Establishment of an Adult Medaka Fatty Liver Model by Administration of a Gubra-Amylin-Nonalcoholic Steatohepatitis Diet Containing High Levels of Palmitic Acid and Fructose
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Body Weight, Liver Weight, and Liver–Weight Ratio in Each Dietary Group
2.2. Macroscopic Findings in the Liver
2.3. Histological Evaluation of the Liver
2.4. Evaluation of the Effects of Fatty Liver Improvement by the Pparα Activator, Fenofibrate
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Diets
4.3. Dietary Administration Tests
4.4. Immunostaining
4.5. Real-Time RT-PCR
4.6. Statistical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-SMA | α-smooth muscle actin |
GAN | Gubra-Amylin-nonalcoholic steatohepatitis |
HFD | High fat diet |
IHC | Immunohistochemistry |
HSC | Hepatic stellate cell |
IPA | Ingenuity Pathway Analysis |
PCNA | Proliferating Cell Nuclear Antigen |
SAGE | Serial analysis of gene expression |
References
- Lapadat, A.M.; Jianu, I.R.; Ungureanu, B.S.; Florescu, L.M.; Gheonea, D.I.; Sovaila, S.; Gheonea, I.A. Non-invasive imaging techniques in assessing non-alcoholic fatty liver disease: A current status of available methods. J. Med. Life 2017, 10, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Asgharpour, A.; Cazanave, S.C.; Pacana, T.; Seneshaw, M.; Vincent, R.; Banini, B.A.; Kumar, D.P.; Daita, K.; Min, H.K.; Mirshahi, F.; et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepat. 2016, 65, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Boland, M.L.; Oro, D.; Tolbol, K.S.; Thrane, S.T.; Nielsen, J.C.; Cohen, T.S.; Tabor, D.E.; Fernandes, F.; Tovchigrechko, A.; Veidal, S.S.; et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World J. Gastroenterol. 2019, 25, 4904–4920. [Google Scholar] [CrossRef]
- Porazinski, S.R.; Wang, H.; Furutani-Seiki, M. Essential techniques for introducing medaka to a zebrafish laboratory—Towards the combined use of medaka and zebrafish for further genetic dissection of the function of the vertebrate genome. Methods Mol. Biol. 2011, 770, 211–241. [Google Scholar] [PubMed]
- Asaoka, Y.; Terai, S.; Sakaida, I.; Nishina, H. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Disease Model. Mech. 2013, 6, 905–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wettere, A.J.; Kullman, S.W.; Hinton, D.E.; Law, J.M. Immunohistochemical characterization of the hepatic progenitor cell compartment in medaka (Oryzias latipes) following hepatic injury. J. Comp. Pathol. 2013, 149, 434–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Terai, S.; Oishi, T.; Kuwashiro, S.; Fujisawa, K.; Yamamoto, N.; Fujita, Y.; Hamamoto, Y.; Furutani-Seiki, M.; Nishina, H.; et al. Medaka as a model for human nonalcoholic steatohepatitis. Dis. Model.Mech. 2010, 3, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, K.; Takami, T.; Fukui, Y.; Nagatomo, T.; Saeki, I.; Matsumoto, T.; Hidaka, I.; Yamamoto, N.; Okamoto, T.; Furutani-Seiki, M.; et al. Assessment of high-fat-diet-induced fatty liver in medaka. Biol. Open 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, K.; Takami, T.; Nagatomo, T.; Fukui, Y.; Hoshida, H.; Saeki, I.; Matsumoto, T.; Hidaka, I.; Yamamoto, N.; Sakaida, I. Usefulness of adult medaka fish as a model for the evaluation of alcoholic fatty liver. Alcohol 2019, 77, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Yang, L.; McCall, S.; Huang, J.; Yu, X.X.; Pandey, S.K.; Bhanot, S.; Monia, B.P.; Li, Y.X.; Diehl, A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007, 45, 1366–1374. [Google Scholar] [CrossRef]
- Marra, F.; Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol. 2018, 68, 280–295. [Google Scholar] [CrossRef]
- Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018, 27, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, C.; Wada, S.; Yang, S.; Gosis, B.; Zeng, X.; Zhang, Z.; Shen, Y.; Lee, G.; Arany, Z.; Rabinowitz, J.D. The small intestine shields the liver from fructose-induced steatosis. Nat. Metab. 2020, 2, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, W.; Song, G.; Pang, S.; Peng, Z.; Li, Y.; Wang, P. High-fructose diet increases inflammatory cytokines and alters gut microbiota composition in rats. Mediators Inflamm. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Zambon, A.; Cusi, K. The role of fenofibrate in clinical practice. Diabetes Vasc. Dis. Res. 2007, 4, 15–20. [Google Scholar] [CrossRef]
- Bouly, M.; Masson, D.; Gross, B.; Jiang, X.C.; Fievet, C.; Castro, G.; Tall, A.R.; Fruchart, J.C.; Staels, B.; Lagrost, L.; et al. Induction of the phospholipid transfer protein gene accounts for the high-density lipoprotein enlargement in mice treated with fenofibrate. J. Biol. Chem. 2001, 276, 25841–25847. [Google Scholar] [CrossRef] [Green Version]
- Abdelmoneim, D.; El-Adl, M.; El-Sayed, G.; El-Sherbini, E.S. Protective effect of fenofibrate against high fat-high fructose diet induced non-obese NAFLD in rats. Fund. Clin. Pharmacol. 2020, 35, 379–388. [Google Scholar] [CrossRef]
- Itoh, M.; Suganami, T.; Kato, H.; Kanai, S.; Shirakawa, I.; Sakai, T.; Goto, T.; Asakawa, M.; Hidaka, I.; Sakugawa, H.; et al. CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight 2017, 2, e92902. [Google Scholar] [CrossRef]
- Mukai, K.; Miyagi, T.; Nishio, K.; Yokoyama, Y.; Yoshioka, T.; Saito, Y.; Tanaka, S.; Shigekawa, M.; Nawa, T.; Hikita, H.; et al. S100A8 production in CXCR2-expressing CD11b+Gr-1high cells aggravates hepatitis in mice fed a high-fat and high-cholesterol diet. J. Immunol. 2016, 196, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Furutani-Seiki, M.; Wittbrodt, J. Medaka and zebrafish: An evolutionary twin study. Mech. Dev. 2004, 121, 629–637. [Google Scholar] [CrossRef]
- Fujisawa, K.; Terai, S.; Hirose, Y.; Takami, T.; Yamamoto, N.; Sakaida, I. Senescence marker protein 30 (SMP30)/regucalcin (RGN) expression decreases with aging, acute liver injuries, and tumors in zebrafish. Biochem. Biophys. Res. Commun. 2011, 414, 331–336. [Google Scholar] [CrossRef] [PubMed]
Diet | Gender | Number of Specimens with Lesions/Number of Specimens |
---|---|---|
Normal | male | 0/9 |
female | 0/9 | |
HFD | male | 5/9 |
female | 3/9 | |
Control for GAN | male | 0/9 |
female | 0/9 | |
GAN | male | 7/9 |
female | 8/9 |
Diet | Normal Chow | HFD | Control for GAN | GAN |
---|---|---|---|---|
Protein (cal%) | 62 | 20 | 20 | 20 |
Carbohydrate (cal%) | 13 | 23 | 70 | 40 |
Fat (cal%) | 25 | 57 | 10 | 40 |
kcal/100g | 325 | 508 | 380 | 450 |
Fructose (%/g) | 0 | 0 | 0 | 22 |
Parm oil (cal%) | 0 | 0 | 0 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujisawa, K.; Takami, T.; Okubo, S.; Nishimura, Y.; Yamada, Y.; Kondo, K.; Matsumoto, T.; Yamamoto, N.; Sakaida, I. Establishment of an Adult Medaka Fatty Liver Model by Administration of a Gubra-Amylin-Nonalcoholic Steatohepatitis Diet Containing High Levels of Palmitic Acid and Fructose. Int. J. Mol. Sci. 2021, 22, 9931. https://doi.org/10.3390/ijms22189931
Fujisawa K, Takami T, Okubo S, Nishimura Y, Yamada Y, Kondo K, Matsumoto T, Yamamoto N, Sakaida I. Establishment of an Adult Medaka Fatty Liver Model by Administration of a Gubra-Amylin-Nonalcoholic Steatohepatitis Diet Containing High Levels of Palmitic Acid and Fructose. International Journal of Molecular Sciences. 2021; 22(18):9931. https://doi.org/10.3390/ijms22189931
Chicago/Turabian StyleFujisawa, Koichi, Taro Takami, Shoki Okubo, Yuto Nishimura, Yusaku Yamada, Keisuke Kondo, Toshihiko Matsumoto, Naoki Yamamoto, and Isao Sakaida. 2021. "Establishment of an Adult Medaka Fatty Liver Model by Administration of a Gubra-Amylin-Nonalcoholic Steatohepatitis Diet Containing High Levels of Palmitic Acid and Fructose" International Journal of Molecular Sciences 22, no. 18: 9931. https://doi.org/10.3390/ijms22189931
APA StyleFujisawa, K., Takami, T., Okubo, S., Nishimura, Y., Yamada, Y., Kondo, K., Matsumoto, T., Yamamoto, N., & Sakaida, I. (2021). Establishment of an Adult Medaka Fatty Liver Model by Administration of a Gubra-Amylin-Nonalcoholic Steatohepatitis Diet Containing High Levels of Palmitic Acid and Fructose. International Journal of Molecular Sciences, 22(18), 9931. https://doi.org/10.3390/ijms22189931