An Overview of Neonatal Lupus with Anti-Ro Characteristics
Abstract
:1. Introduction
2. Previous and Current Diagnostic Methods
2.1. Historical Beginnings of Neonatal Lupus
2.2. Pathogenesis
2.3. Anti-SS-A/Ro Antibodies
2.4. Anti-Ro52
2.5. Anti-Ro52 with Epitope p200
2.6. Anti-Ro60
2.7. Which Factor Triggers the Production of Anti-Ro60 Antibodies?
2.8. Anti-SS-B/La Antibodies
2.9. Anti-RNP Antibodies
2.10. Transplacental Transport of Antibodies
2.11. What Happens in the Heart of a Fetus When the Antibodies Pass the Barrier?
2.12. Pathogenetic Role of Macrophages and Interferon Type I
2.13. Epidemiology
2.14. Risk Factors of NLE
2.15. Characteristics of the Mothers
2.16. Characteristics of Neonatal Lupus
2.17. Skin Lesions
2.18. Cardiological Complications
2.19. Congenital Heart Block as the Most Serious Complication
2.20. Endocardial Fibroelastosis
2.21. Dilated Cardiomyopathy
2.22. Fetal Growth Restriction (FGR)
2.23. Disease Registries
2.24. Pregnancy Monitoring
2.25. Treatment
2.26. The PRIDE Study
2.27. Hydroxychloroquine
2.28. Ritodrine
3. The Future of Treatment
3.1. Interleukin Inhibitors
3.2. Will IVIG Always Be Necessary?
4. Summary
Funding
Conflicts of Interest
Abbreviations
NLE | neonatal lupus erythematosus |
Anti-SS-A | anti-Sjögren Syndrome A antibodies |
Anti-SS-B | anti-Sjögren Syndrome B antibodies |
Anti-RNP | anti-ribonucleoprotein antibodies |
LE cells | lupus erythematosus cell |
SLE | systemic lupus erythematosus |
ACR | American College of Rheumatology |
ANA | anti-nuclear antibodies |
ELISA | enzyme-linked immunosorbent assay |
Anti-dsDNA | double-stranded native DNA antibodies |
EFE | endocardial fibroelastosis |
IRF | interferon regulatory factor |
CHB | congenital heart block |
IIF | indirect immunofluorescence |
EBNA1 | Epstein-Barr virus nuclear antigen-1 |
MHC | major histocompatibility complex |
AV | Atrioventricular |
TNFα | tumor necrosis factor alpha |
TGFβ | transforming growth factor beta |
IFN | Interferon |
SIGLEC-1 | sialic acid-binding Ig-like lecithin 1 |
References
- Izmirly, P.M.; Halushka, M.K.; Rosenberg, A.; Whelton, S.; Rais-Bahrami, K.; Nath, D.S.; Parton, H.; Clancy, R.M.; Rasmussen, S.; Saxena, A.; et al. Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP. Autoimmun. Rev. 2017, 16, 980–983. [Google Scholar] [CrossRef]
- Zuppa, A.A.; Fracchiolla, A.; Cota, F.; Gallini, F.; Savarese, I.; D’Andrea, V.; Luciano, R.P.M.; Romagnoli, C. Infants Born to Mothers With Anti-SSA/Ro Autoantibodies: Neonatal Outcome and Follow-up. Clin. Pediatr. 2008, 47, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Hargraves, M.M.; Richmond, H.; Morton, R. Presentation of two bone marrow elements; the tart cell and the L.E. cell. Proc. Staff. Meet. Mayo Clin. 1948, 23, 25–28. [Google Scholar] [PubMed]
- Zimmermann-Górska, I. Sześćdziesięciolecie odkrycia komórek LE. Reumatologia/Rheumatology 2009, 47, 20–23. [Google Scholar]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; McShane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- McCuistion, C.H.; Schoch, E.P. Possible discoid lupus erythematosus in newborn infant. Report of a case with subsequent development of acute systemic lupus erythematosus in mother. Arch. Dermatol. 1983, 119, 782–785. [Google Scholar] [CrossRef]
- Hogg, G.R. Congenital, Acute Lupus Erythematosus Associated with Subendocardial Fibroelastosis: Report of a Case. Am. J. Clin. Pathol. 1957, 28, 648–654. [Google Scholar] [CrossRef]
- Beck, J.S.; Oakley, C.L.; Rowell, N.R. Transplacental passage of antinuclear antibody. Study in infants of mothers with systemic lupus erythematosus. Arch. Dermatol. 1966, 93, 656–663. [Google Scholar] [CrossRef]
- Berlyne, G.M.; Short, I.A.; Vickers, C.F. Placental transmission of the L.E. factor; report of two cases. Lancet 1957, 273, 15–16. [Google Scholar] [CrossRef]
- Burman, D.; Oliver, R.A.M. Placental Transfer of the Lupus Erythematosus Factor. J. Clin. Pathol. 1958, 11, 43–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defendenti, C.; Atzeni, F.; Spina, M.F.; Grosso, S.; Cereda, A.; Guercilena, G.; Bollani, S.; Saibeni, S.; Puttini, P.S. Clinical and laboratory aspects of Ro/SSA-52 autoantibodies. Autoimmun. Rev. 2011, 10, 150–154. [Google Scholar] [CrossRef]
- Wolin, S.; Steitz, J.A. The Ro small cytoplasmic ribonucleoproteins: Identification of the antigenic protein and its binding site on the Ro RNAs. Proc. Natl. Acad. Sci. USA 1984, 81, 1996–2000. [Google Scholar] [CrossRef] [Green Version]
- Ben-Chetrit, E.; Chan, E.; Sullivan, K.; Tan, E.M. A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J. Exp. Med. 1988, 167, 1560–1571. [Google Scholar] [CrossRef]
- Boccitto, M.; Wolin, S.L. Ro60 and Y RNAs: Structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 133–152. [Google Scholar] [CrossRef]
- Robbins, A.; Hentzien, M.; Toquet, S.; Didier, K.; Servettaz, A.; Pham, B.-N.; Giusti, D. Diagnostic Utility of Separate Anti-Ro60 and Anti-Ro52/TRIM21 Antibody Detection in Autoimmune Diseases. Front. Immunol. 2019, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Murng, S.H.K.; Thomas, M. Clinical associations of the positive anti Ro52 without Ro60 autoantibodies: Undifferentiated connective tissue diseases. J. Clin. Pathol. 2017, 71, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Oke, V.; Wahren-Herlenius, M. The immunobiology of Ro52 (TRIM21) in autoimmunity: A critical review. J. Autoimmun. 2012, 39, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bao, M.; Lu, N.; Weng, L.; Yuan, B.; Liu, Y.-J. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat. Immunol. 2012, 14, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, M.; Min, X.; Wu, K.; Zhang, T.; Li, K.; Xiao, S.; Xia, Y. TWEAK/Fn14 Activation Participates in Ro52-Mediated Photosensitization in Cutaneous Lupus Erythematosus. Front. Immunol. 2017, 8, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, A.; Dardalhon, V.; Brauner, S.; Ambrosi, A.; Higgs, R.; Quintana, F.J.; Sjöstrand, M.; Eloranta, M.-L.; Gabhann-Dromgoole, J.N.; Winqvist, O.; et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23–Th17 pathway. J. Exp. Med. 2009, 206, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Ben-Chetrit, E.; Fox, R.I.; Tan, E.M. Dissociation of immune responses to the SS-A (Ro) 52-kd and 60-kd polypeptides in systemic lupus erythematosus and Sjögren’s syndrome. Arthritis Rheum. 1990, 33, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Ohnuma, K.; Murakami, A.; Takasawa, N.; Yamochi, T.; Iwata, S.; Uchiyama, M.; Dang, N.H.; Tanaka, H.; Morimoto, C. SS-A/Ro52, an autoantigen involved in CD28-mediated IL-2 production. J. Immunol. 2003, 170, 3653–3661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimi, R.; Ueda, A.; Ozato, K.; Ishigatsubo, Y. Clinical and Pathological Roles of Ro/SSA Autoantibody System. Clin. Dev. Immunol. 2012, 2012, 606195. [Google Scholar] [CrossRef] [Green Version]
- Salomonsson, S.; Dzikaite, V.; Zeffer, E.; Eliasson, H.; Ambrosi, A.; Bergman, G.; Fernlund, E.; Theander, E.; Öhman, A.; Rydberg, A.; et al. A Population-based Investigation of the Autoantibody Profile in Mothers of Children with Atrioventricular Block. Scand. J. Immunol. 2011, 74, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Rutjes, S.A.; Egberts, W.T.M.V.; Jongen, P.; Hoogen, F.V.D.; Pruijn, G.J.M.; Van Venrooij, W.J. Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy. Clin. Exp. Immunol. 1997, 109, 32–40. [Google Scholar] [CrossRef]
- Koenig, M.; Fritzler, M.J.; Targoff, I.N.; Troyanov, Y.; Senécal, J.-L. Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: Insights into clinical features and outcomes. Arthritis Res. Ther. 2007, 9, R78. [Google Scholar] [CrossRef] [Green Version]
- Ghillani, P.; André, C.; Toly, C.; Rouquette, A.; Bengoufa, D.; Nicaise, P.; Goulvestre, C.; Gleizes, A.; Dragon-Durey, M.; Alyanakian, M.; et al. Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60kDa antibodies: Results of a multicentric study. Autoimmun. Rev. 2011, 10, 509–513. [Google Scholar] [CrossRef]
- Montano-Loza, A.J.; Shums, Z.; Norman, G.L.; Czaja, A.J. Prognostic implications of antibodies to Ro/SSA and soluble liver antigen in type 1 autoimmune hepatitis. Liver Int. 2011, 32, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Grim, A.; Komosińska-vassev, K.; Olczyk, P. Rodzaje autoprzeciwciał w chorobach reumatycznych i metody ich oznaczeń Different types of autoantibodies in rheumatic diseases and methods of their determination. Diagn. Lab. 2015, 51, 235–250. [Google Scholar] [CrossRef]
- Strandberg, L.; Winqvist, O.; Sonesson, S.-E.; Mohseni, S.; Salomonsson, S.; Bremme, K.; Buyon, J.; Julkunen, H.; Wahren-Herlenius, M. Antibodies to amino acid 200–239 (p200) of Ro52 as serological markers for the risk of developing congenital heart block. Clin. Exp. Immunol. 2008, 154, 30–37. [Google Scholar] [CrossRef]
- Wolin, S.L.; Reinisch, K.M. The Ro 60 kDa autoantigen comes into focus: Interpreting epitope mapping experiments on the basis of structure. Autoimmun. Rev. 2006, 5, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Smith, J.D.; Shi, H.; Yang, D.D.; Flavell, R.A.; Wolin, S.L. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr. Biol. 2003, 13, 2206–2211. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Weinberg, D.E.; Fuchs, G.; Choi, K.; Chung, J.; Wolin, S.L. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol. Biol. Cell 2009, 20, 1555–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, C.; Kokkonen, H.; Johansson, M.; Hallmans, G.; Wadell, G.; Rantapää-Dahlqvist, S. Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden. Arthritis Res. 2011, 13, R30. [Google Scholar] [CrossRef] [Green Version]
- McClain, M.T.; Heinlen, L.D.; Dennis, G.J.; Roebuck, J.; Harley, J.B.; A James, J. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 2004, 11, 85–89. [Google Scholar] [CrossRef]
- Stathopoulou, E.A.; Routsias, J.; Stea, E.A.; Moutsopoulos, H.M.; Tzioufas, A.G. Cross-reaction between antibodies to the major epitope of Ro60 kD autoantigen and a homologous peptide of Coxsackie virus 2B protein. Clin. Exp. Immunol. 2005, 141, 148–154. [Google Scholar] [CrossRef]
- Szymula, A.; Rosenthal, J.; Szczerba, B.M.; Bagavant, H.; Fu, S.M.; Deshmukh, U.S. T cell epitope mimicry between Sjogren’s syndrome Antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin. Immunol. 2014, 152, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Greiling, T.M.; Dehner, C.; Chen, X.; Hughes, K.; Iñiguez, A.J.; Boccitto, M.; Ruiz, D.Z.; Renfroe, S.C.; Vieira, S.M.; Ruff, W.E.; et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl. Med. 2018, 10, eaan2306. [Google Scholar] [CrossRef] [Green Version]
- Routsias, J.G.; Tzioufas, A.G. Sjogren’s syndrome—Study of autoantigens and autoantibodies. Clin. Rev. Allergy Immunol. 2007, 32, 238–251. [Google Scholar] [CrossRef]
- Cozzani, E.; Drosera, M.; Gasparini, G.; Parodi, A. Serology of Lupus Erythematosus: Correlation between Immunopathological Features and Clinical Aspects. Autoimmune Dis. 2014, 2014, 321359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito-Zerón, P.; Izmirly, P.; Ramos-Casals, M.; Buyon, J.; Khamashta, M.A. The clinical spectrum of autoimmune congenital heart block. Nat. Rev. Rheumatol. 2015, 11, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, J.E. Neonatal Fc receptor (FcRn)—Not only transporter of maternal IgG. Postȩpy Higieny i Medycyny Doświadczalnej 2018, 72, 701–727. [Google Scholar] [CrossRef]
- Brambell, F. The Transmission of Immunity From Mother to Young and The Catabolism of Immunoglobulins. Lancet 1966, 288, 1087–1093. [Google Scholar] [CrossRef]
- Brambell, F.W.; Hemmings, W.A.; Morris, I.G. A Theoretical Model of Gamma-Globulin Catabolism. Nature 1964, 203, 1352–1354. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, E. Placental Fc receptors and the transfer of maternal IgG. Transfus. Med. Rev. 2000, 14, 234–243. [Google Scholar] [CrossRef]
- E Tseng, C.; Caldwell, K.; Feit, S.; Chan, E.; Buyon, J. Subclass distribution of maternal and neonatal anti-Ro(SSA) and La(SSB) antibodies in congenital heart block. J. Rheumatol. 1996, 23, 925–932. [Google Scholar]
- Xiao, G.-Q.; Hu, K.; Boutjdir, M. Direct Inhibition of Expressed Cardiac L- and T-Type Calcium Channels by IgG From Mothers Whose Children Have Congenital Heart Block. Circulation 2001, 103, 1599–1604. [Google Scholar] [CrossRef] [Green Version]
- Ambrosi, A.; Sonesson, S.-E.; Wahren-Herlenius, M. Molecular mechanisms of congenital heart block. Exp. Cell Res. 2014, 325, 2–9. [Google Scholar] [CrossRef]
- Meisgen, S.; Östberg, T.; Salomonsson, S.; Ding, B.; Eliasson, H.; Malarstig, A.; Alfredsson, L.; Klareskog, L.; Hamsten, A.; Olsson, T.; et al. The HLA locus contains novel foetal susceptibility alleles for congenital heart block with significant paternal influence. J. Intern. Med. 2014, 275, 640–651. [Google Scholar] [CrossRef]
- Sonesson, S.-E.; Salomonsson, S.; Jacobsson, L.-A.; Bremme, K.; Wahren-Herlenius, M. Signs of first-degree heart block occur in one-third of fetuses of pregnant women with anti-SSA/Ro 52-kd antibodies. Arthritis Rheum. 2004, 50, 1253–1261. [Google Scholar] [CrossRef]
- Clancy, R.M.; Kapur, R.P.; Molad, Y.; Askanase, A.D.; Buyon, J.P. Immunohistologic evidence supports apoptosis, IgG deposition, and novel macrophage/fibroblast crosstalk in the pathologic cascade leading to congenital heart block. Arthritis Rheum. 2004, 50, 173–182. [Google Scholar] [CrossRef]
- Llanos, C.; Friedman, D.M.; Saxena, A.; Izmirly, P.; Tseng, C.-E.; Dische, R.; Abellar, R.G.; Halushka, M.; Clancy, R.M.; Buyon, J. Anatomical and pathological findings in hearts from fetuses and infants with cardiac manifestations of neonatal lupus. Rheumatology 2012, 51, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Carús, M.-E.; Askanase, A.D.; Clancy, R.M.; Di Donato, F.; Chou, T.-M.; Libera, M.R.; Chan, E.K.L.; Buyon, J.P. Anti-SSA/Ro and Anti-SSB/La Autoantibodies Bind the Surface of Apoptotic Fetal Cardiocytes and Promote Secretion of TNF-α by Macrophages. J. Immunol. 2000, 165, 5345–5351. [Google Scholar] [CrossRef] [Green Version]
- Clancy, R.M.; Askanase, A.D.; Kapur, R.P.; Chiopelas, E.; Azar, N.; Miranda-Carus, M.E.; Buyon, J.P. Transdifferentiation of cardiac fibroblasts, a fetal factor in anti-SSA/Ro-SSB/La antibody-mediated congenital heart block. J. Immunol. 2002, 169, 2156–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clancy, R.M.; Halushka, M.; Rasmussen, S.; Lhakhang, T.; Chang, M.; Buyon, J. Siglec-1 Macrophages and the Contribution of IFN to the Development of Autoimmune Congenital Heart Block. J. Immunol. 2018, 202, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, L.; Ambrosi, A.; Espinosa, A.; Ottosson, L.; Eloranta, M.-L.; Zhou, W.; Elfving, A.; Greenfield, E.; Kuchroo, V.K.; Wahren-Herlenius, M. Interferon-α Induces Up-regulation and Nuclear Translocation of the Ro52 Autoantigen as Detected by a Panel of Novel Ro52-specific Monoclonal Antibodies. J. Clin. Immunol. 2007, 28, 220–231. [Google Scholar] [CrossRef]
- Lisney, A.R.; Szelinski, F.; Reiter, K.; Burmester, G.R.; Rose, T.; Dörner, T. High maternal expression of SIGLEC1 on monocytes as a surrogate marker of a type I interferon signature is a risk factor for the development of autoimmune congenital heart block. Ann. Rheum. Dis. 2017, 76, 1476–1480. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, M.; Thorlacius, G.E.; Ivanchenko, M.; Ottosson, V.; Kyriakidis, N.; Lagnefeldt, L.; Tingström, J.; Sirsjö, A.; A Bengtsson, A.; Aronsson, E.; et al. Type I IFN system activation in newborns exposed to Ro/SSA and La/SSB autoantibodies in utero. RMD Open 2020, 6, e000989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisuthsarewong, W.; Soongswang, J.; Chantorn, R. Neonatal lupus erythematosus: Clinical character, investigation, and outcome. Pediatr. Dermatol. 2011, 28, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.M.; Rupel, A.; Buyon, J.P. Epidemiology, etiology, detection, and treatment of autoantibody-associated congenital heart block in neonatal lupus. Curr. Rheumatol. Rep. 2007, 9, 101–108. [Google Scholar] [CrossRef]
- Buyon, J.P.; Winchester, R.J.; Slade, S.G.; Arnett, F.; Copel, J.; Friedman, D.; Lockshin, M.D. Identification of mothers at risk for congenital heart block and other neonatal lupus syndromes in their children. comparison of enzyme-linked immunosorbent assay and immunoblot for measurement of anti–ss-a/ro and anti–ss-b/la antibodies. Arthritis Rheum. 1993, 36, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Jaeggi, E.; Laskin, C.; Hamilton, R.; Kingdom, J.; Silverman, E. The Importance of the Level of Maternal Anti-Ro/SSA Antibodies as a Prognostic Marker of the Development of Cardiac Neonatal Lupus Erythematosus. A Prospective Study of 186 Antibody-Exposed Fetuses and Infants. J. Am. Coll. Cardiol. 2010, 55, 2778–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, M.R.; El-Gamel, A.; Hasleton, P.; Turner, D.M.; Sinnott, P.J.; Hutchinson, I.V. Genotypic variation in the transforming growth factor-beta1 gene: Association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 1998, 66, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.G.; Pandey, J.P.; Dooley, M.A.; Treadwell, E.L.; Clair, E.S.; Gilkeson, G.S.; Feghali-Bostwick, C.A.; Cooper, G.S. Genetic polymorphisms in tumor necrosis factor (TNF)-alpha and TNF-beta in a population-based study of systemic lupus erythematosus: Associations and interaction with the interleukin-1alpha-889 C/T polymorphism. Hum. Immunol. 2004, 65, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Rivera, T.L.; Izmirly, P.; Birnbaum, B.K.; Byrne, P.; Brauth, J.B.; Katholi, M.; Kim, M.Y.; Fischer, J.; Clancy, R.M.; Buyon, J. Disease progression in mothers of children enrolled in the Research Registry for Neonatal Lupus. Ann. Rheum. Dis. 2008, 68, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Ambrosi, A.; Salomonsson, S.; Eliasson, H.; Zeffer, E.; Skog, A.; Dzikaite, V.; Bergman, G.; Fernlund, E.; Tingström, J.; Theander, E.; et al. Development of heart block in children of SSA/SSB-autoantibody-positive women is associated with maternal age and displays a season-of-birth pattern. Ann. Rheum. Dis. 2011, 71, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, S.; Luy, L.; Laxer, R.; Krafchik, B.; Silverman, E. The health of mothers of children with cutaneous neonatal lupus erythematosus differs from that of mothers of children with congenital heart block. Am. J. Med. 2000, 108, 705–709. [Google Scholar] [CrossRef]
- Zuppa, A.A.; Riccardi, R.; Frezza, S.; Gallini, F.; Luciano, R.M.P.; Alighieri, G.; Romagnoli, C.; De Carolis, S. Neonatal lupus: Follow-up in infants with anti -SSA/Ro antibodies and review of the literature. Autoimmun. Rev. 2017, 16, 427–432. [Google Scholar] [CrossRef]
- Brucato, A.; Frassi, M.; Franceschini, F.; Cimaz, R.; Faden, D.; Pisoni, M.P.; Vignati, G.; Stramba-Badiale, M.; Catelli, L.; Lojacono, A.; et al. Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counterimmunoelectrophoresis: A prospective study of 100 women. Arthritis Rheum. 2001, 44, 1832–1835. [Google Scholar] [CrossRef]
- Cimaz, R.; Spence, D.L.; Hornberger, L.; Silverman, E.D. Incidence and spectrum of neonatal lupus erythematosus: A prospective study of infants born to mothers with anti-Ro autoantibodies. J. Pediatr. 2003, 142, 678–683. [Google Scholar] [CrossRef]
- Martínez-Sánchez, N.; Pérez-Pinto, S.; Robles-Marhuenda, Á.; Arnalich-Fernández, F.; Cameán, M.M.; Zalvide, E.H.; Bartha, J.L. Obstetric and perinatal outcome in anti-Ro/SSA-positive pregnant women: A prospective cohort study. Immunol. Res. 2017, 65, 487–494. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Wang, Q.; Luo, Y.; Zhao, Y. Neonatal lupus erythematosus: A review of 123 cases in China. Int. J. Rheum. Dis. 2015, 18, 761–767. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Fei, Y.; Li, Y.; Hao, D.; Liu, Y.; Zhao, Y. Pregnancy outcome of 126 anti-SSA/Ro-positive patients during the past 24 years—A retrospective cohort study. Clin. Rheumatol. 2015, 34, 1721–1728. [Google Scholar] [CrossRef]
- Motta, M.; Rodriguez-Perez, C.; Tincani, A.; Lojacono, A.; Chirico, G. Outcome of infants from mothers with anti-SSA/Ro antibodies. J. Perinatol. 2007, 27, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Boros, C.A.; Spence, D.; Blaser, S.; Silverman, E.D. Hydrocephalus and macrocephaly: New manifestations of neonatal lupus erythematosus. Arthritis Rheum. 2007, 57, 261–266. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Llanos, C.; Lee, L.A.; Askanase, A.; Kim, M.Y.; Buyon, J. Cutaneous manifestations of neonatal lupus and risk of subsequent congenital heart block. Arthritis Rheum. 2010, 62, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.; Colvin, R.B.; Daha, M.R.; Drachenberg, C.B.; Haas, M.; Nickeleit, V.; Salmon, J.E.; Sis, B.; Zhao, M.-H.; Bruijn, J.A.; et al. Pros and cons for C4d as a biomarker. Kidney Int. 2012, 81, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Nickeleit, V.; Zeiler, M.; Gudat, F.; Thiel, G.; Mihatsch, M.J. Detection of the complement degradation product C4d in renal allografts: Diagnostic and therapeutic implications. J. Am. Soc. Nephrol. 2002, 13, 242–251. [Google Scholar] [CrossRef]
- Sato, Y.; Yamaguchi, T.; Muraoka, J.; Taniguchi, H.; Kisanuki, A.; Maekawa, K.; Yamashita, A.; Aman, M.; Kodama, Y.; Sameshima, H.; et al. C4d Deposition in Fetal Vessels of the Placenta in Neonatal Lupus Syndrome. Case Rep. Obstet. Gynecol. 2019, 2019, 5863476. [Google Scholar] [CrossRef]
- Minamiguchi, S.; Mikami, Y.; Nakajima, N.; Salah, A.; Kondoh, E.; Tatsumi, K.; Konishi, I.; Haga, H. Complement split product C4d deposition in placenta in systemic lupus erythematosus and pregnancy-induced hypertension. Pathol. Int. 2013, 63, 150–157. [Google Scholar] [CrossRef]
- Barsalou, J.; Costedoat-Chalumeau, N.; Berhanu, A.; Nieves, C.F.; Shah, U.; Brown, P.; Laskin, C.A.; Morel, N.; Levesque, K.; Buyon, J.; et al. Effect of in utero hydroxychloroquine exposure on the development of cutaneous neonatal lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1742–1749. [Google Scholar] [CrossRef]
- Brucato, A.; Cimaz, R.; Caporali, R.F.; Ramoni, V.; Buyon, J. Pregnancy Outcomes in Patients with Autoimmune Diseases and Anti-Ro/SSA Antibodies. Clin. Rev. Allergy Immunol. 2009, 40, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, J.W.J.; Hachulla, E. EULAR Textbook on Rheumatic Diseases; BMJ: London, UK, 2015. [Google Scholar]
- Buyon, J.; Hiebert, R.; Copel, J.; Craft, J.; Friedman, D.; Katholi, M.; Lee, L.A.; Provost, T.T.; Reichlin, M.; Rider, L.; et al. Autoimmune-Associated Congenital Heart Block: Demographics, Mortality, Morbidity and Recurrence Rates Obtained From a National Neonatal Lupus Registry. J. Am. Coll. Cardiol. 1998, 31, 1658–1666. [Google Scholar] [CrossRef]
- Julkunen, H.; Eronen, M. The rate of recurrence of isolated congenital heart block: A population-based study. Arthritis Rheum. 2001, 44, 487–488. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Saxena, A.; Kim, M.Y.; Wang, D.; Sahl, S.K.; Llanos, C.; Friedman, D.; Buyon, J. Maternal and Fetal Factors Associated With Mortality and Morbidity in a Multi–Racial/Ethnic Registry of Anti-SSA/Ro–Associated Cardiac Neonatal Lupus. Circulation 2011, 124, 1927–1935. [Google Scholar] [CrossRef] [Green Version]
- Guettrot-Imbert, G.; Cohen, L.; Fermont, L.; Villain, E.; Francès, C.; Thiebaugeorges, O.; Foliguet, B.; Leroux, G.; Cacoub, P.; Amoura, Z.; et al. A New Presentation of Neonatal Lupus: 5 Cases of Isolated Mild Endocardial Fibroelastosis Associated with Maternal Anti-SSA/Ro and Anti-SSB/La Antibodies. J. Rheumatol. 2010, 38, 378–386. [Google Scholar] [CrossRef]
- Nield, L.E.; Silverman, E.D.; Taylor, G.P.; Smallhorn, J.F.; Mullen, J.B.M.; Silverman, N.H.; Finley, J.P.; Law, Y.M.; Human, D.; Seaward, P.G.; et al. Maternal Anti-Ro and Anti-La Antibody–Associated Endocardial Fibroelastosis. Circulation 2002, 105, 843–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Nield, L.; Smallhorn, J.F.; Benson, L.N.; Hornberger, L.K.; Silverman, E.D.; Taylor, G.P.; Mullen, M.; Brendan, J. Endocardial fibroelastosis associated with maternal anti-Ro and anti-La antibodies in the absence of atrioventricular block. J. Am. Coll. Cardiol. 2002, 40, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Matitiau, A.; Perez-Atayde, A.; Sanders, S.P.; Sluysmans, T.; A Parness, I.; Spevak, P.J.; Colan, S.D. Infantile dilated cardiomyopathy. Relation of outcome to left ventricular mechanics, hemodynamics, and histology at the time of presentation. Circulation 1994, 90, 1310–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audette, M.C.; Levytska, K.; Lye, S.J.; Melamed, N.; Kingdom, J.C. Parental ethnicity and placental maternal vascular malperfusion pathology in healthy nulliparous women. Placenta 2018, 66, 40–46. [Google Scholar] [CrossRef]
- Fredi, M.; Andreoli, L.; Bacco, B.; Bertero, T.; Bortoluzzi, A.; Breda, S.; Cappa, V.; Ceccarelli, F.; Cimaz, R.; De Vita, S.; et al. First Report of the Italian Registry on Immune-Mediated Congenital Heart Block (Lu.Ne Registry). Front. Cardiovasc. Med. 2019, 6, 11. [Google Scholar] [CrossRef]
- Friedman, D.M.; Kim, M.Y.; Copel, J.A.; Davis, C.; Phoon, C.K.; Glickstein, J.S.; Buyon, J.P. Utility of cardiac monitoring in fetuses at risk for congenital heart block: The PR Interval and Dexamethasone Evaluation (PRIDE) prospective study. Circulation 2008, 117, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuneo, B.F.; Sonesson, S.-E.; Levasseur, S.; Moon-Grady, A.J.; Krishnan, A.; Donofrio, M.T.; Raboisson, M.-J.; Hornberger, L.K.; Van Eerden, P.; Sinkovskaya, E.; et al. Home Monitoring for Fetal Heart Rhythm During Anti-Ro Pregnancies. J. Am. Coll. Cardiol. 2018, 72, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Evers, P.D.; Alsaied, T.; Anderson, J.B.; Cnota, J.F.; Divanovic, A.A. Prenatal heart block screening in mothers with SSA/SSB autoantibodies: Targeted screening protocol is a cost-effective strategy. Congenit. Hear. Dis. 2018, 14, 221–229. [Google Scholar] [CrossRef]
- Eliasson, H.; Sonesson, S.E.; Sharland, G.; Granath, F.; Simpson, J.M.; Carvalho, J.S.; Jicinska, H.; Tomek, V.; Dangel, J.; Zielinsky, P.; et al. Isolated atrioventricular block in the fetus: A retrospective, multinational, multicenter study of 175 patients. Circulation 2011, 124, 1919–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brucato, A. Prevention of congenital heart block in children of SSA-positive mothers. Rheumatology 2008, 47, iii35–iii37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonesson, S.; Ambrosi, A.; Wahren-Herlenius, M. Benefits of fetal echocardiographic surveillance in pregnancies at risk of congenital heart block: Single-center study of 212 anti-Ro52-positive pregnancies. Ultrasound Obstet. Gynecol. 2019, 54, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Trucco, S.M.; Jaeggi, E.; Cuneo, B.; Moon-Grady, A.J.; Silverman, E.; Silverman, N.; Hornberger, L.K. Use of intravenous gamma globulin and corticosteroids in the treatment of maternal autoantibody-mediated cardiomyopathy. J. Am. Coll. Cardiol. 2011, 57, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Wahren-Herlenius, M.; Sonesson, S.-E. Specificity and effector mechanisms of autoantibodies in congenital heart block. Curr. Opin. Immunol. 2006, 18, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.G.; Ulmer, H.E.; Silverman, N.H.; Kleinman, C.S.; Copel, J.A. Perinatal outcome of fetal complete atrioventricular block: A multicenter experience. J. Am. Coll. Cardiol. 1991, 17, 1360–1366. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Costedoat-Chalumeau, N.; Pisoni, C.N.; Khamashta, M.A.; Kim, M.Y.; Saxena, A.; Friedman, D.; Llanos, C.; Piette, J.-C.; Buyon, J. Maternal Use of Hydroxychloroquine Is Associated With a Reduced Risk of Recurrent Anti-SSA/Ro-Antibody–Associated Cardiac Manifestations of Neonatal Lupus. Circulation 2012, 126, 76–82. [Google Scholar] [CrossRef]
- Matsubara, S.; Morimatsu, Y.; Shiraishi, H.; Kuwata, T.; Ohkuchi, A.; Izumi, A.; Takeda, S.; Suzuki, M. Fetus with heart failure due to congenital atrioventricular block treated by maternally administered ritodrine. Arch. Gynecol. Obstet. 2007, 278, 85–88. [Google Scholar] [CrossRef]
- Matsubara, S.; Takamura, K.; Kuwata, T.; Shiraishi, H.; Okuno, S.; Suzuki, M. Resumption of sinus rhythm from fetal complete atrioventricular block after maternally administered ritodrine. Arch. Gynecol. Obstet. 2011, 278, 135–137. [Google Scholar]
- Miyoshi, T.; Maeno, Y.; Sago, H.; Inamura, N.; Yasukohchi, S.; Kawataki, M.; Horigome, H.; Yoda, H.; Taketazu, M.; Shozu, M.; et al. Evaluation of transplacental treatment for fetal congenital bradyarrhythmia-nationwide survey in Japan. Circ. J. 2012, 76, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Sentilhes, L.; Sénat, M.-V.; Ancel, P.-Y.; Azria, E.; Benoist, G.; Blanc, J.; Brabant, G.; Bretelle, F.; Brun, S.; Doret, M.; et al. Prevention of spontaneous preterm birth: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 210, 217–224. [Google Scholar] [CrossRef]
- NICE Guidance. Preterm labour and birth overview. Natl. Inst. Health Care Excell. 2019. Available online: https://www.nice.org.uk/guidance/ng25 (accessed on 15 July 2021).
- Van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Wagner, C.L.; Lipsky, P.; Touma, Z.; Werth, V.P.; Gordon, R.M.; Zhou, B.; Hsu, B.; et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: Results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 2018, 392, 1330–1339. [Google Scholar] [CrossRef]
- Lund, T.; Thomsen, S.F. Use of TNF-inhibitors and ustekinumab for psoriasis during pregnancy: A patient series. Dermatol. Ther. 2017, 30, e12454. [Google Scholar] [CrossRef]
- Cortés, X.; Borrás-Blasco, J.; Antequera, B.; Fernandez-Martinez, S.; Casterá, E.; Martin, S.; Molés, J.R. Ustekinumab therapy for Crohn’s disease during pregnancy: A case report and review of the literature. J. Clin. Pharm. Ther. 2016, 42, 234–236. [Google Scholar] [CrossRef]
- Li, N.; Zhao, M.; Hilario-Vargas, J.; Prisayanh, P.; Warren, S.; Diaz, L.A.; Roopenian, D.C.; Liu, Z. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J. Clin. Investig. 2005, 115, 3440–3450. [Google Scholar] [CrossRef]
Anti-Ro52 | Anti-Ro60 | |
---|---|---|
Most likely rheumatic disease relevant to specific antibodies | Sjögren’s syndrome (SS) | |
Systemic lupus erythematosus (SLE) especially cutaneous involvement | Systemic lupus erythematosus (SLE) | |
Systemic sclerosis (SSC) | Neonatal lupus erythematosus (NLE) | |
Diffuse cutaneous systemic sclerosis | ||
Primary biliary cirrhosis (PBC) | ||
Polymyositis/dermatomyositis (PM/DM) | ||
Interstitial lung disease (ILD) | ||
Congenital complete heart block (CHB) | ||
Other conditions relevant to antibodies | Malignancies | |
Infections | ||
Function of protein against which the antibody is directed | E3 ubiquitin ligases | RNA binding |
Gene coding for the protein against which the antibodies are directed | TRIM21 | TROVE2 |
Author | Brucato et al. 2001 [70] | Cimaz et al. 2003 [71] | Martinez-Sanchez et al. 2017 [72] | Zuppa et al. 2017 [69] | Li et al. 2015 [73] | Luo et al. 2015 [74] |
---|---|---|---|---|---|---|
Number of patients | 100 | 112 | 40 | 50 | 123 | 140 |
Systemic lupus erythematosus (SLE) | 53 (53%) | 74 (66.1%) | 16 (40%) | 25 (50%) | 34 (27.64%) | 93 (66.44%) |
Sjögrenś Syndrome (SS) | 25 (25%) | 10 (8.9%) | 15 (37.5%) | 15 (30%) | 2 (1.63%) | 30 (21.43%) |
Comorbidity of SLE and SS | 6 (6%) | 0 | 0 | 5 (10%) | 0 | 0 |
Mixed connective tissue disease | 1 (1%) | 0 | 0 | 2 (4%) | 0 | 2 (1.43%) |
Antiphospholipid syndrome | 1 (1%) | 0 | 0 | 0 | 0 | 14 (10%) |
Rheumatoid arthritis | 0 | 0 | 1 (2.5%) | 0 | 1 (0.81%) | 0 |
Scleroderma | 1 (1%) | 0 | 0 | 0 | 0 | 0 |
Undifferentiated connective tissue disease | 19 (19%) | 5 (4.5%) | 0 | 0 | 7 (5.69%) | 11 (7.86%) |
Healthy | 0 | 15 (13.4%) | 8 (20%) | 3 (6%) | 78 (63.41%) | 4 (2.86%) |
Psoriasis | 0 | 0 | 0 | 0 | 1 (0.81%) | 0 |
Prevalence of NLS Features Review of the Literature | ||||||||
---|---|---|---|---|---|---|---|---|
NLS Features (% of Study Group) | ||||||||
Authors | Patients No | Follow Up | CCHB | Other Cardiac | Skin | Hematological | Hepatobiliary | CNS |
Cimaz Ret al. (2003) [71] | 128 | 6–9 months | 1.6 | 41 | 16 | 27 | 25 | NR |
Motta M et al. (2007) [75] | 51 | Not performed | 2 | 15.7 | 3,9 | 3.9 | 0 | NR |
Boros C et al. (2007) [76] | 47 | 12 months | 25.5 | 40 | 36 | 36 | 8 | |
Zuppa (2017) [69] | 50 | 9 months | 4 | 12 | 0 | 24 | 56 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryka-Marton, M.; Szukiewicz, D.; Teliga-Czajkowska, J.; Olesinska, M. An Overview of Neonatal Lupus with Anti-Ro Characteristics. Int. J. Mol. Sci. 2021, 22, 9281. https://doi.org/10.3390/ijms22179281
Gryka-Marton M, Szukiewicz D, Teliga-Czajkowska J, Olesinska M. An Overview of Neonatal Lupus with Anti-Ro Characteristics. International Journal of Molecular Sciences. 2021; 22(17):9281. https://doi.org/10.3390/ijms22179281
Chicago/Turabian StyleGryka-Marton, Malgorzata, Dariusz Szukiewicz, Justyna Teliga-Czajkowska, and Marzena Olesinska. 2021. "An Overview of Neonatal Lupus with Anti-Ro Characteristics" International Journal of Molecular Sciences 22, no. 17: 9281. https://doi.org/10.3390/ijms22179281
APA StyleGryka-Marton, M., Szukiewicz, D., Teliga-Czajkowska, J., & Olesinska, M. (2021). An Overview of Neonatal Lupus with Anti-Ro Characteristics. International Journal of Molecular Sciences, 22(17), 9281. https://doi.org/10.3390/ijms22179281