Antimicrobial Resistance and Whole-Genome Characterisation of High-Level Ciprofloxacin-Resistant Salmonella Enterica Serovar Kentucky ST 198 Strains Isolated from Human in Poland
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Antimicrobial Resistance Profile
2.2. Genotypic Antimicrobial Analysis in Silico
2.3. MLST, wg-SNP and wgMLST Phylogenetic Analysis
2.4. SGI1-K Structure Analysis and Plasmid Detection
3. Discussion
4. Materials and Methods
4.1. Tested S. Kentucky Isolates
4.2. Antimicrobial Susceptibility Testing of S. Kentucky Isolates
4.3. Whole-Genome Sequencing Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khademi, F.; Vaez, H.; Ghanbari, F.; Arzanlou, M.; Mohammadshahi, J.; Sahebkar, A. Prevalence of fluoroquinolone-resistant Salmonella serotypes in Iran: A meta-analysis. Pathog. Glob. Health 2020, 114, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.N.; Fowler, R.C.; Williams, A.J.; Iwen, P.C.; Fey, P.D. Nontyphoidal Salmonella enterica Nonsusceptible to Both Levofloxacin and Ceftriaxone in Nebraska, United States 2014–2015. Foodborne Pathog. Dis. 2018, 15, 235–238. [Google Scholar] [CrossRef]
- Kariuki, S.; Gordon, M.A.; Feasey, N.; Parry, C.M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 2015, 33 (Suppl. 3), C21–C29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadesse, G.; Tessema, T.S.; Beyene, G.; Aseffa, A. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0192575. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.S.; Kim, J.A.; Shin, J.H.; Chang, C.L.; Jeong, J.; Cho, J.H.; Kim, M.N.; Kim, S.; Kim, Y.R.; Lee, C.H.; et al. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microb. Drug Resist. 2011, 17, 551–557. [Google Scholar] [CrossRef]
- Casas, M.R.; Camargo, C.H.; Soares, F.B.; da Silveira, W.D.; Fernandes, S.A. Presence of plasmid-mediated quinolone resistance determinants and mutations in gyrase and topoisomerase in Salmonella enterica isolates with resistance and reduced susceptibility to ciprofloxacin. Diagn. Microbiol. Infect. Dis. 2016, 85, 85–89. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Ferrari, R.; Galiana, A.; Cremades, R.; Rodríguez, J.C.; Magnani, M.; Tognim, M.C.; Oliveira, T.C.; Royo, G. Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil. Braz. J. Microbiol. 2013, 44, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Wasyl, D.; Hoszowski, A. First isolation of ESBL-producing Salmonella and emergence of multiresistant Salmonella Kentucky in turkey in Poland. Food Res. Int. 2012, 45, 958–961. [Google Scholar] [CrossRef]
- Weill, F.X.; Bertrand, S.; Guesnier, F.; Baucheron, S.; Cloeckaert, A.; Grimont, P.A. Ciprofloxacin-resistant Salmonella Kentucky in travelers. Emerg. Infect. Dis. 2006, 12, 1611–1612. [Google Scholar] [CrossRef] [PubMed]
- Le Hello, S.; Hendriksen, R.S.; Doublet, B.; Fisher, I.; Nielsen, E.M.; Whichard, J.M.; Bouchrif, B.; Fashae, K.; Granier, S.A.; Jourdan-Da Silva, N.; et al. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J. Infect. Dis. 2011, 204, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Hello, S.; Bekhit, A.; Granier, S.A.; Barua, H.; Beutlich, J.; Zając, M.; Münch, S.; Sintchenko, V.; Bouchrif, B.; Fashae, K.; et al. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front. Microbiol. 2013, 4, 395. [Google Scholar] [CrossRef] [Green Version]
- Mahindroo, J.; Thanh, D.P.; Nguyen, T.N.T.; Mohan, B.; Thakur, S.; Baker, S.; Taneja, N. Endemic fluoroquinolone-resistant Salmonella enterica serovar Kentucky ST198 in northern India. Microb. Genom. 2019, 5, e000275. [Google Scholar] [CrossRef]
- Mulvey, M.R.; Boyd, D.A.; Finley, R.; Fakharuddin, K.; Langner, S.; Allen, V.; Ang, L.; Bekal, S.; El Bailey, S.; Haldane, D.; et al. Ciprofloxacin-resistant Salmonella enterica serovar Kentucky in Canada. Emerg. Infect. Dis. 2013, 19, 999–1001. [Google Scholar] [CrossRef]
- Park, A.K.; Shin, E.; Kim, S.; Park, J.; Jeong, H.J.; Chun, J.H.; Hwang, K.J.; Kim, J. Traveller-associated high-level ciprofloxacin-resistant Salmonella enterica Serovar Kentucky in the Republic of Korea. J. Glob. Antimicrob. Resist. 2020, 22, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.H.; Paul, N.C.; Guard, J. Complete Genome Sequence of a Ciprofloxacin-Resistant Salmonella enterica subsp. enterica Serovar Kentucky Sequence Type 198 Strain, PU131, Isolated from a Human Patient in Washington State. Genome Announc. 2018, 6, e00125-18. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Marchesi, M.; Imkamp, F.; Wagner, K.; Keller, P.M.; Quiblier, C.; Bodendoerfer, E.; Courvalin, P.; Bottger, E.C. Population-based inference of aminoglycoside resistance mechanisms in Escherichia coli. EBioMedicine 2019, 46, 184–192. [Google Scholar] [CrossRef] [Green Version]
- EFSA; ECDC. The European Union One health 2018 Zoonoses report. EFSA J. 2019, 17, e05926. [Google Scholar]
- Le Hello, S.; Weill, F.X.; Guibert, V.; Praud, K.; Cloeckaert, A.; Doublet, B. Early strains of multidrug-resistant Salmonella enterica serovar Kentucky sequence type 198 from Southeast Asia harbor Salmonella genomic island 1-J variants with a novel insertion sequence. Antimicrob. Agents Chemother. 2012, 56, 5096–5102. [Google Scholar] [CrossRef] [Green Version]
- EFSA; ECDC. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- Zając, M.; Wasyl, D.; Hoszowski, A.; Le Hello, S.; Szulowski, K. Genetic lineages of Salmonella enterica serovar Kentucky spreading in pet reptiles. Vet. Microbiol. 2013, 166, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Mąka, Ł.; Maćkiw, E.; Stasiak, M.; Wołkowicz, T.; Kowalska, J.; Postupolski, J.; Popowska, M. Ciprofloxacin and nalidixic acid resistance of Salmonella spp. isolated from retail food in Poland. Int. J. Food Microbiol. 2018, 276, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wasyl, D.; Hoszowski, A.; Zając, M. Prevalence and characterisation of quinolone resistance mechanisms in Salmonella spp. Vet. Microbiol. 2014, 171, 307–314. [Google Scholar] [CrossRef]
- Levings, R.S.; Partridge, S.R.; Djordjevic, S.P.; Hall, R.M. SGI1-K, a Variant of the SGI1 Genomic Island Carrying a Mercury Resistance Region, in Salmonella enterica Serovar Kentucky. Antimicrob. Agents Chemother. 2006, 51, 317–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamidian, M.; Holt, K.E.; Hall, R.M. The complete sequence of Salmonella genomic island SGI1-K. J. Antimicrob. Chemother. 2015, 70, 305–306. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Song, J.; Zeng, X.; Chen, D.; Chen, R.; Chen, Q.; Zhoum, K. National Prevalence of Salmonella enterica Serotype Kentucky ST198 with High-Level Resistance to Ciprofloxacin and Extended-Spectrum Cephalosporins in China, 2013 to 2017. Systems 2021, 6, e00935-20. [Google Scholar] [CrossRef]
- Grimont, P.A.D.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars; WHO Collaborating Centre for Research on Salmonella, Institute Pasteur: Paris, France, 2007. [Google Scholar]
- Zhang, S.; Yin, Y.; Jones, M.B.; Zhang, Z.; Deatherage Kaiser, B.L.; Dinsmore, B.A.; Fitzgerald, C.; Fields, P.I.; Deng, X. Salmonella Serotype Determination Utilizing High-throughput Genome Sequencing Data. J. Clin. Micobiol. 2015, 53, 1685–1692. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total Genome Sequenced Bacteria. J. Clin. Micobiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.F.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.R.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argimón, S.; Abudahab, K.; Goater, R.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.; Holden, M.; Yeats, C.; Grundmann, H.; et al. Microreact: Visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Isolate ID | Date of Isolation | Sex Female/Male | Age | Patient Status | Province | MIC (mg/L) 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | FOX | CTX | CAZ | GEN | AMK | NAL | CIP | TET | CHL | SXT | |||||||
1 | 3/19 | 08.03.2019 | M | 54 | patient | podkarpackie | >256 | 2 | 0.12 | 0.38 | 64 | 1.5 | 1024 | 16 | 32 | 2 | 0.047 |
2 | 169/18 | ND | M | ND | patient | śląskie | >256 | 2 | 0.06 | 0.38 | 0.38 | 1.5 | >1024 | 12 | 1.5 | 3 | 0.064 |
3 | 85/18 | 28.04.2018 | F | 12 | patient | dolnośląskie | >256 | 2 | 0.06 | 0.38 | 0.38 | 2 | 1024 | 12 | 1 | 2 | 1.5 |
4 | 86/18 | 16.03.2018 | F | 35 | patient | dolnośląskie | >256 | 2 | 0.06 | 0.38 | 0.38 | 2 | 1024 | 12 | 32 | 3 | 0.047 |
5 | 87/18 | 28.04.2018 | M | 75 | patient | dolnośląskie | >256 | 3 | 0.12 | 0.25 | 0.38 | 2 | >1024 | 12 | 1 | 2 | 0.75 |
6 | 325/18 | 09.06.2018 | F | ND | patient | dolnośląskie | >256 | 1.5 | 0.06 | 0.38 | 0.25 | 2 | >1024 | 12 | 1 | 3 | 0.064 |
7 | 329/18 | 15.05.2018 | M | ND | patient | dolnośląskie | >256 | 3 | 0.03 | 0.125 | 0.38 | 2 | 1024 | 12 | 1 | 3 | 0.047 |
8 | 438/18 | ND | M | ND | patient | wielkopolskie | >256 | 1.5 | 0.06 | 0.38 | 12 | 1.5 | 1024 | 12 | 32 | 2 | 0.19 |
9 | 188/18 | 05.06.2018 | M | 42 | patient | łódzkie | >256 | 1.5 | 0.06 | 0.38 | 8 | 2 | 1024 | 12 | 32 | 3 | 0.19 |
10 | 88/18 | 28.04.2018 | M | 65 | patient | dolnośląskie | >256 | 1.5 | 0.06 | 0.19 | 0.25 | 1.5 | >1024 | 8 | 1 | 3 | 0.047 |
11 | 172/18 | 24.05.2018 | F | ND | patient | dolnośląskie | >256 | 2 | 0.06 | 0.25 | 0.38 | 2 | 1024 | 8 | 1 | 2 | 0.064 |
12 | 384/19 | July 2019 | M | ND | patient | śląskie | >256 | 2 | 0.06 | 0.25 | 16 | 3 | 1024 | 8 | 32 | 3 | 0.19 |
13 | 457/19 | 12.09.2019 | F | 1 | patient | łódzkie | >256 | 1.5 | 0.06 | 0.25 | 0.38 | 2 | 1024 | 8 | 0.75 | 2 | 0.047 |
14 | 93/18 | 27.01.2018 | F | ND | carrier | dolnośląskie | >256 | 2 | 0.06 | 0.38 | 0.38 | 2 | 1024 | 8 | 1 | 2 | 0.047 |
15 | 368/18 | ND | F | ND | patient | śląskie | >256 | 1.5 | 0.06 | 0.38 | 12 | 1.5 | >1024 | 6 | 24 | 3 | 0.094 |
16 | 145/19 | 04.06.2019 | M | ND | ND | lubelskie | >256 | 2 | 0.06 | 0.25 | 12 | 2 | >1024 | 6 | 32 | 2 | 0.19 |
17 | 383/18 | 18.08.2018 | F | ND | patient | dolnośląskie | 0.5 | 2 | 0.06 | 0.19 | 0.25 | 1.5 | 4 | 0.016 | 1 | 2 | 0.047 |
18 | 412/18 | 01.10.2018 | M | 86 | patient | łódzkie | 0.38 | 1.5 | 0.03 | 0.19 | 0.25 | 1.5 | 4 | 0.016 | 1 | 2 | 0.047 |
No. | Isolate ID | MLST Type | Plasmids | Resistance Phenotype | Resistance Genotype by WGS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β-Lactams | Aminoglycosides | Sulfonamides | Trimethoprim | Tetracyclines | Fluoroquinolones | ||||||||
QRDR Amino Acid Change in | PMQR | ||||||||||||
GyrA | ParC Ser80 | ||||||||||||
Ser83 | Asp87 | ||||||||||||
1 | 3/19 | 198 | Col156 IncR | AMP, NA, CIP, TET, GEN | blaTEM-1B | aac(6′)-Iaa, aac(6′)-Iid aac(3)-IId aph(3′’)-Ib aph(6)-Id | tet(A) | Phe | Tyr | Ile | qnrS1 | ||
2 | 169/18 | 198 | None detected | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
3 | 85/18 | 198 | IncI1-I | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa aadA1 | dfrA1 | Phe | Tyr | Ile | |||
4 | 86/18 | 198 | Col8282 | AMP, NA, CIP, TET | blaTEM-1B | aac(6′)-Iaa | tet(A) | Phe | Gly | Ile | |||
5 | 87/18 | 198 | IncI1-I | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa aadA1 | dfrA1 | Phe | Tyr | Ile | |||
6 | 325/18 | 198 | IncI1-I | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
7 | 329/18 | 198 | None detected | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
8 | 438/18 | 198 | None detected | AMP, NA, CIP, TET, GEN | blaTEM-1B | aac(6′)-Iaa aac(3)-Id | sul1 | tet(A) | Phe | Tyr | Ile | ||
9 | 188/18 | 198 | None detected | AMP, NA, CIP, TET, GEN | blaTEM-1B | aac(6′)-Iaa aac(3)-Id | sul1 | tet(A) | Phe | Tyr | Ile | ||
10 | 88/18 | 198 | None detected | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
11 | 172/18 | 198 | None detected | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
12 | 384/19 | 198 | None detected | AMP, NA, CIP, TET, GEN | blaTEM-1B | aac(6′)-Iaa aac(3)-Id | sul1 | tet(A) | Phe | Tyr | Ile | ||
13 | 457/19 | 198 | None detected | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
14 | 93/18 | 198 | None detected | AMP, NA, CIP | blaTEM-1B | aac(6′)-Iaa | Phe | Tyr | Ile | ||||
15 | 368/18 | 198 | None detected | AMP, NA, CIP, TET, GEN | blaTEM-1B | aac(6′)-Iaaaac(3)-Id | sul1 | tet(A) | Phe | Tyr | Ile | ||
16 | 145/19 | 198 | None detected | AMP, NA, CIP, TET, GEN | blaTEM-1B | aac(6′)-Iaaaac(3)-Id | sul1 | tet(A) | Phe | Tyr | Ile | ||
17 | 383/18 | 314 | None detected | - | aac(6′)-Iaa | WT | WT | WT | |||||
18 | 412/18 | 696 | None detected | - | aac(6′)-Iaa | WT | WT | WT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołkowicz, T.; Zacharczuk, K.; Gierczyński, R.; Nowakowska, M.; Piekarska, K. Antimicrobial Resistance and Whole-Genome Characterisation of High-Level Ciprofloxacin-Resistant Salmonella Enterica Serovar Kentucky ST 198 Strains Isolated from Human in Poland. Int. J. Mol. Sci. 2021, 22, 9381. https://doi.org/10.3390/ijms22179381
Wołkowicz T, Zacharczuk K, Gierczyński R, Nowakowska M, Piekarska K. Antimicrobial Resistance and Whole-Genome Characterisation of High-Level Ciprofloxacin-Resistant Salmonella Enterica Serovar Kentucky ST 198 Strains Isolated from Human in Poland. International Journal of Molecular Sciences. 2021; 22(17):9381. https://doi.org/10.3390/ijms22179381
Chicago/Turabian StyleWołkowicz, Tomasz, Katarzyna Zacharczuk, Rafał Gierczyński, Magdalena Nowakowska, and Katarzyna Piekarska. 2021. "Antimicrobial Resistance and Whole-Genome Characterisation of High-Level Ciprofloxacin-Resistant Salmonella Enterica Serovar Kentucky ST 198 Strains Isolated from Human in Poland" International Journal of Molecular Sciences 22, no. 17: 9381. https://doi.org/10.3390/ijms22179381
APA StyleWołkowicz, T., Zacharczuk, K., Gierczyński, R., Nowakowska, M., & Piekarska, K. (2021). Antimicrobial Resistance and Whole-Genome Characterisation of High-Level Ciprofloxacin-Resistant Salmonella Enterica Serovar Kentucky ST 198 Strains Isolated from Human in Poland. International Journal of Molecular Sciences, 22(17), 9381. https://doi.org/10.3390/ijms22179381