Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review
Abstract
:1. Diabetes Mellitus—A Global Public Health Problem
2. Magnolol—A Brief Description of a Chemical Compound, Its Occurrence in Nature and the Most Important Activities
3. Magnolol in Diabetes and Its Complications
3.1. Magnolol in Glycemic Control
3.2. Magnolol and Diabetic Nephropathy
3.3. Magnolol and Diabetic Neuropathy
3.4. Magnolol and Retinopathy and Eye Diseases Related to Diabetes
3.5. Magnolol and Cardiovascular Complications in Diabetes
3.6. Magnolol and Lipid Metabolism Disorders in Diabetes
3.7. Magnolol and Reproductive System Disturbances
3.8. Intestinal Bacteria in Obesity and Diabetes
3.9. Magnolol and Oxidative Stress and Inflammation in Diabetes
3.10. Summary of Beneficial Effects of Magnolol in the Course of Diabetes and Diabetic Complications and Comorbidities
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
AGEs | advanced glycation end products |
AGIs | α-glucosidase inhibitors |
AMPK | adenosine monophosphate-activated protein kinase |
AUC | area under the curve |
CAT | catalase |
C/EBP (α/δ) | CCAAT/enhancer-binding protein (alpha/delta) |
CYP2E1 | cytochrome P450 2E1 |
DHEA | dehydroepiandrosterone |
FAS | fatty acid synthase |
GLUT (1/4) | glucose transporter (1/4) |
GPx | glutathione peroxidase |
HFD | high-fat diet |
HO-1 | heme oxygenase-1 |
HOMA-IR | homeostatic model assessment of insulin resistance |
iNOS | induced nitric oxide synthase |
IL (1β/6/10) | interleukin (1β/6/10) |
IR | insulin resistance |
IRS (1/2) | insulin receptor substrate (1/2) |
LDL | low-density lipoprotein |
LPL | lipoprotein lipase |
MAPK | mitogen-activated protein kinase |
MDA | malondialdehyde |
MGO | methylglyoxal |
mRNA | messenger ribonucleic acid |
NFκB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NO | nitric oxide |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
OGTT | oral glucose tolerance test |
PAI-1 | plasminogen activator inhibitor-1 |
PCOS | polycystic ovary syndrome |
PI3K | phosphatidylinositol 3-kinase |
PKB (=Akt) | protein kinase B |
PPAR-γ | peroxisome proliferator-activated receptor gamma |
PTP1B | protein tyrosine phosphatase-1B |
ROS | reactive oxygen species |
RXR | retinoid X receptor |
SOD | superoxide dismutase |
STZ | streptozotocin |
T1DM | type 1 diabetes mellitus |
TC | total cholesterol |
TG | triglycerides |
TGF-β | transforming growth factor β |
TNF-α | tumor necrosis factor α |
VEGF | vascular endothelial growth factor |
References
- Blair, M. Diabetes mellitus review. Urol. Nurs. 2016, 36, 27–36. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Akash, M.S.H. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J. Cell. Biochem. 2017, 118, 3577–3585. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2018, 8, 361–376. [Google Scholar] [CrossRef]
- Deshmukh, C.D.; Jain, A. Diabetes mellitus: A review. Int. J. Pure Appl. Biosci. 2015, 3, 224–230. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Sasso, F.C.; Pafundi, P.C.; Simeon, V.; De Nicola, L.; Chiodini, P.; Galiero, R.; Rinaldi, L.; Nevola, R.; Salvatore, T.; Sardu, C.; et al. Efficacy and durability of multifactorial intervention on mortality and MACEs: A randomized clinical trial in type-2 diabetic kidney disease. Cardiovasc. Diabetol. 2021, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mottaghi, S.; Abbaszadeh, H. Natural lignans honokiol and magnolol as potential anticarcinogenic and anticancer agents. A comprehensive mechanistic review. Nutr. Cancer 2021, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Zapata-Bustos, R.; Domínguez, F.; García-Carrancá, A.; Salazar-Olivo, L.A. Magnolia dealbata Zucc and its active principles honokiol and magnolol stimulate glucose uptake in murine and human adipocytes using the insulin-signaling pathway. Phytomedicine 2011, 18, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Choi, M.-S.; Cha, B.Y.; TaeWoo, J.; Park, Y.-B.; Kim, S.R.; Jung, U.J. Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance, and adipose inflammation in high-fat fed mice. Mol. Nutr. Food Res. 2013, 57, 1988–1998. [Google Scholar] [CrossRef]
- Sarrica, A.; Kirika, N.; Romeo, M.; Salmona, M.; Diomede, L. Safety and toxicology of magnolol and honokiol. Planta Med. 2018, 84, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-S.; Cha, B.-Y.; Lee, Y.-S.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.-T. Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sci. 2009, 84, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Parray, H.A.; Lone, J.; Park, J.P.; Choi, J.W.; Yun, J.W. Magnolol promotes thermogenesis and attenuates oxidative stress in 3T3-L1 adipocytes. Nutrition 2018, 50, 82–90. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Huang, X.; Shi, W.; Zhang, R.; Chen, M.; Huang, H.; Wu, L. Insights on the multifunctional activities of magnolol. Biomed. Res. Int. 2019, 2019, 1847130. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Huang, P.-H.; Lin, F.-Y.; Chen, W.-C.; Chen, Y.-L.; Yin, W.H.; Man, K.M.; Liu, P.-L. Magnolol: A multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. Eur. J. Integr. Med. 2011, 3, e317–e324. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Sun, W.; Gao, L.; Kim, K.S.; Kim, K.T.; Cai, L.; Zhang, Z.; Zheng, Y. Extracts of magnolia species-induced prevention of diabetic complications: A brief review. Int. J. Mol. Sci. 2016, 17, 1629. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.; Zeng, Y.; Tian, B.; Qu, X.; Yuan, Q.; Song, Y. Pharmacology, toxicity, bioavailability, and formulation of magnolol: An update. Front. Pharmacol. 2021, 12, 632767. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information PubChem Compound Summary for CID 72300, Magnolol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Magnolol#section=2D-Structure&fullscreen=true (accessed on 31 August 2021).
- National Center for Biotechnology Information PubChem Compound Summary for CID 72303, Honokiol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Honokiol#section=2D-Structure&fullscreen=true (accessed on 31 August 2021).
- Wang, J.-J.; Zhao, R.; Liang, J.-C.; Chen, Y. The antidiabetic and hepatoprotective effects of magnolol on diabetic rats induced by high-fat diet and streptozotocin. Acta Pharm. Sin. 2014, 49, 476–481. [Google Scholar]
- Maksymchuk, O.; Shysh, A.; Rosohatska, I.; Chashchyn, M. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol. Reports 2017, 69, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, R.; Liang, J.; Chen, Y. Antidiabetic and anti-oxidative effects of honokiol on diabetic rats induced by high-fat diet and streptozotocin. Chinese Herb. Med. 2014, 6, 42–46. [Google Scholar] [CrossRef]
- Kathirvel, E.; Morgan, K.; French, S.W.; Morgan, T.R. Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2009, 21, 973–983. [Google Scholar] [CrossRef]
- Zong, H.; Armoni, M.; Harel, C.; Karnieli, E.; Pessin, J.E. Cytochrome P-450 CYP2E1 knockout mice are protected against high-fat diet-induced obesity and insulin resistance. Am. J. Physiol. Metab. 2012, 302, E532–E539. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-S.; Choi, S.-S.; Yonezawa, T.; Teruya, T.; Woo, J.-T.; Kim, H.J.; Cha, B.-Y. Honokiol, magnolol, and a combination of both compounds improve glucose metabolism in high-fat diet-induced obese mice. Food Sci. Biotechnol. 2015, 24, 1467–1474. [Google Scholar] [CrossRef]
- Sohn, E.J.; Kim, C.-S.; Kim, Y.S.; Jung, D.H.; Jang, D.S.; Lee, Y.M.; Kim, J.S. Effects of magnolol (5,5′-diallyl-2,2′-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. Life Sci. 2007, 80, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem 2017, 12, 819–829. [Google Scholar] [CrossRef]
- Joshi, S.R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin. Pharmacother. 2015, 16, 1959–1981. [Google Scholar] [CrossRef]
- Akmal, M.; Wadhwa, R. Alpha glucosidase inhibitors. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Pulvirenti, L.; Muccilli, V.; Cardullo, N.; Spatafora, C.; Tringali, C. Hemoenzymatic synthesis and α-glucosidase inhibitory activity of dimeric neolignans inspired by magnolol. J. Nat. Prod. 2017, 80, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Bhat, L.R.; Vedantham, S.; Krishnan, U.M.; Rayappan, J.B.B. Methylglyoxal–An emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens. Bioelectron. 2019, 133, 107–124. [Google Scholar] [CrossRef]
- Bellier, J.; Nokin, M.-J.; Lardé, E.; Karoyan, P.; Peulen, O.; Castronovo, V.; Bellahcène, A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019, 148, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell. Longev. 2017, 2017, 1930261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, K.S.; Chon, S.; Jung, W.-W.; Choi, E.M. Magnolol protects pancreatic β-cells against methylglyoxal-induced cellular dysfunction. Chamico-Biol. Interact. 2017, 277, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.P.; Harmon, J.S. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet β cell. Free Radic. Biol. Med. 2006, 41, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Bo, J.; Xie, S.; Guo, Y.; Zhang, C.; Guan, Y.; Li, C.; Lu, J.; Meng, Q.H. Methylglyoxal impairs insulin secretion of pancreatic β-cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKs. J. Diabetes Res. 2016, 2016, 2029854. [Google Scholar]
- Lowell, B.B.; Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science 2005, 307, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Sharma, A.K.; Sharma, M.C.; Gupta, R.S. Antioxidant activity and protection of pancreatic β-cells by embelin in streptozotocin-induced diabetes. J. Diabetes 2012, 4, 248–256. [Google Scholar] [CrossRef]
- Singh, Z.; Karthigesu, I.P.; Singh, P.; Kaur, R. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: A review. Iran. J. Public Health 2014, 43, 7–16. [Google Scholar]
- Arthur, D.E.; Ejeh, S.; Uzairu, A. Quantitative structure-activity relationship (QSAR) and design of novel ligands that demonstrate high potency and target selectivity as protein tyrosine phosphatase 1B (PTP 1B) inhibitors as an effective strategy used to model anti-diabetic agents. J. Recept. Signal Transduct. 2020, 40, 501–520. [Google Scholar] [CrossRef]
- Verma, M.; Gupta, S.J.; Chaudhary, A.; Garg, V.K. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents—A brief review. Bioorg. Chem. 2017, 70, 267–283. [Google Scholar] [CrossRef]
- Onoda, T.; Li, W.; Sasaki, T.; Miyake, M.; Higai, K.; Koike, K. Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan. J. Ethnopharmacol. 2016, 186, 84–90. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jung, D.H.; Kim, N.H.; Lee, Y.M.; Kim, J.S. Effect of magnolol on TGF-β1 and fibronectin expression in human retinal pigment epithelial cells under diabetic conditions. Eur. J. Pharmacol. 2007, 562, 12–19. [Google Scholar] [CrossRef]
- Liu, C.-M.; Chen, S.-H.; Liao, Y.-W.; Yu, C.-H.; Yu, C.-C.; Hsieh, P.-L. Magnolol ameliorates the accumulation of reactive oxidative stress and inflammation in diabetic periodontitis. J. Formos. Med. Assoc. 2021, 120, 1452–1458. [Google Scholar] [CrossRef]
- Kanaan, A.; Khachab, M.; Nassar, A.; Zaatiti, H. The effect of magnolol on a polycystic ovary syndrome rat model with insulin resistance. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Umanath, K.; Lewis, J.B. Update on diabetic nephropathy: Core curriculum 2018. Am. J. Kidney Dis. 2018, 71, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.M.; Cooper, M.E.; Oldfield, M.D.; Thomas, M.C. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 2003, 14, 254–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukami, K.; Yamagishi, S.; Ueda, S.; Okuda, S. Role of AGEs in diabetic nephropathy. Curr. Pharm. Des. 2008, 14, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Dounousi, E.; Duni, A.; Leivaditis, K.; Vaios, V.; Eleftheriadis, T.; Liakopoulos, V. Improvements in the management of diabetic nephropathy. Rev. Diabet. Stud. 2015, 12, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Vallon, V.; Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol. 2011, 1, 1175–1232. [Google Scholar]
- Gnudi, L.; Coward, R.J.M.; Long, D.A. Diabetic nephropathy: Perspective on novel molecular mechanisms. Trends Endocrinol. Metab. 2016, 27, 820–830. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, C.-S.; Sohn, E.; Kim, H.; Jeong, I.-H.; Kim, J.S. KIOM-79 prevents lens epithelial cell apoptosis and lens opacification in Zucker diabetic fatty rats. Evid.-Based Complement. Altern. Med. 2011, 2011, 717921. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kim, J.; Kim, C.-S.; Sohn, E.J.; Lee, Y.M.; Jeong, I.-H.; Kim, H.; Jang, D.S.; Kim, J.S. KIOM-79, an inhibitor of AGEs-protein cross-linking, prevents progression of nephropathy in Zucker diabetic fatty rats. Evid.-Based Complement. Altern. Med. 2011, 2011, 761859. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Sohn, E.J.; Kim, Y.S.; Jung, D.H.; Jang, D.S.; Lee, Y.M.; Kim, D.H.; Kim, J.S. Effects of KIOM-79 on hyperglycemia and diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. J. Ethnopharmacol. 2007, 111, 240–247. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.M.; Kim, C.-S.; Sohn, E.J.; Jang, D.S.; Kim, J.S. Inhibitory effect of KIOM-79, a new herbal prescription, on AGEs formation and expressions of type IV collagen and TGF-β1 in STZ-induced diabetic rats. Korean J. Pharmacogn. 2006, 37, 103–109. [Google Scholar]
- Kim, J.S.; Kim, H.J.; Ko, J.H. Studies on the processing of herbal medicines (III)—HPLC analysis of magnolol and inhibitory effects on the formation of advanced glycation endproducts (AGEs) in vitro of unprocessed- and processed Magnolia bark. Korean J. Pharmacogn. 2002, 33, 308–311. [Google Scholar]
- Tang, C.-Y.; Lai, C.-C.; Huang, P.-H.; Yang, A.-H.; Chiang, S.-C.; Huang, P.-C.; Tseng, K.-W.; Huang, C.-H. Magnolol reduces renal ischemia and reperfusion injury via inhibition of apoptosis. Am. J. Chin. Med. 2017, 45, 1421–1439. [Google Scholar] [CrossRef]
- Asgharpour, M.; Tolouian, A.; Bhaskar, L.V.; Tolouian, R.; Massoudi, N. Herbal antioxidants and renal ischemic-reperfusion injury; an updated review. J. Nephropharmacol. 2021, 10, e03. [Google Scholar] [CrossRef]
- Kang, K.A.; Kim, J.S.; Zhang, R.; Piao, M.J.; Maeng, Y.H.; Kang, M.Y.; Lee, I.K.; Kim, B.J.; Hyun, J.W. KIOM-4 protects against oxidative stress-induced mitochondrial damage in pancreatic β-cells via its antioxidant effects. Evid.-Based Complement. Altern. Med. 2011, 2011, 978682. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Kim, J.S.; Hyun, J.W. KIOM-4 protects RINm5F pancreatic β-cells against streptozotocin induced oxidative stress in vitro. Biotechnol. Bioprocess Eng. 2008, 13, 150–157. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.-S.; Kim, H.; Jeong, I.-H.; Sohn, E.; Kim, J.S. Protection against advanced glycation end products and oxidative stress during the development of diabetic keratopathy by KIOM-79. J. Pharm. Pharmacol. 2011, 63, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.; Khachab, M.; Zaatiti, H.; Kanaan, A. Magnolia officinalis ameliorates dehydroepiandrosterone-induced polycystic ovary syndrome in rats. Jundishapur J. Nat. Pharm. Prod. 2021, 16, e106447. [Google Scholar] [CrossRef]
- Sohn, E.J.; Kim, Y.S.; Kim, C.S.; Lee, Y.M.; Kim, J.S. KIOM-79 prevents apoptotic cell death and AGEs accumulation in retinas of diabetic db/db mice. J. Ethnopharmacol. 2009, 121, 171–174. [Google Scholar] [CrossRef]
- Weng, C.-C.; Chen, Z.-A.; Chao, K.-T.; Ee, T.-W.; Lin, K.-J.; Chan, M.-H.; Hsiao, I.-T.; Yen, T.-C.; Kung, M.-P.; Hsu, C.-H.; et al. Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson’s disease using in vivo 18 F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging. PLoS ONE 2017, 12, e0173503. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-F.; Yang, J.; Ma, S.-P.; Qu, R. Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. Eur. J. Pharmacol. 2013, 711, 42–49. [Google Scholar] [CrossRef]
- Xian, Y.F.; Qu, C.; Liu, Y.; Ip, S.P.; Yuan, Q.J.; Yang, W.; Lin, Z.X. Magnolol ameliorates behavioral impairments and neuropathology in a transgenic mouse model of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2020, 2020, 5920476. [Google Scholar] [CrossRef]
- Bai, Y.; Song, L.; Dai, G.; Xu, M.; Zhu, L.; Zhang, W.; Jing, W.; Ju, W. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids 2018, 135, 73–78. [Google Scholar] [CrossRef]
- Cheng, J.; Dong, S.; Yi, L.; Geng, D.; Liu, Q. Magnolol abrogates chronic mild stress-induced depressive-like behaviors by inhibiting neuroinflammation and oxidative stress in the prefrontal cortex of mice. Int. Immunopharmacol. 2018, 59, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qiu, J.; Hong, J.; Xu, X.; Zhang, G.; Li, G. Magnolol attenuates inflammatory pain by inhibiting sodium currents in mouse dorsal root ganglion neurons. Inflammopharmacology 2021, 29, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Sui, A.; Zhang, N.; Lv, Q.; Liu, Z. Antinociceptive effect of magnolol in a neuropathic pain model of mouse. J. Pain Res. 2021, 14, 2083–2093. [Google Scholar] [CrossRef] [PubMed]
- Kiziltoprak, H.; Tekin, K.; Inanc, M.; Goker, Y.S. Cataract in diabetes mellitus. World J. Diabetes 2019, 10, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Ljubimov, A.V. Diabetic complications in the cornea. Vision Res. 2017, 139, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, W.; Huang, X.; Xiong, J.; Wei, X. Interaction of AR and iNOS in lens epithelial cell: A new pathogenesis and potential therapeutic targets of diabetic cataract. Arch. Biochem. Biophys. 2017, 615, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arana, A.G.H.; Vitar, R.M.L.; Reides, C.G.; Lerner, S.F.; Ferreira, S.M. Glaucoma causes redox imbalance in the primary visual cortex by modulating NADPH oxidase-4, iNOS, and Nrf2 pathway in a rat experimental model. Exp. Eye Res. 2020, 200, 108225. [Google Scholar] [CrossRef]
- Zheng, C.; Lei, C.; Chen, Z.; Zheng, S.; Yang, H.; Qiu, Y.; Lei, B. Topical administration of diminazene aceturate decreases inflammation in endotoxin-induced uveitis. Mol. Vis. 2015, 21, 403–411. [Google Scholar]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef]
- Olofsson, E.M.; Marklund, S.L.; Behndig, A. Glucose-induced cataract in CuZn-SOD null lenses: An effect of nitric oxide? Free Radic. Biol. Med. 2007, 42, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.-T.; Li, X.-F.; Sun, Y.-M.; Li, Y.-B.; Su, Y. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed. Pharmacother. 2015, 74, 145–147. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, B.C.; Song, C.Y.; Hong, H.K.; Moon, K.C.; Lee, H.S. Advanced glycosylation end products stimulate collagen mRNA synthesis in mesangial cells mediated by protein kinase C and transforming growth factor-beta. J. Lab. Clin. Med. 2001, 138, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sato, T.; Paryani, G.; Kao, R. Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats. Diabetes 2003, 52, 1229–1234. [Google Scholar] [CrossRef] [Green Version]
- Nagineni, C.N.; Samuel, W.; Nagineni, S.; Pardhasaradhi, K.; Wiggert, B.; Detrick, B.; Hooks, J.J. Transforming growth factor-β induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: Involvement of mitogen-activated protein kinases. J. Cell. Physiol. 2003, 197, 453–462. [Google Scholar] [CrossRef]
- Paine, S.K.; Basu, A.; Mondal, L.K.; Sen, A.; Choudhuri, S.; Chowdhury, I.H.; Saha, A.; Bhadhuri, G.; Mukherjee, A.; Bhattacharya, B. Association of vascular endothelial growth factor, transforming growth factor beta, and interferon gamma gene polymorphisms with proliferative diabetic retinopathy in patients with type 2 diabetes. Mol. Vis. 2012, 18, 2749–2757. [Google Scholar]
- Gerhardinger, C.; Dagher, Z.; Sebastiani, P.; Yong, S.P.; Lorenzi, M. The transforming growth factor-β pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes 2009, 58, 1659–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, A.; Dwarakanathan, S. Diabetic keratopathy. Disease-A-Month 2021, 67, 101135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; He, Y.; Ren, Y.-R.; Chen, B.-H. Corneal alteration and pathogenesis in diabetes mellitus. Int. J. Ophthalmol. 2019, 12, 1939–1950. [Google Scholar] [CrossRef] [PubMed]
- Priyadarsini, S.; Whelchel, A.; Nicholas, S.; Sharif, R.; Riaz, K.; Karamichos, D. Diabetic keratopathy: Insights and challenges. Surv. Ophthalmol. 2020, 65, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Tóbon-Velasco, J.C.; Elvis Cuevas, M.A.T.-R. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Targets 2014, 13, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Fu, Z.J.; Lo, A.C.Y. Hypoxia-induced oxidative stress in ischemic retinopathy. Oxid. Med. Cell. Longev. 2012, 2012, 426769. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Xu, Y.; Yu, S.; Huang, Y.; Lu, L.; Liang, X. Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxygen-induced retinopathy model. Inflamm. Res. 2016, 65, 81–93. [Google Scholar] [CrossRef]
- Chen, X.; Yu, W.-H.; Gong, X.-H.; Zhou, Q.; Chen, Z.-M.; Ye, T.-T. Protective effects of magnolol against cardiac injuries via attenuating of mitogen-activated protein kinase (MAPK)/nuclear factor κB (NF-κB)-mediated inflammatory response in type 1 diabetic mice. Chinese Tradit. Herb. Drugs 2017, 48, 4719–4725. [Google Scholar]
- Chen, L.; Wu, Y.-T.; Gu, X.-Y.; Xie, L.-P.; Fan, H.-J.; Tan, Z.-B.; Zhang, W.-T.; Chen, H.-M.; Li, J.; Huang, G.; et al. Magnolol, a natural aldehyde dehydrogenase-2 agonist, inhibits the proliferation and collagen synthesis of cardiac fibroblasts. Bioorg. Med. Chem. Lett. 2021, 43, 128045. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Winkler, J.; Ramos, I.; Do, Q.-T.; Firat, H.; McDonald, K.; González, A.; Thum, T.; Díez, J.; Jaisser, F.; et al. Myocardial fibrosis: Biomedical research from bench to bedside. Eur. J. Heart Fail. 2017, 19, 177–191. [Google Scholar] [CrossRef]
- Liang, X.; Xing, W.; He, J.; Fu, F.; Zhang, W.; Su, F.; Liu, F.; Ji, L.; Gao, F.; Su, H.; et al. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: Role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS ONE 2015, 10, e0120366. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-C.; Yu, Y.-M.; Hsu, Y.-M.; Wu, C.H.; Yin, P.-L.; Chiang, S.-Y.; Hung, J.-S. Inhibitory effect of Magnolia officinalis and lovastatin on aortic oxidative stress and apoptosis in hyperlipidemic rabbits. J. Cardiovasc. Pharmacol. 2006, 47, 463–468. [Google Scholar]
- Sun, W.; Zhang, Z.; Chen, Q.; Yin, X.; Fu, Y.; Zheng, Y.; Cai, L.; Kim, K.S.; Kim, K.H.; Tan, Y.; et al. Magnolia extract (BL153) protection of heart from lipid accumulation caused cardiac oxidative damage, inflammation, and cell death in high-fat diet fed mice. Oxid. Med. Cell. Longev. 2014, 2014, 205849. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Ho, O.-M.; Kim, D.-W. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1,2 and NF-κB activation in vascular smooth muscle cells. Biochim. Biophys. Acta 2013, 1830, 2619–2628. [Google Scholar] [CrossRef]
- Karki, R.; Kim, S.-B.; Kim, D.-W. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp. Cell Res. 2013, 319, 3238–3250. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.-Y.; Chen, Y.-L.; Loh, S.-H.; Chen, P.-Y.; Hong, C.-Y.; Chen, J.-J.; Cheng, T.-H.; Liu, J.-C. Magnolol depresses urotensin-II-induced cell proliferation in rat cardiac fibroblasts. Clin. Exp. Pharmacol. Physiol. 2009, 36, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.-C.; Chou, F.-P.; Sheu, W.H.-H.; Hsu, S.-L.; Lee, W.-J. Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells. Arch. Toxicol. 2007, 81, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Xing, W.; He, J.; Liu, F.; Gao, F.; Zhang, H. Magnolol administration in prehypertension postpones the development of hypertension and the underlying mechanisms. J. Am. Coll. Cardiol. 2014, 64, C25. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zou, H.; Xia, W.; Dong, Q.; Wang, L. Role of magnolol in the proliferation of vascular smooth muscle cells. Herz 2015, 40, 542–548. [Google Scholar] [CrossRef]
- Han, T.S.; Lean, M.E.J. Metabolic syndrome. Medicine (Baltimore) 2015, 43, 80–87. [Google Scholar] [CrossRef]
- Grundy, S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016, 26, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Gazioglu, S.B.; Akan, G.; Atalar, F.; Erten, G. PAI-1 and TNF-α profiles of adipose tissue in obese cardiovascular disease patients. Int. J. Clin. Exp. Pathol. 2015, 8, 15919–15925. [Google Scholar]
- Levine, J.A.; Olivares, S.; Miyata, T.; Vaughan, D.E.; Henkel, A.S. Inhibition of PAI-1 promotes lipolysis and enhances weight loss in obese mice. Obesity 2021, 29, 713–720. [Google Scholar] [CrossRef]
- Panee, J. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012, 60, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Navarrete, J.M.; Fernández-Real, J.M. Adipocyte Differentiation. In Adipose Tissue Biology; Symonds, M., Ed.; Springer: Cham, Switzerland, 2017; pp. 69–90. [Google Scholar]
- Cinti, S. Between brown and white: Novel aspects of adipocyte differentiation. Ann. Med. 2011, 43, 104–115. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, N.; Al Bratty, M.; Javed, S.A.; Ahsan, W.; Alhazmi, H.A. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: Strategy for design of novel antidiabetic drugs. Int. J. Med. Chem. 2017, 2017, 1069718. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.A.; Zhang, F.; Jiang, L.; Ye, R.; An, Y.; Shao, M.; Tao, C.; Gupta, R.K.; Scherer, P.E. Peroxisome proliferator-activated receptor γ and its role in adipocyte homeostasis and thiazolidinedione-mediated insulinsensitization. Mol. Cell. Biol. 2018, 38, e00677-17. [Google Scholar] [CrossRef] [Green Version]
- Janani, C.; Kumari, R.B.D. PPAR gamma gene—A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef]
- Bogan, J.S. Regulation of glucose transporter translocation in health and diabetes. Annu. Rev. Biochem. 2012, 81, 507–532. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Thiazolidinediones: The forgotten diabetes medications. Curr. Diabetes Rep. 2019, 19, 151. [Google Scholar] [CrossRef] [Green Version]
- Diamant, M.; Heine, R.J. Thiazolidinediones in type 2 diabetes mellitus. Drugs 2003, 63, 1373–1405. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Ke, C.; Cai, Z.; Wu, H.; Ye, Y.; Liang, X.; Yu, L.; Jiang, S.; Shen, J.; Wang, L.; et al. LNK deficiency decreases obesity-induced insulin resistance by regulating GLUT4 through the PI3K-Akt-AS160 pathway in adipose tissue. Aging 2020, 12, 17150–17166. [Google Scholar] [CrossRef]
- Dreier, D.; Latkolik, S.; Rycek, L.; Schnürch, M.; Dymáková, A.; Atanasov, A.G.; Ladurner, A.; Heiss, E.H.; Stuppner, H.; Schuster, D.; et al. Linked magnolol dimer as a selective PPARγ agonist—Structure-based rational design, synthesis, and bioactivity evaluation. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cinti, S. Adipose organ development and remodeling. Compr. Physiol. 2018, 8, 1357–1431. [Google Scholar] [PubMed]
- Silvester, A.J.; Aseer, K.R.; Yun, J.W. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem. 2019, 64, 1–12. [Google Scholar] [CrossRef]
- Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 2014, 1841, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-K.; Lin, X.-R.; Lin, Y.-L.; Fang, W.-H.; Lin, S.-W.; Chang, S.-Y.; Kao, J.-T. Magnolol-mediated regulation of plasma triglyceride through affecting lipoprotein lipase activity in apolipoprotein A5 knock-in mice. PLoS ONE 2018, 13, e0192740. [Google Scholar]
- Condorelli, R.A.; Calogero, A.E.; Di Mauro, M.; La Vignera, S. PCOS and diabetes mellitus: From insulin resistance to altered beta pancreatic function, a link in evolution. Gynecol. Endocrinol. 2017, 33, 665–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreau, A.-M.; Baillargeon, J.-P. PCOS in adolescence and type 2 diabetes. Curr. Diabetes Rep. 2015, 15, 564. [Google Scholar] [CrossRef]
- Teede, H.J.; Hutchison, S.; Zoungas, S.; Meyer, C. Insulin resistance, the metabolic syndrome, diabetes, and cardiovascular disease risk in women with PCOS. Endocrine 2006, 30, 45–53. [Google Scholar] [CrossRef]
- Ollila, M.M.E.; Kaikkonen, K.; Järvelin, M.R.; Huikuri, H.V.; Tapanainen, J.S.; Franks, S.; Piltonen, T.T.; Morin-Papunen, L. Self-reported polycystic ovary syndrome is associated with hypertension: A Northern Finland birth cohort 1966 study. J. Clin. Endocrinol. Metab. 2019, 104, 1221–1231. [Google Scholar] [CrossRef]
- Vitek, W.; Alur, S.; Hoeger, K.M. Off-label drug use in the treatment of polycystic ovary syndrome. Fertil. Steril. 2015, 103, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Oberfield, S.E.; Witchel, S.F.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; et al. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef]
- Luque-Ramírez, M.; Nattero-Chávez, L.; Ortiz Flores, A.E.; Escobar-Morreale, H.F. Combined oral contraceptives and/or antiandrogens versus insulin sensitizers for polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2018, 24, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Tay, C.T.; Joham, A.E.; Hiam, D.S.; Gadalla, M.A.; Pundir, J.; Thangaratinam, S.; Teede, H.J.; Moran, L.J. Pharmacological and surgical treatment of nonreproductive outcomes in polycystic ovary syndrome: An overview of systematic reviews. Clin. Endocrinol. (Oxf.) 2018, 89, 535–553. [Google Scholar] [CrossRef] [Green Version]
- Glintborg, D.; Andersen, M. Medical treatment and comorbidity in polycystic ovary syndrome: An updated review. Curr. Opin. Endocr. Metab. Res. 2020, 12, 33–40. [Google Scholar] [CrossRef]
- Tai, N.; Wong, F.S.; Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 2015, 16, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Song, Z.; Li, H.; Chang, L.; Pan, T.; Gu, X.; He, X.; Fan, Z. Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota. Front. Immunol. 2019, 10, 2800. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, J.; Han, L.; Jin, Z.; Wang, J.; Li, X.; Man, S.; Liu, C.; Gao, W. Protective effect of magnolol on oxaliplatin-induced intestinal injury in mice. Phyther. Res. 2019, 33, 1161–1172. [Google Scholar] [CrossRef]
- Sun, Q.; Wedick, N.M.; Pan, A.; Townsend, M.K.; Cassidy, A.; Franke, A.A.; Rimm, E.B.; Hu, F.B.; van Dam, R.M. Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: A prospective investigation in two cohorts of U.S. women. Diabetes Care 2014, 37, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Senizza, A.; Rocchetti, G.; Mosele, J.I.; Patrone, V.; Callegari, M.L.; Morelli, L.; Lucini, L. Lignans and gut microbiota: An interplay revealing potential health implications. Molecules 2020, 25, 5709. [Google Scholar] [CrossRef]
- Lei, X.G.; Vatamaniuk, M.Z. Two tales of antioxidant enzymes on β cells and diabetes. Antioxid. Redox Signal. 2011, 14, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A.; Donath, M.Y.; Mandrup-Poulsen, T. Role of IL-1β in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 314–321. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. Rev. 2019, 14, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Kim, J.S.; Kang, K.A.; Piao, M.J.; Kim, K.C.; Hyun, J.W. Protective mechanism of KIOM-4 in streptozotocin-induced pancreatic β-cells damage is involved in the inhibition of endoplasmic reticulum stress. Evid.-Based Complement. Altern. Med. 2011, 2011, 231938. [Google Scholar] [CrossRef] [PubMed]
- Genco, R.J.; Graziani, F.; Hasturk, H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontology 2000 2020, 83, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.H.; Hardy, D.C.; Schuyler, C.A.; Slate, E.H.; Huang, Y. Expression of periodontal interleukin-6 protein is increased across patients with neither periodontal disease nor diabetes, patients with periodontal disease alone and patients with both diseases. J. Periodontal Res. 2010, 45, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Linhartova, P.B.; Kavrikova, D.; Tomandlova, M.; Poskerova, H.; Rehka, V.; Dušek, L.; Holla, L.I. Differences in interleukin-8 plasma levels between diabetic patients and healthy individuals independently on their periodontal status. Int. J. Mol. Sci. 2018, 19, 3214. [Google Scholar] [CrossRef] [Green Version]
- Sima, C.; Aboodi, G.M.; Lakschevitz, F.S.; Sun, C.; Goldberg, M.B.; Glogauer, M. Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am. J. Pathol. 2016, 186, 1417–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.-N.; Kim, T.-Y.; Park, E.-K.; Kim, J.-Y.; Jeong, G.-S. Panax ginseng fruit has anti-inflammatory effect and induces osteogenic differentiation by regulating Nrf2/HO-1 signaling pathway in in vitro and in vivo models of periodontitis. Antioxidants 2020, 9, 1221. [Google Scholar] [CrossRef]
- Bascones-Martínez, A.; Muñoz-Corcuera, M.; Bascones-Ilundain, J. Diabetes and periodontitis: A bidirectional relationship. Med. Clínica 2015, 145, 31–35. [Google Scholar] [CrossRef]
- Kashiwagi, Y.; Takedachi, M.; Mori, K.; Kubota, M.; Yamada, S.; Kitamura, M.; Murakami, S. High glucose-induced oxidative stress increases IL-8 production in human gingival epithelial cells. Oral Dis. 2016, 22, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Kido, D.; Mizutani, K.; Takeda, K.; Mikami, R.; Matsuura, T.; Iwasaki, K.; Izumi, Y. Impact of diabetes on gingival wound healing via oxidative stress. PLoS ONE 2017, 12, e0189601. [Google Scholar] [CrossRef] [PubMed]
Model Line | Effect | Magnolol Dosage | Reference |
---|---|---|---|
Parameters of Glucose and Insulin Homeostasis | |||
Human retinal pigment epithelial cells ARPE-19 + high glucose concentration | decrease in glucose level | 0.5–5 μg/mL pretreatment | [44] |
Rat pancreatic β-cells RINm5F cells + MGO | increase in insulin secretion | 0.01–1.0 µM pretreatment | [35] |
α-glucosidase inhibition activity assay | decrease in α-glucosidase activity | magnolol 1.5 μM dimeric neolignan derivatives 1.5 μM | [31] |
Enzymatic assay for PTP1B | decrease in PTP1B activity | 1–250 μM | [43] |
3T3-L1 preadipocytes + primary polyclonal antibodies anti-PPARγ | increase in mRNA of PPARγ expression | 5, 10, 20 μM preatreatment | [14] |
3T3-L1 adipocytes | increase in GLUT 1, GLUT 4 and GLUT 4 protein expression, increase in mRNA of PPARγ expression and in glucose uptake | 10 μM | [13] |
Murine 3T3-F442A and human subcutaneous adipocytes | increase in glucose uptake | 30 μM | [10] |
Parameters Related to Oxidative Stress, Inflammation and Molecules Glycation | |||
3T3-L1 preadipocytes + carboxy-H2 DCFDA fluorescent stain | increase in SOD and CAT activity | 5, 10, 20 μM pretreatment | [14] |
Rat pancreatic β-cells RINm5F cells + MGO | increase in GPx activity, decrease in IL-1β level | 0.01–1.0 µM pretreatment | [35] |
Human retinal pigment epithelial cells ARPE-19 + high glucose concentration | decrease in MDA level | 0.5–5 μg/mL | [44] |
Human gingival fibroblasts + (AGE)-BSA | decrease in AGEs, IL-6 and IL-8 levels | 2.5, 5, 10 mM | [45] |
Animal Model | Effect | Magnolol Dosage | Reference |
---|---|---|---|
Parameters of Glucose and Insulin Homeostasis | |||
HFD + STZ rats | decrease in glucose level in the serum | 25, 50, 100 mg/kg once a day for 10 weeks | [21] |
Type 2 diabetic Goto-Kakizaki rats | decrease in glucose level in the fasting blood | 100 mg/kg once a day for 13 weeks | [27] |
HFD C57BL/6J mice | decrease in glucose level in the fasting blood | 0.02% (17 mg/kg) with HFD for 16 weeks | [11] |
HFD + STZ rats | increase in glucose tolerance in the serum—OGTT | 25, 50, 100 mg/kg once a day for 10 weeks | [21] |
HFD obese mice | increase in glucose tolerance in the plasma—OGTT | 100 mg/kg magnolol once a day for 8 weeks | [26] |
HFD C57BL/6J mice | increase in glucose tolerance in the fasting blood—intraperitoneal glucose tolerance test and decrease in HOMA-IR in the fasting blood | 0.02% (17 mg/kg) with HFD for 16 weeks | [11] |
Type 2 diabetic Goto-Kakizaki rats | decrease in sorbitol level in the kidney medulla | 100 mg/kg once a day for 13 weeks | [27] |
Type 2 diabetic Goto-Kakizaki rats | decrease in insulin level in the fasting plasma | 100 mg/kg once a day for 13 weeks | [27] |
HFD C57BL/6J mice | decrease in insulin level in the fasting plasma | 0.02% (17 mg/kg) with HFD for 16 weeks | [11] |
Post-pubertal female Sprague Dawley rats + DHEA | increase in mRNA of PPARγ expression in the ovaries | 500 mg/kg for 28 days | [46] |
HFD obese mice | increase in mRNA of PPARγ expression and GLUT 4 expression in the white adipose tissue | 100 mg/kg magnolol once a day for 8 weeks | [26] |
Parameters of Lipid Metabolism Homeostasis | |||
HFD + STZ rats | decrease in TG, TC and LDL levels in the serum | 25, 50, 100 mg/kg once a day for 10 weeks | [21] |
HFD obese mice | decrease in TC level in the plasma | 100 mg/kg magnolol once a day for 8 weeks | [26] |
Parameters Related to Oxidative Stress, Inflammation and Molecules Glycation | |||
HFD + STZ rats | increase in SOD, CAT and GPx activities, decrease in MDA level and CYP2E1 activity in the liver | 25, 50, 100 mg/kg once a day for 10 weeks | [21] |
Type 2 diabetic Goto-Kakizaki rats | decrease in AGEs level in kidney glomeruli | 100 mg/kg once a day for 13 weeks | [27] |
HFD C57BL/6J mice | increase in IL-10 level in the plasma | 0.02% (17 mg/kg) with HFD for 16 weeks | [11] |
(a) | |||
Model Line | Effect | Magnolia Extracts Dosage | Reference |
Parameters of Glucose and Insulin Homeostasis | |||
Murine 3T3-F442A and human subcutaneous adipocytes | increase in glucose uptake | Magnolia dealbata extract 50 μg/mL | [10] |
Parameters Related to Oxidative Stress, Inflammation and Molecules Glycation | |||
RINm5F rat pancreatic β-cells + STZ | increase in SOD activity | 50 μg mL−1 KIOM-4 pretreatment | [60] |
Rat pancreatic β-cells RINm5F cells + Triton X-100 | increase in CAT activity, decrease in thiobarbituric acid reactive substances level | KIOM-4 pretreatment | [61] |
In vitro | decrease in AGEs level | 25–100 µg/mL unprocessed or processed magnolia bark extract | [57] |
(b) | |||
Animal Model | Effect | Magnolia Extracts Dosage | Reference |
Parameters of Glucose and Insulin Homeostasis | |||
Zucker diabetic fatty rats | decrease in glucose level in the serum | 50 mg/kg KIOM-79 once a day for 13 weeks | [54] |
Type 2 diabetic Goto-Kakizaki rats | decrease in glucose level in the fasting blood-plasma | 500 mg/kg KIOM-79 once a day for 13 weeks | [55] |
Zucker diabetic fatty rats | decrease in glucose level in the fasting blood | 50 mg/kg KIOM-79 once a day for 13 weeks | [53,62] |
HFD obese mice | increase in glucose tolerance in the plasma—OGTT | 50 + 50 mg/kg honokiol + magnolol once a day for 8 weeks | [26] |
Type 2 diabetic Goto-Kakizaki rats | decrease in insulin level in the fasting plasma | 500 mg/kg KIOM-79 once a day for 13 weeks | [55] |
HFD obese mice | increase in mRNA of PPARγ expression and GLUT 4 expression in the white adipose tissue | 50 + 50 mg/kg honokiol + magnolol once a day for 8 weeks | [26] |
Post-pubertal female Sprague Dawley rats + DHEA | increase in mRNA of PPARγ expression in the ovaries | Magnolia officinalis extract for 28 days | [63] |
Parameters of Lipid Metabolism Homeostasis | |||
Zucker diabetic fatty rats | decrease in TG and LDL levels in the plasma | 50 mg/kg KIOM-79 once a day for 13 weeks | [54] |
HFD obese mice | decrease in TC level in the plasma | 50 + 50 mg/kg honokiol + magnolol once a day for 8 weeks | [26] |
Parameters Related to Oxidative Stress, Inflammation and Molecules Glycation | |||
Zucker diabetic fatty rats | decrease in MDA level in the serum | 50 mg/kg KIOM-79 once a day for 13 weeks | [54] |
Zucker diabetic fatty rats | decrease in AGEs level in the kidney glomeruli and tubulointerstitium | 50 mg/kg KIOM-79 once a day for 13 weeks | [54] |
Type 2 diabetic Goto-Kakizaki rats | decrease in AGEs level in the kidney glomeruli and tubules | 500 mg/kg KIOM-79 once a day for 13 weeks | [55] |
Zucker diabetic fatty rats | decrease in AGEs level in the lens sections | 50 mg/kg KIOM-79 once a day for 13 weeks | [53] |
Zucker diabetic fatty rats | decrease in AGEs level in the cornea | 50 mg/kg KIOM-79 once a day for 13 weeks | [62] |
C57BL/KSJ-db/db mice | decrease in AGEs level in the retina | 150 mg/kg KIOM-79 once a day for 12 weeks | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szałabska-Rąpała, K.; Borymska, W.; Kaczmarczyk-Sedlak, I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review. Int. J. Mol. Sci. 2021, 22, 10050. https://doi.org/10.3390/ijms221810050
Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review. International Journal of Molecular Sciences. 2021; 22(18):10050. https://doi.org/10.3390/ijms221810050
Chicago/Turabian StyleSzałabska-Rąpała, Katarzyna, Weronika Borymska, and Ilona Kaczmarczyk-Sedlak. 2021. "Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review" International Journal of Molecular Sciences 22, no. 18: 10050. https://doi.org/10.3390/ijms221810050
APA StyleSzałabska-Rąpała, K., Borymska, W., & Kaczmarczyk-Sedlak, I. (2021). Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review. International Journal of Molecular Sciences, 22(18), 10050. https://doi.org/10.3390/ijms221810050