Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments
Abstract
:1. Introduction
2. Etiology of Neurocognitive Impairment
2.1. Neuroanatomic Findings
2.2. Biochemical Findings
2.2.1. Inflammatory Cytokines
2.2.2. Hormones
2.2.3. Neurotrophic Factors
2.2.4. Neurotransmitters
2.3. Genetic Findings
3. Treatment of Cognitive Deficit in Schizophrenia
3.1. Antioxidant Compounds
3.2. Modulation of Serotonergic Neurotransmission
3.3. Regulation of GABAergic Neurotransmission
3.4. Potentiation of Histaminergic Neurotransmission
3.5. Potentiation of Cholinergic Neurotransmission
3.6. Potentiation of Glutamatergic Neurotransmission
3.7. Potentiation of Dopaminergic Neurotransmission
3.8. Antidepressant Drugs
3.9. Inhibition of Phosphodiesterases
3.10. Steroids
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mueser, K.T.; McGurk, S.R. Schizophrenia. Lancet 2004, 363, 2063–2072. [Google Scholar] [CrossRef]
- Carrà, G.; Crocamo, C.; Angermeyer, M.; Brugha, T.; Toumi, M.; Bebbington, P. Positive and negative symptoms in schizophrenia: A longitudinal analysis using latent variable structural equation modelling. Schizophr. Res. 2019, 204, 58–64. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Luo, D.-Z.; Pei, J.-C.; Kuo, M.-C.; Hsieh, Y.-C.; Lai, W.-S. Not Just a Bystander: The Emerging Role of Astrocytes and Research Tools in Studying Cognitive Dysfunctions in Schizophrenia. Int. J. Mol. Sci. 2021, 22, 5343. [Google Scholar] [CrossRef]
- Dollfus, S.; Lyne, J. Negative symptoms: History of the concept and their position in diagnosis of schizophrenia. Schizophr. Res. 2017, 186, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Bora, E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: A meta-Analysis. Psychol. Med. 2019, 49, 1971–1979. [Google Scholar] [CrossRef]
- Mesholam-Gately, R.I.; Giuliano, A.J.; Goff, K.P.; Faraone, S.V.; Seidman, L.J. Neurocognition in First-Episode Schizophrenia: A Meta-Analytic Review. Neuropsychology 2009, 23, 315–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.-Y.; Wong, A.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol. Sin. 2018, 39, 733–753. [Google Scholar] [CrossRef] [Green Version]
- Bezdicek, O.; Michalec, J.; Kališová, L.; Kufa, T.; Děchtěrenko, F.; Chlebovcová, M.; Havlík, F.; Green, M.F.; Nuechterlein, K.H. Profile of cognitive deficits in schizophrenia and factor structure of the Czech MATRICS Consensus Cognitive Battery. Schizophr. Res. 2020, 218, 85–92. [Google Scholar] [CrossRef]
- Hoff, A.L.; Riordan, H.; O’Donnell, D.W.; Morris, L.; DeLisi, L.E. Neuropsychological functioning of first-episode schizophreniform patients. Am. J. Psychiatry 1992, 149, 898–903. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, X.; Tang, X.; Zhang, H.; Yu, M.; Gong, G.; Wang, X.; Evans, A.; Zhang, Z.; He, Y. Mapping convergent and divergent cortical thinning patterns in patients with deficit and nondeficit schizophrenia. Schizophr. Bull. 2019, 45, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Haijma, S.V.; Van Haren, N.; Cahn, W.; Koolschijn, P.C.M.P.; Hulshoff Pol, H.E.; Kahn, R.S. Brain volumes in schizophrenia: A meta-analysis in over 18 000 subjects. Schizophr. Bull. 2013, 39, 1129–1138. [Google Scholar] [CrossRef]
- Planchuelo-Gómez, Á.; Lubeiro, A.; Núñez-Novo, P.; Gomez-Pilar, J.; de Luis-García, R.; del Valle, P.; Martín-Santiago, Ó.; Pérez-Escudero, A.; Molina, V. Identificacion of MRI-based psychosis subtypes: Replication and refinement. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 100, 109907. [Google Scholar] [CrossRef]
- Gould, I.C.; Shepherd, A.M.; Laurens, K.R.; Cairns, M.J.; Carr, V.J.; Green, M.J. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: A support vector machine learning approach. NeuroImage Clin. 2014, 6, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Brugger, S.P.; Howes, O.D. Heterogeneity and Homogeneity of Regional Brain Structure in Schizophrenia: A Meta-analysis. JAMA Psychiatry 2017, 74, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Alústiza, I.; Radua, J.; Albajes-Eizagirre, A.; Domínguez, M.; Aubá, E.; Ortuño, F. Meta-Analysis of Functional Neuroimaging and Cognitive Control Studies in Schizophrenia: Preliminary Elucidation of a Core Dysfunctional Timing Network. Front. Psychol. 2016, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Elsworth, J.D.; Morrow, B.A.; Hajszan, T.; Leranth, C.; Roth, R.H. Phencyclidine-induced Loss of Asymmetric Spine Synapses in Rodent Prefrontal Cortex is Reversed by Acute and Chronic Treatment with Olanzapine. Neuropsychopharmacology 2011, 36, 2054–2061. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.L.; Diehl, C.; Schleifer, C.; Tamminga, C.A.; Keshavan, M.S.; Sweeney, J.A.; Clementz, B.A.; Hill, S.K.; Pearlson, G.; Yang, G.; et al. Schizophrenia Exhibits Bi-directional Brain-Wide Alterations in Cortico-Striato-Cerebellar Circuits. Cereb. Cortex 2019, 29, 4463–4487. [Google Scholar] [CrossRef]
- Huang, M.L.; Khoh, T.T.; Lu, S.J.; Pan, F.; Chen, J.K.; Hu, J.B.; Hu, S.H.; Xu, W.J.; Zhou, W.H.; Wei, N.; et al. Relationships between dorsolateral prefrontal cortex metabolic change and cognitive impairment in first-episode neuroleptic-naive schizophrenia patients. Medicine 2017, 96. [Google Scholar] [CrossRef] [PubMed]
- Ellegood, J.; Markx, S.; Lerch, J.P.; Steadman, P.E.; Genç, C.; Provenzano, F.; Kushner, S.A.; Henkelman, R.M.; Karayiorgou, M.; Gogos, J.A. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol. Psychiatry 2014, 19, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schretlen, D.J.; Vannorsdall, T.D.; Winicki, J.M.; Mushtaq, Y.; Hikida, T.; Sawa, A.; Yolken, R.H.; Dickerson, F.B.; Cascella, N.G. Neuroanatomic and cognitive abnormalities related to herpes simplex virus type 1 in schizophrenia. Schizophr. Res. 2010, 118, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, D.R. The neurodevelopmental origins of schizophrenia in the penumbra of genomic medicine. World Psychiatry 2017, 16, 225–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, R.M.; Lewis, S.W. Is schizophrenia a neurodevelopmental disorder? BMJ 1987, 295, 681–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, A.; Kar, S.K.; Shukla, R. Cognitive deficits in schizophrenia: Understanding the biological correlates and remediation strategies. Clin. Psychopharmacol. Neurosci. 2018, 16, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Snyder, M.A.; Gao, W.J. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front. Cell. Neurosci. 2013, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathian, F.; Loberg, E.M.; Gjestad, R.; Steen, V.M.; Kroken, R.A.; Jorgensen, H.A.; Johnsen, E. Associations between C-reactive protein levels and cognition during the first 6 months after acute psychosis. Acta Neuropsychiatr. 2019, 31, 36–45. [Google Scholar] [CrossRef]
- Fillman, S.G.; Weickert, T.W.; Lenroot, R.K.; Catts, S.V.; Bruggemann, J.M.; Catts, V.S.; Weickert, C.S. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol. Psychiatry 2016, 21, 1090–1098. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; de Campos-Carli, S.M.; Ferretjans, R.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Teixeira, A.L.; Salgado, J.V. The association of cognitive performance and IL-6 levels in schizophrenia is influenced by age and antipsychotic treatment. Nord. J. Psychiatry 2020, 74, 187–193. [Google Scholar] [CrossRef]
- Baune, B.T.; Ponath, G.; Rothermundt, M.; Riess, O.; Funke, H.; Berger, K. Association between genetic variants of IL-1β, IL-6 and TNF-α cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology 2008, 33, 68–76. [Google Scholar] [CrossRef]
- Lupien, S.J.; Juster, R.P.; Raymond, C.; Marin, M.F. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front. Neuroendocrinol. 2018, 49, 91–105. [Google Scholar] [CrossRef]
- Mondelli, V.; Cattaneo, A.; Murri, M.B.; Papadopoulos, A.S.; Aitchison, K.J. Stress and inflammation reduce BDNF expression in first- episode psychosis: A pathway to smaller hippocampal volume. J. Clin. Psychiatry 2011, 72, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, V.; Pariante, C.M.; Navari, S.; Aas, M.; D’Albenzio, A.; Di Forti, M.; Handley, R.; Hepgul, N.; Marques, T.R.; Taylor, H.; et al. Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis. Schizophr. Res. 2010, 119, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aas, M.; Dazzan, P.; Mondelli, V.; Toulopoulou, T.; Reichenberg, A.; Di Forti, M.; Fisher, H.L.; Handley, R.; Hepgul, N.; Marques, T.; et al. Abnormal cortisol awakening response predicts worse cognitive function in patients with first-episode psychosis. Psychol. Med. 2011, 41, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Havelka, D.; Prikrylova-Kucerova, H.; Prikryl, R.; Ceskova, E. Cognitive impairment and cortisol levels in first-episode schizophrenia patients. Stress 2016, 19, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Labad, J. The role of cortisol and prolactin in the pathogenesis and clinical expression of psychotic disorders. Psychoneuroendocrinology 2019, 102, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Goodnick, P.J.; Santana, O.; Rodriguez, L. Antipsychotics: Impact on prolactin levels. Expert Opin. Pharmacother. 2002, 3, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, I.; Gutiérrez-Zotes, A.; Creus, M.; Monseny, R.; Ortega, L.; Franch, J.; Lawrie, S.M.; Reynolds, R.M.; Vilella, E.; Labad, J. Increased prolactin levels are associated with impaired processing speed in subjects with early psychosis. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Song, J.; Gao, J.; Lin, P.; Yang, M.; Zahid, K.R.; Yan, Y.; Cao, C.; Ma, P.; Zhang, H.; et al. Cognitive function and serum hormone levels are associated with gray matter volume decline in female patients with prolactinomas. Front. Neurol. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Rizo, C.; Vázquez-Bourgon, J.; Labad, J.; Ortiz García de la Foz, V.; Gómez-Revuelta, M.; Juncal Ruiz, M.; Crespo-Facorro, B. Prolactin, metabolic and immune parameters in naïve subjects with a first episode of psychosis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 110, 110332. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Yoshimura, R.; Katsuki, A.; Atake, K.; Igata, R.; Konishi, Y.; Nakamura, J. Relationships between Serum Brain-Derived Neurotrophic Factor, Plasma Catecholamine Metabolites, Cytokines, Cognitive Function and Clinical Symptoms in Japanese Patients with Chronic Schizophrenia Treated with Atypical Antipsychotic Monotherapy. World J. Biol. Psychiatry 2017, 18, 401–408. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, G.; Hei, G.; Wang, X.; Li, R.; Li, L.; Wu, R.; Zhao, J. Brain-derived neurotrophic factor is associated with cognitive impairments in first-episode and chronic schizophrenia. Psychiatry Res. 2019, 273, 528–536. [Google Scholar] [CrossRef]
- Vasconcelos, G.S.; Ximenes, N.C.; de Sousa, C.N.S.; Oliveira, T.; de Lima, L.L.L.; de Lucena, D.F.; Gama, C.S.; Macêdo, D.; Vasconcelos, S.M.M. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr. Res. 2015, 165, 163–170. [Google Scholar] [CrossRef]
- Ertuĝrul, A.; Özdemir, H.; Vural, A.; Dalkara, T.; Meltzer, H.Y.; Saka, E. The influence of N-desmethylclozapine and clozapine on recognition memory and BDNF expression in hippocampus. Brain Res. Bull. 2011, 84, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Chen, D.C.; Xiu, M.H.; Haile, C.N.; Luo, X.; Xu, K.; Zhang, H.P.; Zuo, L.; Zhang, Z.; Zhang, X.; et al. Cognitive and serum BDNF correlates of BDNF Val66Met gene polymorphism in patients with schizophrenia and normal controls. Hum. Genet. 2012, 131, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, B.-C.; Milev, P.; O’Leary, D.S.; Librant, A.; Andreasen, N.C.; Wassink, T.H. Cognitive and Magnetic Resonance Imaging Brain Morphometric Correlates of Brain-Derived Neurotrophic Factor Val66Met Gene Polymorphism in Patients with Schizophrenia and Healthy Volunteers. Arch. Gen. Psychiatry 2006, 63, 731. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Panos, J.J.; Kwon, S.; Oyamada, Y.; Rajagopal, L.; Meltzer, H.Y. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: Role of relative serotonin (5-HT) 2A and da D2 antagonism and 5-HT1A partial agonism. J. Neurochem. 2014, 128, 938–949. [Google Scholar] [CrossRef]
- Schoonover, K.E.; Dienel, S.J.; Lewis, D.A. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark. Neuropsychiatry 2020, 3, 100015. [Google Scholar] [CrossRef]
- Fang, X.; Wang, Y.; Cheng, L.; Zhang, Y.; Zhou, Y.; Wu, S.; Huang, H.; Zou, J.; Chen, C.; Chen, J.; et al. Prefrontal dysconnectivity links to working memory deficit in first-episode schizophrenia. Brain Imaging Behav. 2018, 12, 335–344. [Google Scholar] [CrossRef]
- Chiu, P.W.; Lui, S.S.Y.; Hung, K.S.Y.; Chan, R.C.K.; Chan, Q.; Sham, P.C.; Cheung, E.F.C.; Mak, H.K.F. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr. Res. 2018, 193, 295–303. [Google Scholar] [CrossRef]
- Cho, R.Y.; Konecky, R.O.; Carter, C.S. Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia. Proc. Natl. Acad. Sci. USA 2006, 103, 19878–19883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weickert, C.S.; Fung, S.J.; Catts, V.S.; Schofield, P.R.; Allen, K.M.; Moore, L.T.; Newell, K.A.; Pellen, D.; Huang, X.F.; Catts, S.V.; et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry 2013, 18, 1185–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billard, J.-M. Changes in Serine Racemase-Dependent Modulation of NMDA Receptor: Impact on Physiological and Pathological Brain Aging. Front. Mol. Biosci. 2018, 5, 1–110. [Google Scholar] [CrossRef] [PubMed]
- Sathyasaikumar, K.V.; Stachowski, E.K.; Wonodi, I.; Roberts, R.C.; Rassoulpour, A.; McMahon, R.P.; Schwarcz, R. Impaired Kynurenine Pathway Metabolism in The Prefrontal Cortex of Individuals with Schizophrenia. Schizophr. Bull. 2011, 37, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Kindler, J.; Lim, C.K.; Weickert, C.S.; Boerrigter, D.; Galletly, C.; Liu, D.; Jacobs, K.R.; Balzan, R.; Bruggemann, J.; O’Donnell, M.; et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol. Psychiatry 2020, 25, 2860–2872. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.A.; Watson, D.J.G.; Fone, K.C.F. Animal models of schizophrenia. Br. J. Pharmacol. 2011, 164, 1162–1194. [Google Scholar] [CrossRef]
- Kaminski, J.; Mascarell-Maricic, L.; Fukuda, Y.; Katthagen, T.; Heinz, A.; Schlagenhauf, F. Glutamate in the Dorsolateral Prefrontal Cortex in Patients with Schizophrenia: A Meta-analysis of 1H-Magnetic Resonance Spectroscopy Studies. Biol. Psychiatry 2021, 89, 270–277. [Google Scholar] [CrossRef]
- Gluck, M.R.; Thomas, R.G.; Davis, K.L.; Haroutunian, V. Implications for Altered Glutamate and GABA Metabolism in the Dorsolateral Prefrontal Cortex of Aged Schizophrenic Patients. Am. J. Psychiatry 2002, 159, 1165–1173. [Google Scholar] [CrossRef]
- Volk, D.W.; Eggan, S.M.; Lewis, D.A. Alterations in Metabotropic Glutamate Receptor 1α and Regulator of G Protein Signaling 4 in the Prefrontal Cortex in Schizophrenia. Am. J. Psychiatry 2010, 167, 1489–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upreti, C.; Zhang, X.; Alford, S.; Stanton, P.K. Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology 2013, 66, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Whittington, M.A.; Cunningham, M.O.; LeBeau, F.E.N.; Racca, C.; Traub, R.D. Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 2011, 71, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Volk, D.W.; Austin, M.C.; Pierri, J.N.; Sampson, A.R.; Lewis, D.A. Decreased Glutamic Acid Decarboxylase67 Messenger RNA Expression in a Subset of Prefrontal Cortical γ-Aminobutyric Acid Neurons in Subjects with Schizophrenia. Arch. Gen. Psychiatry 2000, 57, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enwright, J.F.; Sanapala, S.; Foglio, A.; Berry, R.; Fish, K.N.; Lewis, D.A. Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia. Neuropsychopharmacology 2016, 41, 2206–2214. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, X.J.; Xia, H.; Tang, C.-M.; Yang, K. GABA releases from parvalbumin-expressing and unspecific GABAergic neurons onto CA1 pyramidal cells are differentially modulated by presynaptic GABAB receptors in mouse hippocampus. Biochem. Biophys. Res. Commun. 2019, 520, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A. The chandelier neuron in schizophrenia. Dev. Neurobiol. 2011, 71, 118–127. [Google Scholar] [CrossRef]
- Morris, H.M.; Hashimoto, T.; Lewis, D.A. Alterations in Somatostatin mRNA Expression in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia or Schizoaffective Disorder. Cereb. Cortex 2008, 18, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Avram, M.; Brandl, F.; Cabello, J.; Leucht, C.; Scherr, M.; Mustafa, M.; Leucht, S.; Ziegler, S.; Sorg, C. Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 2019, 142, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Avram, M.; Brandl, F.; Knolle, F.; Cabello, J.; Leucht, C.; Scherr, M.; Mustafa, M.; Koutsouleris, N.; Leucht, S.; Ziegler, S.; et al. Aberrant striatal dopamine links topographically with cortico-thalamic dysconnectivity in schizophrenia. Brain 2020, 143, 3495–3505. [Google Scholar] [CrossRef] [PubMed]
- Koola, M.M.; Looney, S.W.; Hong, H.; Pillai, A.; Hou, W. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: Significant cognitive enhancement. Psychiatry Res. 2020, 291. [Google Scholar] [CrossRef]
- Bakker, G.; Vingerhoets, C.; Bloemen, O.J.N.; Sahakian, B.J.; Booij, J.; Caan, M.W.A.; van Amelsvoort, T.A.M.J. The muscarinic M1 receptor modulates associative learning and memory in psychotic disorders. NeuroImage Clin. 2020, 27, 102278. [Google Scholar] [CrossRef]
- Jin, C.Y.; Anichtchik, O.; Panula, P. Altered histamine H 3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. Br. J. Pharmacol. 2009, 157, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Zai, G.; Robbins, T.W.; Sahakian, B.J.; Kennedy, J.L. A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neurosci. Biobehav. Rev. 2017, 72, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Apud, J.A.; Weinberger, D.R. Treatment of cognitive deficits associated with schizophrenia: Potential role of catechol-O-methyltransferase inhibitors. CNS Drugs 2007, 21, 535–557. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.Z.; Vella, L.; Kelsoe, J.R.; Bilder, R.M.; Twamley, E.W. Catechol-O-methyltransferase genotype and response to Compensatory Cognitive Training in outpatients with schizophrenia. Psychiatr. Genet. 2015, 25, 131–134. [Google Scholar] [CrossRef]
- Malhotra, A.K.; Kestler, L.J.; Mazzanti, C.; Bates, J.A.; Goldberg, T.; Goldman, D. A Functional Polymorphism in the COMT Gene and Performance on a Test of Prefrontal Cognition. Am. J. Psychiatry 2002, 159, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.P.; Keefe, R.S.E.; Skelly, T.; Olarte, M.; Leviel, K.; Lange, L.A.; Lange, E.M.; Stroup, T.S.; Lieberman, J.; Sullivan, P.F. AKT1 and neurocognition in schizophrenia. Aust. N. Z. J. Psychiatry 2007, 41, 169–177. [Google Scholar] [CrossRef]
- Huang, C.H.; Pei, J.C.; Luo, D.Z.; Chen, C.; Chen, Y.W.; Lai, W.S. Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia. Front. Behav. Neurosci. 2015, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, T.T.T.; Yang, F.; Chen, B.S.; Lu, Y.; Ji, Y.; Roche, K.W.; Lu, B. Dysbindin regulates hippocampal LTP by controlling NMDA receptor surface expression. Proc. Natl. Acad. Sci. USA 2009, 106, 21395–21400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shammari, A.R.; Bhardwaj, S.K.; Musaelyan, K.; Srivastava, L.K.; Szele, F.G. Schizophrenia-related dysbindin-1 gene is required for innate immune response and homeostasis in the developing subventricular zone. npj Schizophr. 2018, 4, 15. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Guo, D.; Zhang, L.; Yu, H.; Liu, Q.; Su, X.; Shao, M.; Song, M.; Zhang, Y.; et al. Association of DTNBP1 With Schizophrenia: Findings from Two Independent Samples of Han Chinese Population. Front. Psychiatry 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.P.; Burdick, K.E.; Lencz, T.; Malhotra, A.K. Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biol. Psychiatry 2010, 68, 1126–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tropea, D.; Hardingham, N.; Millar, K.; Fox, K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J. Physiol. 2018, 596, 2747–2771. [Google Scholar] [CrossRef] [Green Version]
- Teng, S.; Thomson, P.A.; McCarthy, S.; Kramer, M.; Muller, S.; Lihm, J.; Morris, S.; Soares, D.C.; Hennah, W.; Harris, S.; et al. Rare disruptive variants in the DISC1 Interactome and Regulome: Association with cognitive ability and schizophrenia. Mol. Psychiatry 2018, 23, 1270–1277. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, H.Y. Update on typical and atypical antipsychotic drugs. Annu. Rev. Med. 2013, 64, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, H.Y.; Matsubara, S.; Lee, J.C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J. Pharmacol. Exp. Ther. 1989, 251, 238–246. [Google Scholar] [PubMed]
- Gray, J.A.; Roth, B.L. Molecular Targets for Treating Cognitive Dysfunction in Schizophrenia. Schizophr. Bull. 2007, 33, 1100–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, R.E.; Levander, S.; Kjaersdam Telléus, G.; Jensen, S.O.W.; Østergaard Christensen, T.; Leucht, S. Second-generation antipsychotic effect on cognition in patients with schizophrenia—A meta-analysis of randomized clinical trials. Acta Psychiatr. Scand. 2015, 131, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Désaméricq, G.; Schurhoff, F.; Meary, A.; Szöke, A.; Macquin-Mavier, I.; Bachoud-Lévi, A.C.; Maison, P. Long-term neurocognitive effects of antipsychotics in schizophrenia: A network meta-analysis. Eur. J. Clin. Pharmacol. 2014, 70, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Baldez, D.P.; Biazus, T.B.; Rabelo-da-Ponte, F.D.; Nogaro, G.P.; Martins, D.S.; Kunz, M.; Czepielewski, L.S. The effect of antipsychotics on the cognitive performance of individuals with psychotic disorders: Network meta-analyses of randomized controlled trials. Neurosci. Biobehav. Rev. 2021, 126, 265–275. [Google Scholar] [CrossRef]
- De la Fuente Revenga, M.; Ibi, D.; Saunders, J.M.; Cuddy, T.; Ijaz, M.K.; Toneatti, R.; Kurita, M.; Holloway, T.; Shen, L.; Seto, J.; et al. HDAC2-dependent Antipsychotic-like Effects of Chronic Treatment with the HDAC Inhibitor SAHA in Mice. Neuroscience 2018, 388, 102–117. [Google Scholar] [CrossRef]
- Ibi, D.; de la Fuente Revenga, M.; Kezunovic, N.; Muguruza, C.; Saunders, J.M.; Gaitonde, S.A.; Moreno, J.L.; Ijaz, M.K.; Santosh, V.; Kozlenkov, A.; et al. Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nat. Neurosci. 2017, 20, 1247–1259. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Piątkowska-Janko, E.; Bogorodzki, P.; Gębski, P.; Grancow-Grabka, M.; Trafalska, E.; Żurner, N.; Pawełczyk, A. Omega-3 fatty acid supplementation may prevent loss of gray matter thickness in the left parieto-occipital cortex in first episode schizophrenia: A secondary outcome analysis of the OFFER randomized controlled study. Schizophr. Res. 2018, 195, 168–175. [Google Scholar] [CrossRef]
- Conus, P.; Seidman, L.J.; Fournier, M.; Xin, L.; Cleusix, M.; Baumann, P.S.; Ferrari, C.; Cousins, A.; Alameda, L.; Gholam-Rezaee, M.; et al. N-acetylcysteine in a double-blind randomized placebo-controlled trial: Toward biomarker-guided treatment in early psychosis. Schizophr. Bull. 2018, 44, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zheng, H.; Wu, R.; Kosten, T.R.; Zhang, X.-Y.; Zhao, J. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr. Res. 2019, 212, 92–98. [Google Scholar] [CrossRef]
- Liu, F.; Guo, X.; Wu, R.; Ou, J.; Zheng, Y.; Zhang, B.; Xie, L.; Zhang, L.; Yang, L.; Yang, S.; et al. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: A double blind, randomized, controlled trial. Schizophr. Res. 2014, 153, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, T.; Matsui, M.; Yamashita, I.; Nohara, S.; Uehara, T.; Kurachi, M.; Meltzer, H.Y. Effect of adjunctive treatment with serotonin-1A agonist tandospirone on memory functions in schizophrenia. J. Clin. Psychopharmacol. 2000, 20, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Cai, D.-B.; Zhang, Q.-E.; He, J.; Zhong, L.-Y.; Sim, K.; Ungvari, G.S.; Ning, Y.-P.; Xiang, Y.-T. Adjunctive ondansetron for schizophrenia: A systematic review and meta-analysis of randomized controlled trials. J. Psychiatr. Res. 2019, 113, 27–33. [Google Scholar] [CrossRef]
- Xia, L.; Liu, L.; Hong, X.; Wang, D.; Wei, G.; Wang, J.; Zhou, H.; Xu, H.; Tian, Y.; Dai, Q.; et al. One-day tropisetron treatment improves cognitive deficits and P50 inhibition deficits in schizophrenia. Neuropsychopharmacology 2020, 45, 1362–1368. [Google Scholar] [CrossRef]
- Morozova, M.A.; Lepilkina, T.A.; Rupchev, G.E.; Beniashvily, A.G.; Burminskiy, D.S.; Potanin, S.S.; Bondarenko, E.V.; Kazey, V.I.; Lavrovsky, Y.; Ivachtchenko, A.V. Add-on clinical effects of selective antagonist of 5HT6 receptors AVN-211 (CD-008-0173) in patients with schizophrenia stabilized on antipsychotic treatment: Pilot study. CNS Spectr. 2014, 19, 316–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozova, M.; Burminskiy, D.; Rupchev, G.; Lepilkina, T.; Potanin, S.; Beniashvili, A.; Lavrovsky, Y.; Vostokova, N.; Ivaschenko, A. 5-HT6 Receptor Antagonist as an Adjunct Treatment Targeting Residual Symptoms in Patients with Schizophrenia. J. Clin. Psychopharmacol. 2017, 37, 169–175. [Google Scholar] [CrossRef]
- Fond, G.; Berna, F.; Boyer, L.; Godin, O.; Brunel, L.; Andrianarisoa, M.; Aouizerate, B.; Capdevielle, D.; Chereau, I.; Danion, J.M.; et al. Benzodiazepine long-term administration is associated with impaired attention/working memory in schizophrenia: Results from the national multicentre FACE-SZ data set. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 17–26. [Google Scholar] [CrossRef]
- Geffen, Y.; Keefe, R.; Rabinowitz, J.; Anand, R.; Davidson, M. BL-1020, a New γ-Aminobutyric Acid–Enhanced Antipsychotic. J. Clin. Psychiatry 2012, 73, e1168–e1174. [Google Scholar] [CrossRef] [PubMed]
- Phase IIb-III Study of BL-1020 Small Molecule for Schizophrenia (CLARITY). Available online: https://clinicaltrials.gov/ct2/show/results/NCT01363349?term=bl-1020&draw=2&rank=3 (accessed on 18 March 2021).
- Haig, G.M.; Bain, E.; Robieson, W.; Othman, A.A.; Baker, J.; Lenz, R.A. A randomized trial of the efficacy and safety of the H3 antagonist ABT-288 in cognitive impairment associated with schizophrenia. Schizophr. Bull. 2014, 40, 1433–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanzer, T.; Shah, S.; Benson, C.; De Monte, V.; Gore-Jones, V.; Rossell, S.L.; Dark, F.; Kisely, S.; Siskind, D.; Melo, C.D. Varenicline for cognitive impairment in people with schizophrenia: Systematic review and meta-analysis. Psychopharmacology 2020, 237, 11–19. [Google Scholar] [CrossRef]
- Brannan, S. Two global phase III trials of encenicline for cognitive impairment in chronic schizophrenia patients: Red flags and lessons learned. Schizophr. Bull. 2019, 45, S141–S142. [Google Scholar] [CrossRef]
- Haig, G.M.; Wang, D.; Zhao, J.; Othman, A.A.; Bain, E.E. Efficacy and Safety of the α7-Nicotinic Acetylcholine Receptor Agonist ABT-126 in the Treatment of Cognitive Impairment Associated with Schizophrenia. J. Clin. Psychiatry 2018, 79. [Google Scholar] [CrossRef]
- Walling, D.; Marder, S.R.; Kane, J.; Fleischhacker, W.W.; Keefe, R.S.E.; Hosford, D.A.; Dvergsten, C.; Segreti, A.C.; Beaver, J.S.; Toler, S.M.; et al. Phase 2 Trial of an Alpha-7 Nicotinic Receptor Agonist (TC-5619) in Negative and Cognitive Symptoms of Schizophrenia. Schizophr. Bull. 2016, 42, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, A.; Potter, W.Z.; Lightfoot, J.; Lienemann, J.; Dubé, S.; Mallinckrodt, C.; Bymaster, F.P.; McKinzie, D.L.; Felder, C.C. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry 2008, 165, 1033–1039. [Google Scholar] [CrossRef]
- Singh, J.; Kour, K.; Jayaram, M.B. Acetylcholinesterase inhibitors for schizophrenia. Cochrane Database Syst. Rev. 2012, 1, CD007967. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, G.; Baroni, G.; Lorusso, M.; Montemitro, C.; Spano, M.C.; di Giannantonio, M. Efficacy of Memantine in Schizophrenic Patients: A Systematic Review. J. Amino Acids 2017, 2017, 7021071. [Google Scholar] [CrossRef] [Green Version]
- Kantrowitz, J.T.; Nolan, K.A.; Epstein, M.L.; Lehrfeld, N.; Shope, C.; Petkova, E.; Javitt, D.C. Neurophysiological Effects of Bitopertin in Schizophrenia. J. Clin. Psychopharmacol. 2017, 37, 447–451. [Google Scholar] [CrossRef]
- Fleischhacker, W.W.; Podhorna, J.; Gröschl, M.; Hake, S.; Zhao, Y.; Huang, S.; Keefe, R.S.E.; Desch, M.; Brenner, R.; Walling, D.P.; et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: A double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 2021, 8, 191–201. [Google Scholar] [CrossRef]
- Downing, A.M.; Kinon, B.J.; Millen, B.A.; Zhang, L.; Liu, L.; Morozova, M.A.; Brenner, R.; Rayle, T.J.; Nisenbaum, L.; Zhao, F.; et al. A double-blind, placebo-controlled comparator study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry 2014, 14, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, D.C.; Leahy, L.; Berman, I.; Posever, T.; Herz, L.; Leon, A.C.; Johnson, S.A.; Lynch, G. A Placebo-Controlled Pilot Study of the Ampakine CX516 Added to Clozapine in Schizophrenia. J. Clin. Psychopharmacol. 2001, 21, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Marenco, S.; Egan, M.F.; Goldberg, T.E.; Knable, M.B.; McClure, R.K.; Winterer, G.; Weinberger, D.R. Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: A case series. Schizophr. Res. 2002, 57, 221–226. [Google Scholar] [CrossRef]
- Astellas Pharma Global Development. A Phase 2a, Randomized, Double-Blind, Placebo-Controlled, Parallel-group Study to Assess the Safety and Efficacy of ASP4345 as Add-on Treatment for Cognitive Impairment in Subjects with Schizophrenia on Stable Doses of Antipsychotic Medication. Available online: https://astellasclinicalstudyresults.com/study.aspx?ID=404 (accessed on 9 August 2021).
- Ortiz-Orendain, J.; Covarrubias-Castillo, S.A.; Vazquez-Alvarez, A.O.; Castiello-de Obeso, S.; Arias Quiñones, G.E.; Seegers, M.; Colunga-Lozano, L.E. Modafinil for people with schizophrenia or related disorders. Cochrane Database Syst. Rev. 2019, 12, CD008661. [Google Scholar] [CrossRef]
- Vernon, J.A.; Grudnikoff, E.; Seidman, A.J.; Frazier, T.W.; Vemulapalli, M.S.; Pareek, P.; Goldberg, T.E.; Kane, J.M.; Correll, C.U. Antidepressants for cognitive impairment in schizophrenia—A systematic review and meta-analysis. Schizophr. Res. 2014, 159, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Gilleen, J.; Farah, Y.; Davison, C.; Kerins, S.; Valdearenas, L.; Uz, T.; Lahu, G.; Tsai, M.; Ogrinc, F.; Reichenberg, A.; et al. An experimental medicine study of the phosphodiesterase-4 inhibitor, roflumilast, on working memory-related brain activity and episodic memory in schizophrenia patients. Psychopharmacology 2018. [Google Scholar] [CrossRef] [Green Version]
- Macek, T.A.; McCue, M.; Dong, X.; Hanson, E.; Goldsmith, P.; Affinito, J.; Mahableshwarkar, A.R. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr. Res. 2019, 204, 289–294. [Google Scholar] [CrossRef]
- Ritsner, M.S.; Gibel, A.; Ratner, Y.; Tsinovoy, G.; Strous, R.D. Improvement of Sustained Attention and Visual and Movement Skills, but Not Clinical Symptoms, after Dehydroepiandrosterone Augmentation in Schizophrenia. J. Clin. Psychopharmacol. 2006, 26, 495–499. [Google Scholar] [CrossRef]
- Ritsner, M.S.; Gibel, A.; Shleifer, T.; Boguslavsky, I.; Zayed, A.; Maayan, R.; Weizman, A.; Lerner, V. Pregnenolone and Dehydroepiandrosterone as an Adjunctive Treatment in Schizophrenia and Schizoaffective Disorder. J. Clin. Psychiatry 2010, 71, 1351–1362. [Google Scholar] [CrossRef]
- Weickert, T.W.; Weinberg, D.; Lenroot, R.; Catts, S.V.; Wells, R.; Vercammen, A.; O’Donnell, M.; Galletly, C.; Liu, D.; Balzan, R.; et al. Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia. Mol. Psychiatry 2015, 20, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurvich, C.; Hudaib, A.; Gavrilidis, E.; Worsley, R.; Thomas, N.; Kulkarni, J. Raloxifene as a treatment for cognition in women with schizophrenia: The influence of menopause status. Psychoneuroendocrinology 2019, 100, 113–119. [Google Scholar] [CrossRef]
- Weiser, M.; Levi, L.; Burshtein, S.; Hagin, M.; Matei, V.P.; Podea, D.; Micluția, I.; Tiugan, A.; Păcală, B.; Grecu, I.G.; et al. Raloxifene Plus Antipsychotics Versus Placebo Plus Antipsychotics in Severely Ill Decompensated Postmenopausal Women with Schizophrenia or Schizoaffective Disorder. J. Clin. Psychiatry 2017, 78, e758–e765. [Google Scholar] [CrossRef] [PubMed]
- Marx, C.E.; Keefe, R.S.E.; Buchanan, R.W.; Hamer, R.M.; Kilts, J.D.; Bradford, D.W.; Strauss, J.L.; Naylor, J.C.; Payne, V.M.; Lieberman, J.A.; et al. Proof-of-Concept Trial with the Neurosteroid Pregnenolone Targeting Cognitive and Negative Symptoms in Schizophrenia. Neuropsychopharmacology 2009, 34, 1885–1903. [Google Scholar] [CrossRef]
- Marx, C.E.; Lee, J.; Subramaniam, M.; Rapisarda, A.; Bautista, D.C.T.; Chan, E.; Kilts, J.D.; Buchanan, R.W.; Wai, E.P.; Verma, S.; et al. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology 2014, 231, 3647–3662. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.V.S.; Dean, O.; Andreazza, A.C.; Berk, M.; Kapczinski, F. Antioxidant treatments for schizophrenia. Cochrane Database Syst. Rev. 2016, 2, CD008919. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.-F.; Zhang, W.; Bao, X.-F.; Wang, W.; Song, L.; Jiang, B. GM1 ganglioside reverses the cognitive deficits induced by MK801 in mice. Behav. Pharmacol. 2016, 27, 451–459. [Google Scholar] [CrossRef]
- Pitsikas, N. The role of nitric oxide donors in schizophrenia: Basic studies and clinical applications. Eur. J. Pharmacol. 2015, 766, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Merritt, K.; Catalan, A.; Cowley, S.; Demjaha, A.; Taylor, M.; McGuire, P.; Cooper, R.; Morrison, P. Glyceryl trinitrate in first-episode psychosis unmedicated with antipsychotics: A randomised controlled pilot study. J. Psychopharmacol. 2020, 34, 839–847. [Google Scholar] [CrossRef]
- Yolland, C.O.B.; Phillipou, A.; Castle, D.J.; Neill, E.; Hughes, M.E.; Galletly, C.; Smith, Z.M.; Francis, P.S.; Dean, O.M.; Sarris, J.; et al. Improvement of cognitive function in schizophrenia with N-acetylcysteine: A theoretical review. Nutr. Neurosci. 2020, 23, 139–148. [Google Scholar] [CrossRef]
- Rapado-Castro, M.; Dodd, S.; Bush, A.I.; Malhi, G.S.; Skvarc, D.R.; On, Z.X.; Berk, M.; Dean, O.M. Cognitive effects of adjunctive N -acetyl cysteine in psychosis. Psychol. Med. 2017, 47, 866–876. [Google Scholar] [CrossRef]
- Ben-Azu, B.; Omogbiya, I.A.; Aderibigbe, A.O.; Umukoro, S.; Ajayi, A.M.; Iwalewa, E.O. Doxycycline prevents and reverses schizophrenic-like behaviors induced by ketamine in mice via modulation of oxidative, nitrergic and cholinergic pathways. Brain Res. Bull. 2018, 139, 114–124. [Google Scholar] [CrossRef]
- Kurita, M.; Holloway, T.; González-Maeso, J. HDAC2 as a new target to improve schizophrenia treatment. Expert Rev. Neurother. 2013, 13, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Hai, D.; Shi, S.; Luo, H. The therapeutic effect of quetiapine on cognitive impairment associated with 5-HT1A presynaptic receptor involved schizophrenia. J. Integr. Neurosci. 2019, 18, 245. [Google Scholar] [CrossRef]
- Casey, A.B.; Canal, C.E. Classics in Chemical Neuroscience: Aripiprazole. ACS Chem. Neurosci. 2017, 8, 1135–1146. [Google Scholar] [CrossRef]
- Meller, E.; Goldstein, M.; Bohmaker, K. Receptor reserve for 5-hydroxytryptamine1A-mediated inhibition of serotonin synthesis: Possible relationship to anxiolytic properties of 5-hydroxytryptamine1A agonists. Mol. Pharmacol. 1990, 37, 231–237. [Google Scholar] [PubMed]
- Sumiyoshi, T.; Matsui, M.; Nohara, S.; Yamashita, I.; Kurachi, M.; Sumiyoshi, C.; Jayathilake, K.; Meltzer, H.Y. Enhancement of Cognitive Performance in Schizophrenia by Addition of Tandospirone to Neuroleptic Treatment. Am. J. Psychiatry 2001, 158, 1722–1725. [Google Scholar] [CrossRef] [PubMed]
- Rënyi, L.; Evenden, J.L.; Fowler, C.J.; Jerning, E.; Kelder, D.; Lake-Bakaar, D.; Larsson, L.G.; Mohell, N.; Sällemark, M.; Ross, S.B. The pharmacological profile of (R)-3,4-dihydro-N-isopropyl-3-(N-isopropyl-N-propylamino)-2H-1-benzopyran-5-carboxamide, a selective 5-hydroxytryptamine(1A) receptor agonist. J. Pharmacol. Exp. Ther. 2001, 299, 883–893. [Google Scholar] [PubMed]
- Poddar, I.; Callahan, P.M.; Hernandez, C.M.; Yang, X.; Bartlett, M.G.; Terry, A.V. Tropisetron enhances recognition memory in rats chronically treated with risperidone or quetiapine. Biochem. Pharmacol. 2018, 151, 180–187. [Google Scholar] [CrossRef]
- Nikiforuk, A. The procognitive effects of 5-HT6 receptor ligands in animal models of schizophrenia. Rev. Neurosci. 2014, 25. [Google Scholar] [CrossRef]
- Ivachtchenko, A.V.; Okun, I.; Aladinskiy, V.; Ivanenkov, Y.; Koryakova, A.; Karapetyan, R.; Mitkin, O.; Salimov, R.; Ivashchenko, A.; Bezprozvanny, I. AVN-492, A Novel Highly Selective 5-HT6R Antagonist: Preclinical Evaluation. J. Alzheimer’s Dis. 2017, 58, 1043–1063. [Google Scholar] [CrossRef]
- Zareifopoulos, N.; Papatheodoropoulos, C. Effects of 5-HT-7 receptor ligands on memory and cognition. Neurobiol. Learn. Mem. 2016, 136, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Ohmura, Y.; Yoshida, T.; Konno, K.; Minami, M.; Watanabe, M.; Yoshioka, M. Serotonin 5-HT 7 Receptor in the Ventral Hippocampus Modulates the Retrieval of Fear Memory and Stress-Induced Defecation. Int. J. Neuropsychopharmacol. 2015, 19, pyv131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, Y.; Wang, C.; Zhang, X.; Wang, Z.; Liang, X.; Alachkar, A.; Civelli, O. A Natural Product with High Affinity to Sigma and 5-HT7 Receptors as Novel Therapeutic Drug for Negative and Cognitive Symptoms of Schizophrenia. Neurochem. Res. 2019, 44, 2536–2545. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Kos, T.; Fijał, K.; Hołuj, M.; Rafa, D.; Popik, P. Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats. PLoS ONE 2013, 8, e66695. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, L.; Massey, B.W.; Michael, E.; Meltzer, H.Y. Serotonin (5-HT)1A receptor agonism and 5-HT7 receptor antagonism ameliorate the subchronic phencyclidine-induced deficit in executive functioning in mice. Psychopharmacology 2016, 233, 649–660. [Google Scholar] [CrossRef]
- Nikiforuk, A.; Hołuj, M.; Kos, T.; Popik, P. The effects of a 5-HT 5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. Neuropharmacology 2016, 105, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Harada, K.; Yamamoto, N.; Yarimizu, J.; Okabe, M.; Shimada, T.; Ni, K.; Matsuoka, N. ASP5736, a novel 5-HT5A receptor antagonist, ameliorates positive symptoms and cognitive impairment in animal models of schizophrenia. Eur. Neuropsychopharmacol. 2014, 24, 1698–1708. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, M.; Yamamoto, N.; Yarimizu, J.; Okabe, M.; Moriyama, A.; Furutani, M.; Marcus, M.M.; Svensson, T.H.; Harada, K. Functional mechanism of ASP5736, a selective serotonin 5-HT5A receptor antagonist with potential utility for the treatment of cognitive dysfunction in schizophrenia. Eur. Neuropsychopharmacol. 2018, 28, 620–629. [Google Scholar] [CrossRef]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021, 184, 1299–1313.e19. [Google Scholar] [CrossRef]
- Timić Stamenić, T.; Joksimović, S.; Biawat, P.; Stanković, T.; Marković, B.; Cook, J.M.; Savić, M.M. Negative modulation of α 5 GABA A receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion. J. Psychopharmacol. 2015, 29, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Takuma, K.; Mizoguchi, H.; Ibi, D.; Nagai, T.; Kamei, H.; Kim, H.-C.; Yamada, K. GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice. Eur. J. Pharmacol. 2009, 602, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Nudelman, A.; Gil-Ad, I.; Shpaisman, N.; Terasenko, I.; Ron, H.; Savitsky, K.; Geffen, Y.; Weizman, A.; Rephaeli, A. A Mutual Prodrug Ester of GABA and Perphenazine Exhibits Antischizophrenic Efficacy with Diminished Extrapyramidal Effects. J. Med. Chem. 2008, 51, 2858–2862. [Google Scholar] [CrossRef]
- Geffen, Y.; Nudelman, A.; Gil-Ad, I.; Rephaeli, A.; Huang, M.; Savitsky, K.; Klapper, L.; Winkler, I.; Meltzer, H.Y.; Weizman, A. BL-1020: A novel antipsychotic drug with GABAergic activity and low catalepsy, is efficacious in a rat model of schizophrenia. Eur. Neuropsychopharmacol. 2009, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sadek, B.; Saad, A.; Sadeq, A.; Jalal, F.; Stark, H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav. Brain Res. 2016, 312, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Nirogi, R.; Grandhi, V.R.; Medapati, R.B.; Ganuga, N.; Benade, V.; Gandipudi, S.; Manoharan, A.; Abraham, R.; Jayarajan, P.; Bhyrapuneni, G.; et al. Histamine 3 receptor inverse agonist Samelisant (SUVN-G3031): Pharmacological characterization of an investigational agent for the treatment of cognitive disorders. J. Psychopharmacol. 2021, 35, 713–729. [Google Scholar] [CrossRef]
- Sagud, M.; Mihaljevic, A.; Pivac, N. Smoking in schizophrenia: Recent findings about an old problem. Curr. Opin. Psychiatry 2019, 32, 402–408. [Google Scholar] [CrossRef]
- Boggs, D.L.; Carlson, J.; Cortes-Briones, J.; Krystal, J.H.; D’Souza, D.C. Going up in smoke? A review of nAChRs-based treatment strategies for improving cognition in schizophrenia. Curr. Pharm. Des. 2014, 20, 5077–5092. [Google Scholar] [CrossRef] [Green Version]
- AhnAllen, C.G.; Bidwell, L.C.; Tidey, J.W. Cognitive effects of very low nicotine content cigarettes, with and without nicotine replacement, in smokers with schizophrenia and controls. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2015, 17, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, M.K.; Goel, R.N.; Bokare, A.M.; Dandekar, M.P.; Koul, S.; Desai, S.; Tota, S.; Singh, N.; Nigade, P.B.; Patil, V.B.; et al. LL-00066471, a novel positive allosteric modulator of α7 nicotinic acetylcholine receptor ameliorates cognitive and sensorimotor gating deficits in animal models: Discovery and preclinical characterization. Eur. J. Pharmacol. 2021, 891, 173685. [Google Scholar] [CrossRef]
- Bristow, L.J.; Easton, A.E.; Li, Y.-W.; Sivarao, D.V.; Lidge, R.; Jones, K.M.; Post-Munson, D.; Daly, C.; Lodge, N.J.; Gallagher, L.; et al. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia. PLoS ONE 2016, 11, e0159996. [Google Scholar] [CrossRef]
- Beinat, C.; Banister, S.D.; Herrera, M.; Law, V.; Kassiou, M. The Therapeutic Potential of α7 Nicotinic Acetylcholine Receptor (α7 nAChR) Agonists for the Treatment of the Cognitive Deficits Associated with Schizophrenia. CNS Drugs 2015, 29, 529–542. [Google Scholar] [CrossRef]
- Stoiljkovic, M.; Kelley, C.; Nagy, D.; Leventhal, L.; Hajós, M. Selective activation of α7 nicotinic acetylcholine receptors augments hippocampal oscillations. Neuropharmacology 2016, 110, 102–108. [Google Scholar] [CrossRef]
- Huang, M.; Felix, A.R.; Flood, D.G.; Bhuvaneswaran, C.; Hilt, D.; Koenig, G.; Meltzer, H.Y. The novel α7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology 2014, 231, 4541–4551. [Google Scholar] [CrossRef]
- Smith, R.C.; Amiaz, R.; Si, T.-M.; Maayan, L.; Jin, H.; Boules, S.; Sershen, H.; Li, C.; Ren, J.; Liu, Y.; et al. Varenicline Effects on Smoking, Cognition, and Psychiatric Symptoms in Schizophrenia: A Double-Blind Randomized Trial. PLoS ONE 2016, 11, e0143490. [Google Scholar] [CrossRef] [Green Version]
- Potasiewicz, A.; Golebiowska, J.; Popik, P.; Nikiforuk, A. Procognitive effects of varenicline in the animal model of schizophrenia depend on α4β2- and α 7-nicotinic acetylcholine receptors. J. Psychopharmacol. 2018, 33, 269881118812097. [Google Scholar] [CrossRef]
- Terry, A.V.J.; Plagenhoef, M.; Callahan, P.M. Effects of the nicotinic agonist varenicline on the performance of tasks of cognition in aged and middle-aged rhesus and pigtail monkeys. Psychopharmacology 2016, 233, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Rook, J.M.; Bertron, J.L.; Cho, H.P.; Garcia-Barrantes, P.M.; Moran, S.P.; Maksymetz, J.T.; Nance, K.D.; Dickerson, J.W.; Remke, D.H.; Chang, S.; et al. A Novel M(1) PAM VU0486846 Exerts Efficacy in Cognition Models without Displaying Agonist Activity or Cholinergic Toxicity. ACS Chem. Neurosci. 2018, 9, 2274–2285. [Google Scholar] [CrossRef] [PubMed]
- Popiolek, M.; Mandelblat-Cerf, Y.; Young, D.; Garst-Orozco, J.; Lotarski, S.M.; Stark, E.; Kramer, M.; Butler, C.R.; Kozak, R. In Vivo Modulation of Hippocampal Excitability by M4 Muscarinic Acetylcholine Receptor Activator: Implications for Treatment of Alzheimer’s Disease and Schizophrenic Patients. ACS Chem. Neurosci. 2019, 10, 1091–1098. [Google Scholar] [CrossRef]
- Montani, C.; Canella, C.; Schwarz, A.J.; Li, J.; Gilmour, G.; Galbusera, A.; Wafford, K.; Gutierrez-Barragan, D.; McCarthy, A.; Shaw, D.; et al. The M1/M4 preferring muscarinic agonist xanomeline modulates functional connectivity and NMDAR antagonist-induced changes in the mouse brain. Neuropsychopharmacology 2021, 46, 1194–1206. [Google Scholar] [CrossRef]
- Conley, R.R.; Boggs, D.L.; Kelly, D.L.; McMahon, R.P.; Dickinson, D.; Feldman, S.; Ball, M.P.; Buchanan, R.W. The Effects of Galantamine on Psychopathology in Chronic Stable Schizophrenia. Clin. Neuropharmacol. 2009, 32, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zhang, Z.; Qi, J.; Liu, F.; Chen, J.; Zhao, J.; Guo, X. Adjunctive treatment for cognitive impairment in patients with chronic schizophrenia: A double-blind, placebo-controlled study. Neuropsychiatr. Dis. Treat. 2014, 10, 1317–1323. [Google Scholar] [CrossRef] [Green Version]
- Koola, M.M.; Buchanan, R.W.; Pillai, A.; Aitchison, K.J.; Weinberger, D.R.; Aaronson, S.T.; Dickerson, F.B. Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia. Schizophr. Res. 2014, 157, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Koola, M.M. Potential Role of Antipsychotic-Galantamine-Memantine Combination in the Treatment of Positive, Cognitive, and Negative Symptoms of Schizophrenia. Mol. Neuropsychiatry 2018, 4, 134–148. [Google Scholar] [CrossRef]
- Gawai, P.; Upadhyay, R.; Gakare, S.G.; Sarode, L.; Dravid, S.M.; Ugale, R.R. Antipsychotic-like profile of CIQ isomers in animal models of schizophrenia. Behav. Pharmacol. 2020, 31, 524–534. [Google Scholar] [CrossRef]
- Okada, M.; Fukuyama, K.; Kawano, Y.; Shiroyama, T.; Ueda, Y. Memantine protects thalamocortical hyper-glutamatergic transmission induced by NMDA receptor antagonism via activation of system xc. Pharmacol. Res. Perspect. 2019, 7, e00457. [Google Scholar] [CrossRef] [Green Version]
- Javitt, D.C. Glycine transport inhibitors for the treatment of schizophrenia: Symptom and disease modification. Curr. Opin. Drug Discov. Develop. 2009, 12, 468–478. [Google Scholar]
- Fone, K.C.F.; Watson, D.J.G.; Billiras, R.I.; Sicard, D.I.; Dekeyne, A.; Rivet, J.-M.; Gobert, A.; Millan, M.J. Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management. Mol. Neurobiol. 2020, 57, 2144–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, D.C. D-cycloserine in Schizophrenia: New Strategies for Improving Clinical Outcomes by Enhancing Plasticity. Curr. Neuropharmacol. 2017, 15, 21–34. [Google Scholar] [CrossRef]
- Mateo, Z.; Porter, J.T. Group II metabotropic glutamate receptors inhibit glutamate release at thalamocortical synapses in the developing somatosensory cortex. Neuroscience 2007, 146, 1062–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lins, B.R.; Howland, J.G. Effects of the metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on rats tested with the paired associates learning task in touchscreen-equipped operant conditioning chambers. Behav. Brain Res. 2016, 301, 152–160. [Google Scholar] [CrossRef]
- Sokolenko, E.; Hudson, M.R.; Nithianantharajah, J.; Jones, N.C. The mGluR(2/3) agonist LY379268 reverses NMDA receptor antagonist effects on cortical gamma oscillations and phase coherence, but not working memory impairments, in mice. J. Psychopharmacol. 2019, 33, 1588–1599. [Google Scholar] [CrossRef]
- Clifton, N.E.; Morisot, N.; Girardon, S.; Millan, M.J.; Loiseau, F. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: Adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine. Psychopharmacology 2013, 225, 579–594. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.; Han, G.; Wang, M.-J.; Snyder, M.A.; Gao, W.-J. Juvenile treatment with mGluR2/3 agonist prevents schizophrenia-like phenotypes in adult by acting through GSK3β. Neuropharmacology 2018, 137, 359–371. [Google Scholar] [CrossRef]
- Cieślik, P.; Radulska, A.; Pelikant-Małecka, I.; Płoska, A.; Kalinowski, L.; Wierońska, J.M. Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice. Int. J. Mol. Sci. 2019, 20, 2781. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Plotkin, J.L.; Francardo, V.; Ko, W.K.D.; Xie, Z.; Li, Q.; Fieblinger, T.; Wess, J.; Neubig, R.R.; Lindsley, C.W.; et al. M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron 2015, 88, 762–773. [Google Scholar] [CrossRef] [Green Version]
- Chater, T.E.; Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. 2014, 8. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Wang, Y.; Shekhar, M.; Tajkhorshid, E.; Gouaux, E. Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Cell 2017, 170, 1234–1246.e14. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Balabhadrapatruni, S.; Masumura, C.; Darlington, L.C.; Smith, P.F. Effects of the Putative Cognitive-Enhancing Ampakine, CX717, on Attention and Object Recognition Memory. Curr. Alzheimer Res. 2011, 8, 876–882. [Google Scholar] [CrossRef]
- Bruce, H.A.; Kochunov, P.; Paciga, S.A.; Hyde, C.L.; Chen, X.; Xie, Z.; Zhang, B.; Xi, H.S.; O’Donnell, P.; Whelan, C.; et al. Potassium channel gene associations with joint processing speed and white matter impairments in schizophrenia. Genes Brain Behav. 2017, 16, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Kozak, R.; Kiss, T.; Dlugolenski, K.; Johnson, D.E.; Gorczyca, R.R.; Kuszpit, K.; Harvey, B.D.; Stolyar, P.; Sukoff Rizzo, S.J.; Hoffmann, W.E.; et al. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front. Pharmacol. 2020, 11, 1005. [Google Scholar] [CrossRef]
- Tanyeri, P.; Buyukokuroglu, M.E.; Mutlu, O.; Ulak, G.; Akar, F.Y.; Celikyurt, I.K.; Erden, B.F. Effects of ziprasidone, SCH23390 and SB277011 on spatial memory in the Morris water maze test in naive and MK-801 treated mice. Pharmacol. Biochem. Behav. 2015, 138, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Zahrt, J.; Taylor, J.R.; Mathew, R.G.; Arnsten, A.F.T. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J. Neurosci. 1997, 17, 8528–8535. [Google Scholar] [CrossRef] [Green Version]
- Svensson, K.A.; Hao, J.; Bruns, R.F. Chapter Nine—Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. In Neuropsychotherapeutics; Witkin, J.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 86, pp. 273–305. ISBN 1054-3589. [Google Scholar]
- Wilbraham, D.; Biglan, K.M.; Svensson, K.A.; Tsai, M.; Kielbasa, W. Safety, Tolerability, and Pharmacokinetics of Mevidalen (LY3154207), a Centrally Acting Dopamine D1 Receptor-Positive Allosteric Modulator (D1PAM), in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2021, 10, 393–403. [Google Scholar] [CrossRef]
- Hatzipantelis, C.J.; Langiu, M.; Vandekolk, T.H.; Pierce, T.L.; Nithianantharajah, J.; Stewart, G.D.; Langmead, C.J. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol. Transl. Sci. 2020, 3, 1042–1062. [Google Scholar] [CrossRef]
- Huang, M.; Kwon, S.; Oyamada, Y.; Rajagopal, L.; Miyauchi, M.; Meltzer, H.Y. Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement. Pharmacol. Biochem. Behav. 2015, 138, 49–57. [Google Scholar] [CrossRef]
- Mutti, V.; Fiorentini, C.; Missale, C.; Bono, F. Dopamine D3 receptor heteromerization: Implications for neuroplasticity and neuroprotection. Biomolecules 2020, 10, 1016. [Google Scholar] [CrossRef]
- Manvich, D.F.; Petko, A.K.; Branco, R.C.; Foster, S.L.; Porter-Stransky, K.A.; Stout, K.A.; Newman, A.H.; Miller, G.W.; Paladini, C.A.; Weinshenker, D. Selective D2 and D3 receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology 2019, 44, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, S.A.; Laudani, S.; Contarini, G.; De Luca, A.; Geraci, F.; Managò, F.; Papaleo, F.; Salomone, S.; Drago, F.; Leggio, G.M. Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals 2020, 13, 365. [Google Scholar] [CrossRef]
- Minzenberg, M.J.; Carter, C.S. Modafinil: A Review of Neurochemical Actions and Effects on Cognition. Neuropsychopharmacology 2008, 33, 1477–1502. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Rodríguez, E.; Barciela Veras, A.; Barbosa Rocha, N.; Budde, H.; Machado, S. An Overview of the Clinical Uses, Pharmacology, and Safety of Modafinil. ACS Chem. Neurosci. 2018, 9, 151–158. [Google Scholar] [CrossRef]
- Dawson, N.; Thompson, R.J.; McVie, A.; Thomson, D.M.; Morris, B.J.; Pratt, J.A. Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr. Bull. 2012, 38, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Rogóż, Z.; Kamińska, K. The effect of combined treatment with escitalopram and risperidone on the MK-801-induced changes in the object recognition test in mice. Pharmacol. Rep. 2016, 68, 116–120. [Google Scholar] [CrossRef]
- Bruno, A.; Zoccali, R.; Bellinghieri, P.M.; Pandolfo, G.; De Fazio, P.; Spina, E.; Muscatello, M.R.A. Reboxetine adjuvant therapy in patients with schizophrenia showing a suboptimal response to clozapine: A 12-week, open-label, pilot study. J. Clin. Psychopharmacol. 2014, 34, 620–623. [Google Scholar] [CrossRef]
- Bymaster, F.P.; Perry, K.W.; Tollefson, G.D. Combination Therapy for Treatment of Psychoses. Patent WO1998011897, 26 March 1998. [Google Scholar]
- Al-Nema, M.Y.; Gaurav, A. Phosphodiesterase as a Target for Cognition Enhancement in Schizophrenia. Curr. Top. Med. Chem. 2020, 20, 2404–2421. [Google Scholar] [CrossRef]
- Duinen, M.; Reneerkens, O.; Lambrecht, L.; Sambeth, A.; Rutten, B.; Os, J.; Blokland, A.; Prickaerts, J. Treatment of Cognitive Impairment in Schizophrenia: Potential Value of Phosphodiesterase Inhibitors in Prefrontal Dysfunction. Curr. Pharm. Des. 2015, 21, 3813–3828. [Google Scholar] [CrossRef]
- Snyder, G.L.; Vanover, K.E. PDE Inhibitors for the Treatment of Schizophrenia. Adv. Neurobiol. 2017, 17, 385–409. [Google Scholar] [CrossRef]
- Enomoto, T.; Tatara, A.; Goda, M.; Nishizato, Y.; Nishigori, K.; Kitamura, A.; Kamada, M.; Taga, S.; Hashimoto, T.; Ikeda, K.; et al. A novel phosphodiesterase 1 inhibitor DSR-141562 exhibits efficacies in animal models for positive, negative, and cognitive symptoms associated with schizophrenia. J. Pharmacol. Exp. Ther. 2019, 371, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.I.; Abdel-Sattar, S.A.; Zaky, H.S. Vinpocetine halts ketamine-induced schizophrenia-like deficits in rats: Impact on BDNF and GSK-3β/β-catenin pathway. Naunyn. Schmiedebergs. Arch. Pharmacol. 2018, 391, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.J.; O’Callaghan, J.P.; Miller, D.B.; Chalgeri, S.; Wennogle, L.P.; Davis, R.E.; Snyder, G.L.; Hendrick, J.P. Inhibition of calcium-calmodulin-dependent phosphodiesterase (PDE1) suppresses inflammatory responses. Mol. Cell. Neurosci. 2020, 102, 103449. [Google Scholar] [CrossRef] [PubMed]
- Millar, K.J.; Mackie, S.; Clapcote, S.J.; Murdoch, H.; Pickard, B.S.; Christie, S.; Muir, W.J.; Blackwood, D.H.; Roder, J.C.; Houslay, M.D.; et al. Disrupted in schizophrenia 1 and phosphodiesterase 4B: Towards an understanding of psychiatric illness. J. Physiol. 2007, 584, 401–405. [Google Scholar] [CrossRef]
- Gilleen, J.; Nottage, J.; Yakub, F.; Kerins, S.; Valdearenas, L.; Uz, T.; Lahu, G.; Tsai, M.; Ogrinc, F.; Williams, S.C.; et al. The effects of roflumilast, a phosphodiesterase type-4 inhibitor, on EEG biomarkers in schizophrenia: A randomised controlled trial. J. Psychopharmacol. 2021, 35, 15–22. [Google Scholar] [CrossRef]
- Zagorska, A.; Partyka, A.; Bucki, A.; Gawalskax, A.; Czopek, A.; Pawlowski, M. Phosphodiesterase 10 Inhibitors—Novel Perspectives for Psychiatric and Neurodegenerative Drug Discovery. Curr. Med. Chem. 2018, 25, 3455–3481. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Uslaner, J.M.; Cox, C.D.; Huszar, S.L.; Cannon, C.E.; Vardigan, J.D.; Eddins, D.; Toolan, D.M.; Kandebo, M.; Yao, L.; et al. The novel phosphodiesterase 10A inhibitor THPP-1 has antipsychotic-like effects in rat and improves cognition in rat and rhesus monkey. Neuropharmacology 2013, 64, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Takakuwa, M.; Watanabe, Y.; Saijo, T.; Murata, M.; Anabuki, J.; Tezuka, T.; Sato, S.; Kojima, K.; Hashimoto, K. Antipsychotic-like effects of a novel phosphodiesterase 10A inhibitor MT-3014 in rats. Pharmacol. Biochem. Behav. 2020, 196, 172972. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun-Todd, D.A.; Renshaw, P.F.; Goldsmith, P.; Uz, T.; Macek, T.A. A randomized, placebo-controlled, phase 1 study to evaluate the effects of TAK-063 on ketamine-induced changes in fMRI BOLD signal in healthy subjects. Psychopharmacology 2020, 237, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Bradley, A.J.; Dinan, T.G. A systematic review of hypothalamic-pituitary-adrenal axis function in schizophrenia: Implications for mortality. J. Psychopharmacol. 2010, 24, 91–118. [Google Scholar] [CrossRef] [PubMed]
- Pitsikas, N.; Zoupa, E.; Gravanis, A. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts cognitive deficits induced by the D1/D2 dopaminergic receptor agonist apomorphine in rats. Psychopharmacology 2021, 238, 227–237. [Google Scholar] [CrossRef]
- Soria, V.; González-Rodríguez, A.; Huerta-Ramos, E.; Usall, J.; Cobo, J.; Bioque, M.; Barbero, J.D.; García-Rizo, C.; Tost, M.; Monreal, J.A.; et al. Targeting hypothalamic-pituitary-adrenal axis hormones and sex steroids for improving cognition in major mood disorders and schizophrenia: A systematic review and narrative synthesis. Psychoneuroendocrinology 2018, 93, 8–19. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Haque, A.; Banik, N.L.; Nagarkatti, P.; Nagarkatti, M.; Ray, S.K. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res. Bull. 2014, 109, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Bergemann, N.; Parzer, P.; Jaggy, S.; Auler, B.; Mundt, C.; Maier-Braunleder, S. Estrogen and Comprehension of Metaphoric Speech in Women Suffering from Schizophrenia: Results of a Double-Blind, Placebo-Controlled Trial. Schizophr. Bull. 2008, 34, 1172–1181. [Google Scholar] [CrossRef]
- Lobo, R.A. Hormone-replacement therapy: Current thinking. Nat. Rev. Endocrinol. 2017, 13, 220–231. [Google Scholar] [CrossRef]
- Marx, C.E.; Bradford, D.W.; Hamer, R.M.; Naylor, J.C.; Allen, T.B.; Lieberman, J.A.; Strauss, J.L.; Kilts, J.D. Pregnenolone as a novel therapeutic candidate in schizophrenia: Emerging preclinical and clinical evidence. Neuroscience 2011, 191, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Winship, I.R.; Dursun, S.M.; Baker, G.B.; Balista, P.A.; Kandratavicius, L.; Maia-de-Oliveira, J.P.; Hallak, J.; Howland, J.G. An Overview of Animal Models Related to Schizophrenia. Can. J. Psychiatry 2019, 64, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, N.J.; Kapur, S.; Price, J. Investigating schizophrenia in a “dish”: Possibilities, potential and limitations. World Psychiatry 2012, 11, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, M.; Erjavec, G.; Strac, D.; Uzun, S.; Kozumplik, O.; Pivac, N. Theranostic Biomarkers for Schizophrenia. Int. J. Mol. Sci. 2017, 18, 733. [Google Scholar] [CrossRef]
- Dobber, J.; Latour, C.; de Haan, L.; Scholte op Reimer, W.; Peters, R.; Barkhof, E.; van Meijel, B. Medication adherence in patients with schizophrenia: A qualitative study of the patient process in motivational interviewing. BMC Psychiatry 2018, 18, 135. [Google Scholar] [CrossRef] [Green Version]
Mechanism of Action | Drug | Quality of Evidence | Effect Observed | Reference |
---|---|---|---|---|
Antioxidant | PUFAs | Randomized trial | Counteraction of cortical thickness | [90] |
N-acetylcysteine | Randomized double-blind trial | Improvement in cognitive speed | [91] | |
Minocycline | Randomized double-blind trials | Improvement in information processing speed | [92,93] | |
5-HT1A agonism | Tandospirone | Randomized double-blind trial | Improvement in executive function and verbal memory | [94] |
5-HT3 antagonism | Ondansetron | Meta-analysis | Slight improvement in some functions (visual memory) | [95] |
5-HT3 antagonism + α7 nicotinic agonism | Tropisetron | Randomized double-blind trial | Improvement in memory | [96] |
5-HT6 antagonism | AVN-211 | Randomized double-blind trial | Contradictory effects on cognitive domains | [97,98] |
Non-selective GABA receptor agonists | Benzodiazepines | Observational study | Attention and working memory impairment | [99] |
GABA prodrug | BL-1020 | Randomized double-blind trial (Phase 2) | Improvement in a composite score | [100] |
Randomized double-blind trial (Phase 2b-3) | No benefits | [101] | ||
H3 receptor antagonist | ABT-288 | Randomized double-blind trial (Phase 2) | No benefits | [102] |
α7 nicotinic receptor agonist | Varenicline | Meta-analysis | No benefits | [103] |
Encenicline | Randomized double-blind trials (Phase 3) | No benefits | [104] | |
Nelonicline | Randomized double-blind trial (Phase 2b) | No benefits | [105] | |
Bradanicline | Randomized double-blind trial (Phase 2) | No benefits | [106] | |
M1 and M4 muscarinic receptors agonist | Xanomeline | Randomized double-blind trial (pilot study) | Slight improvement in verbal learning and memory function | [107] |
Acetylcholinesterase inhibitor | Galantamine | Meta-analysis | No clear improvement in memory, executive functioning, attention or reaction time | [108] |
NMDA receptor antagonist | Memantine | Systematic review of open label or double-blind trials | No benefits | [109] |
Inhibitors of glycine transporters | Bitopertin | Randomized double-blind trial | No benefits | [110] |
BI425809 | Randomized double-blind trial (Phase 2) | Slight increase in a composite score | [111] | |
Activator of glutamate metabotropic receptors | LY2140023 | Randomized double-blind trial | No benefit | [112] |
Allosteric activator of AMPA receptors | CX-516 | Randomized single-blind trial | Improvement in attention and memory (combined with clozapine) | [113] |
Randomized double-blind trial (4 patients) | No benefit | [114] | ||
D1 receptor positive allosteric modulator (PAM) | ASP4345 | Randomized double-blind trial (Phase 2) | No benefit | [115] |
Dopamine reuptake inhibitor | Modafinil | Systematic review | No benefit | [116] |
Antidepressants | Antidepressants belonging to various classes | Meta-analysis | No clear benefits of the combination of antidepressants and antipsychotics | [117] |
Phosphodiesterase 4 inhibitor | Roflumilast | Randomized double-blind trial | Verbal memory improvement | [118] |
Phosphodiesterase 10 inhibitor | TAK-063 | Randomized double-blind trial (Phase 2) | No benefit | [119] |
Neuroprotective steroid | Dehydroepiandrosterone | Randomized double-blind trial | Slight improvement in attention and visual and movement skills | [120] |
Neuroprotective steroid | Dehydroepiandrosterone | Randomized double-blind trial | No benefit | [121] |
Estrogen agonist in brain | Raloxifene | Randomized double-blind trials | Improvement in verbal memory and other cognitive domains | [122,123] |
Raloxifene | Randomized double-blind trial | No benefit | [124] | |
Progesterone precursor | Pregnenolone | Randomized double-blind trial | Improvement in memory and working attention | [121] |
Randomized double-blind trials | No benefit | [125,126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, A.L.; Brea, J.; Rico, S.; de los Frailes, M.T.; Loza, M.I. Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int. J. Mol. Sci. 2021, 22, 9905. https://doi.org/10.3390/ijms22189905
Martínez AL, Brea J, Rico S, de los Frailes MT, Loza MI. Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. International Journal of Molecular Sciences. 2021; 22(18):9905. https://doi.org/10.3390/ijms22189905
Chicago/Turabian StyleMartínez, Antón L., José Brea, Sara Rico, María Teresa de los Frailes, and María Isabel Loza. 2021. "Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments" International Journal of Molecular Sciences 22, no. 18: 9905. https://doi.org/10.3390/ijms22189905
APA StyleMartínez, A. L., Brea, J., Rico, S., de los Frailes, M. T., & Loza, M. I. (2021). Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. International Journal of Molecular Sciences, 22(18), 9905. https://doi.org/10.3390/ijms22189905