Identifying the Main Functional Pathways Associated with Cognitive Resilience to Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Identification of Cognitive Resilient Tg2576 Mice
2.2. Most Differentially Expressed Genes between Resilient and Impaired Aged-Tg2576 Mice Are Involved in Inflammation, Amyloid Degradation, Memory Function, and Neurotransmission
2.3. Expression Levels of CD4 Transcript in Human AD Samples
3. Discussion
4. Conclusions
5. Methods
5.1. Animals
5.2. Morris Water Maze Test (MWM)
5.3. Human Brain Samples
5.4. Human Blood Samples
5.5. Purification of Peripheral Blood Mononuclear Cells (PBMC) from Blood Samples
5.6. RNASeq
5.7. Quantitative Real-Time PCR
5.8. Data and Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanaka, M.; Török, N.; Vécsei, L. Novel Pharmaceutical Approaches in Dementia. In NeuroPsychopharmacotherapy; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- Selkoe, D.J. Alzheimer disease and aducanumab: Adjusting our approach. Nat. Rev. Neurol. 2019, 15, 365–366. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A.; Wilson, R.S.; Boyle, P.A.; Buchman, A.S.; Schneider, J.A. Relation of neuropathology to cognition in persons without cognitive impairment. Ann. Neurol. 2012, 72, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negash, S.; Wilson, R.S.; Leurgans, S.E.; Wolk, D.A.; Schneider, J.A.; Buchman, A.S.; Bennett, D.A.; Arnold, S.E. Resilient Brain Aging: Characterization of Discordance between Alzheimer’s Disease Pathology and Cognition. Curr. Alzheimer Res. 2013, 10, 844–851. [Google Scholar] [CrossRef]
- Legdeur, N.; Badissi, M.; Carter, S.F.; De Crom, S.; Van De Kreeke, A.; Vreeswijk, R.; Trappenburg, M.C.; Oudega, M.L.; Koek, H.L.; Van Campen, J.P.; et al. Resilience to cognitive impairment in the oldest-old: Design of the EMIF-AD 90+ study. BMC Geriatr. 2018, 18, 289. [Google Scholar] [CrossRef]
- Iacono, D.; O’Brien, R.; Resnick, S.M.; Zonderman, A.B.; Pletnikova, O.; Rudow, G.; An, Y.; West, M.J.; Crain, B.; Troncoso, J.C. Neuronal Hypertrophy in Asymptomatic Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2008, 67, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Neuner, S.M.; Wilmott, L.A.; Hoffmann, B.R.; Mozhui, K.; Kaczorowski, C.C. Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer’s disease mouse models. Behav. Brain Res. 2017, 322, 288–298. [Google Scholar] [CrossRef]
- Pérez-González, M.; Mendioroz, M.; Badesso, S.; Sucunza, D.; Roldan, M.; Espelosín, M.; Ursua, S.; Luján, R.; Cuadrado-Tejedor, M.; Garcia-Osta, A. PLA2G4E, a candidate gene for resilience in Alzheimer’s disease and a new target for dementia treatment. Prog. Neurobiol. 2020, 191, 101818. [Google Scholar] [CrossRef]
- Dunn, A.R.; Hadad, N.; Neuner, S.M.; Zhang, J.-G.; Philip, V.M.; Dumitrescu, L.; Hohman, T.J.; Herskowitz, J.H.; O’Connell, K.M.S.; Kaczorowski, C.C. Identifying Mechanisms of Normal Cognitive Aging Using a Novel Mouse Genetic Reference Panel. Front. Cell Dev. Biol. 2020, 8, 895. [Google Scholar] [CrossRef]
- Zhuo, J.-M.; Prakasam, A.; Murray, M.; Zhang, H.-Y.; Baxter, M.; Sambamurti, K.; Nicolle, M. An Increase in Aβ42 in the Prefrontal Cortex is Associated with a Reversal-Learning Impairment in Alzheimers Disease Model Tg2576 APPsw Mice. Curr. Alzheimer Res. 2008, 5, 385–391. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E.; Yilmazer, D.; De Vos, R.A.I.; Jansen, E.N.H.; Bohl, J. Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J. Neural Transm. 1996, 103, 455–490. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozen, N.E.; Rezaki, M. Prefrontal cortex: Implications for memory functions and dementia. Turk. J. Psychiatry 2007, 18, 18. [Google Scholar]
- Goldman-Rakic, P.S.; Bates, J.F.; Chafee, M.V. The prefrontal cortex and internally generated motor acts. Curr. Opin. Neurobiol. 1992, 2, 830–835. [Google Scholar] [CrossRef]
- Smyth, G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 1–25. [Google Scholar] [CrossRef]
- Barroeta-Espar, I.; Weinstock, L.D.; Perez-Nievas, B.G.; Meltzer, A.C.; Chong, M.S.T.; Amaral, A.C.; Murray, M.E.; Moulder, K.L.; Morris, J.C.; Cairns, N.J.; et al. Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology. Neurobiol. Dis. 2019, 121, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.E.; Sohal, V.S. Dopamine D2 Receptors Modulate Pyramidal Neurons in Mouse Medial Prefrontal Cortex through a Stimulatory G-Protein Pathway. J. Neurosci. 2017, 37, 10063–10073. [Google Scholar] [CrossRef]
- Bradburn, S.; McPhee, J.; Bagley, L.; Carroll, M.; Slevin, M.; Al-Shanti, N.; Barnouin, Y.; Hogrel, J.-Y.; Pääsuke, M.; Gapeyeva, H.; et al. Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance. Neurobiol. Aging 2018, 63, 54–64. [Google Scholar] [CrossRef]
- Kamboh, M.I.; Minster, R.L.; Kenney, M.; Ozturk, A.; Desai, P.P.; Kammerer, C.M.; DeKosky, S.T. Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1435–1439. [Google Scholar] [CrossRef] [Green Version]
- Daugherty, D.J.; Selvaraj, V.; Chechneva, O.V.; Liu, X.-B.; Pleasure, D.E.; Deng, W. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol. Med. 2013, 5, 891–903. [Google Scholar] [CrossRef]
- Shen, H.-Y.; Chen, J.-F. Adenosine A2A Receptors in Psychopharmacology: Modulators of Behavior, Mood and Cognition. Curr. Neuropharmacol. 2009, 7, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, S.N. The Peripheral Sensory Nervous System: Dorsal Root Ganglion Neurons. In Peripheral Neuropathy; Elsevier BV: Amsterdam, The Netherlands, 2005; Volume 1, pp. 163–202. [Google Scholar]
- Shalit, F.; Sredni, B.; Brodie, C.; Kott, E.; Huberman, M. T Lymphocyte Subpopulations and Activation Markers Correlate with Severity of Alzheimer’s Disease. Clin. Immunol. Immunopathol. 1995, 75, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.A.; Dion-Albert, L.; Kaufmann, F.N.; Tuck, E.; Lebel, M.; Menard, C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur. J. Neurosci. 2021, 53, 183–221. [Google Scholar] [CrossRef] [Green Version]
- Westerman, M.A.; Cooper-Blacketer, D.; Mariash, A.; Kotilinek, L.; Kawarabayashi, T.; Younkin, L.H.; Carlson, G.A.; Younkin, S.G. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 2002, 22, 1858–1867. [Google Scholar] [CrossRef] [Green Version]
- Negash, S.; Xie, S.; Davatzikos, C.; Clark, C.M.; Trojanowski, J.Q.; Shaw, L.M.; Wolk, D.A.; Arnold, S.E. Cognitive and functional resilience despite molecular evidence of Alzheimer’s disease pathology. Alzheimer’s Dement. 2013, 9, e89–e95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Nievas, B.G.; Stein, T.D.; Tai, H.-C.; Icardo, O.D.; Scotton, T.C.; Barroeta-Espar, I.; Fernandez-Carballo, L.; De Munain, E.L.; Perez, J.; Marquie, M.; et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 2013, 136, 2510–2526. [Google Scholar] [CrossRef]
- González, H.; Pacheco, R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J. Neuroinflamm. 2014, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Prinz, M.; Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 2017, 20, 136–144. [Google Scholar] [CrossRef]
- Yamamoto, M.; Guo, D.-H.; Hernandez, C.M.; Stranahan, A.M. Endothelial Adora2a Activation Promotes Blood–Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance. J. Neurosci. 2019, 39, 4179–4192. [Google Scholar] [CrossRef] [Green Version]
- McKimmie, C.S.; Michlmayr, D. Role of CXCL10 in central nervous system inflammation. Int. J. Interf. Cytokine Mediat. Res. 2014, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Temido-Ferreira, M.; Ferreira, D.G.; Batalha, V.L.; Marques-Morgado, I.; Coelho, J.E.; Pereira, P.; Gomes, R.; Pinto, A.; Carvalho, S.; Canas, P.M.; et al. Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Mol. Psychiatry 2020, 25, 1876–1900. [Google Scholar] [CrossRef] [PubMed]
- Orr, A.; Lo, I.; Schumacher, H.; Ho, K.; Gill, M.; Guo, W.; Kim, D.; Knox, A.; Saito, T.; Saido, T.; et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol. Dis. 2018, 110, 29–36. [Google Scholar] [CrossRef] [PubMed]
- SX, M.; B, W.; WT, L. Serum expression of EAAT2 and ADORA2A in patients with different degrees of Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11776–11782. [Google Scholar] [CrossRef]
- Nobili, A.; Latagliata, E.C.; Viscomi, M.T.; Cavallucci, V.; Cutuli, D.; Giacovazzo, G.; Krashia, P.; Rizzo, F.R.; Marino, R.; Federici, M.; et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun. 2017, 8, 14727. [Google Scholar] [CrossRef]
- Bonotis, K.; Krikki, E.; Holeva, V.; Aggouridaki, C.; Costa, V.; Baloyannis, S. Systemic immune aberrations in Alzheimer’s disease patients. J. Neuroimmunol. 2008, 193, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Antonaci, S.; Garofalo, A.R.; Chicco, C.; Polignano, A.V.; Pugliese, P.; Misefari, A.; Jirillo, E. Senile dementia, alzheimer type: A distinct entity in the immunosenescence? J. Clin. Lab. Anal. 1990, 4, 16–21. [Google Scholar] [CrossRef]
- Pirttilä, T.; Mattinen, S.; Frey, H. The decrease of CD8-positive lymphocytes in Alzheimer’s disease. J. Neurol. Sci. 1992, 107, 160–165. [Google Scholar] [CrossRef]
- Lombardi, V.R.M.; García, M.; Rey, L.; Cacabelos, R. Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s Disease (AD) individuals. J. Neuroimmunol. 1999, 97, 163–171. [Google Scholar] [CrossRef]
- Kubick, N.; Flournoy, P.C.H.; Enciu, A.-M.; Manda, G.; Mickael, M.-E. Drugs Modulating CD4+ T Cells Blood–Brain Barrier Interaction in Alzheimer’s Disease. Pharmaceutics 2020, 12, 880. [Google Scholar] [CrossRef]
- Ahuja, M.; Buabeid, M.; Abdel-Rahman, E.; Majrashi, M.; Parameshwaran, K.; Amin, R.; Ramesh, S.; Thiruchelvan, K.; Pondugula, S.; Suppiramaniam, V.; et al. Immunological alteration & toxic molecular inductions leading to cognitive impairment & neurotoxicity in transgenic mouse model of Alzheimer’s disease. Life Sci. 2017, 177, 49–59. [Google Scholar] [CrossRef]
- Dansokho, C.; Ahmed, D.A.; Aïd, S.; Toly-Ndour, C.; Chaigneau, T.; Calle, V.; Cagnard, N.; Holzenberger, M.; Piaggio, E.; Aucouturier, P.; et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 2016, 139, 1237–1251. [Google Scholar] [CrossRef] [Green Version]
- Laurent, C.; Dorothee, G.; Hunot, S.; Martin, E.; Monnet, Y.; Duchamp, M.; Dong, Y.; Légeron, F.-P.; Leboucher, A.; Burnouf, S.; et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 2017, 140, 184–200. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.; Dickson, D.W.; Dubois, B.; Feldman, H.; Fox, N.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobin, A.; Davis, C.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Harrow, J.; Frankish, A.; Gonzalez, J.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.; Barrell, D.; Zadissa, A.; Searle, S.; et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22, 1760–1774. [Google Scholar] [CrossRef] [Green Version]
- Gentleman, R.; Carey, V.; Bates, D.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.; McCarthy, D.; Smyth, G. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.; Shi, W.; Smyth, G. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, 47. [Google Scholar] [CrossRef] [PubMed]
IPA Canonical Pathways | p-Value | Genes |
---|---|---|
Communication between Innate and Adaptive Immune Cells | 0.0061 | CD4, CD79B, CXCL10, Igha, Ighg2b, TNFRSF13C, Trav3-3 |
CREB Signaling in Neurons | 0.0215 | ADORA2A, ADRA2B, C5AR2, CATSPER3, DRD1, DRD2, DRD3, GPR101, GPR149, GPR6, GPR88, HTR1D, NTRK1, OPRK1, PTGDR2, SSTR5, TACR1 |
Hematopoiesis from Pluripotent Stem Cells | 0.0240 | CD4, Igha, Ighg2b, Trav3-3 |
Neuroprotective Role of THOP1in Alzheimer’s Disease | 0.0287 | KLK10, Prss32, TAC1, TMPRSS11A, TMPRSS15, TPSG1 |
Primary ImmunodeficiencySignaling | 0.0373 | CD4, Igha, Ighg2b, TNFRSF13C |
Normal Controls | MCI Individuals | AD Patients | |
---|---|---|---|
Number of subjects | 19 | 20 | 19 |
Age (years mean ± S.D.) | 73 ± 10.21 | 77 ± 8.27 | 77 ± 8.83 |
Gender (%, women) | 53% | 45% | 47% |
MMSE (points mean ± S.D.) | 28.2 ± 1.5 | 25.45 ± 2.01 | 18.36 ± 3.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-González, M.; Badesso, S.; Lorenzo, E.; Guruceaga, E.; Pérez-Mediavilla, A.; García-Osta, A.; Cuadrado-Tejedor, M. Identifying the Main Functional Pathways Associated with Cognitive Resilience to Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 9120. https://doi.org/10.3390/ijms22179120
Pérez-González M, Badesso S, Lorenzo E, Guruceaga E, Pérez-Mediavilla A, García-Osta A, Cuadrado-Tejedor M. Identifying the Main Functional Pathways Associated with Cognitive Resilience to Alzheimer’s Disease. International Journal of Molecular Sciences. 2021; 22(17):9120. https://doi.org/10.3390/ijms22179120
Chicago/Turabian StylePérez-González, Marta, Sara Badesso, Elena Lorenzo, Elizabeth Guruceaga, Alberto Pérez-Mediavilla, Ana García-Osta, and Mar Cuadrado-Tejedor. 2021. "Identifying the Main Functional Pathways Associated with Cognitive Resilience to Alzheimer’s Disease" International Journal of Molecular Sciences 22, no. 17: 9120. https://doi.org/10.3390/ijms22179120
APA StylePérez-González, M., Badesso, S., Lorenzo, E., Guruceaga, E., Pérez-Mediavilla, A., García-Osta, A., & Cuadrado-Tejedor, M. (2021). Identifying the Main Functional Pathways Associated with Cognitive Resilience to Alzheimer’s Disease. International Journal of Molecular Sciences, 22(17), 9120. https://doi.org/10.3390/ijms22179120