphocyte Th1 | AMPK, mTOR Suppression of glycolysis independent of AMPK | ↓ in IFNγ and IL17 ↓ glycolysis in T17 cells | ↓ Th1-mediated response | Surendar, J. et al., 2019 [174] |
38 mitogen-activated protein kinases (MAPKs) | ↑ IFNγ and IL-6 | Proinflammatory | Cheng, X. et al., 2012 [39] | |
Proapoptotic effect on influenza-activated cells | ↓ in IFNγ, TNFα and IL-2 by influenza-activated cells | ↓ Th1-mediated response | Wilk, S. et al., 2011 [175] | |
Lymphocyte Th2 | AdipoR1, AdipoR2, T-cadherin? | Inhibition of IL-13, IL-5 release after sensitization with ovalbumin | ↓ Th2 effects induced by allergen challenge | Shore, S.A. et al., 2006 [176] |
Treg | ↑ IL-10, IL-1Rα | Resolution of the inflammation | Ramos-Ramírez, P. et al., 2020 [177] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otelea, M.R.; Arghir, O.C.; Zugravu, C.; Rascu, A. Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int. J. Mol. Sci. 2021, 22, 8971. https://doi.org/10.3390/ijms22168971
Otelea MR, Arghir OC, Zugravu C, Rascu A. Adiponectin and Asthma: Knowns, Unknowns and Controversies. International Journal of Molecular Sciences. 2021; 22(16):8971. https://doi.org/10.3390/ijms22168971
Chicago/Turabian StyleOtelea, Marina Ruxandra, Oana Cristina Arghir, Corina Zugravu, and Agripina Rascu. 2021. "Adiponectin and Asthma: Knowns, Unknowns and Controversies" International Journal of Molecular Sciences 22, no. 16: 8971. https://doi.org/10.3390/ijms22168971
APA StyleOtelea, M. R., Arghir, O. C., Zugravu, C., & Rascu, A. (2021). Adiponectin and Asthma: Knowns, Unknowns and Controversies. International Journal of Molecular Sciences, 22(16), 8971. https://doi.org/10.3390/ijms22168971