Saturation Mutagenesis of the Transmembrane Region of HokC in Escherichia coli Reveals Its High Tolerance to Mutations
Abstract
:1. Introduction
2. Results
2.1. Sensitivity of Experimental Screening
2.2. Mutagenesis of HokC
2.3. Are Critical Residues in the TM Region of HokC Conserved?
2.4. Compensatory Mutations Correlate to High Order Residue Contacts in HokC
2.5. Implications for TM Proteins
3. Discussion
4. Materials and Methods
4.1. Strains and Reagents
4.2. Mutagenesis
- Region 1R1 Forward 5′ GGA GAA GAG AGC AAT G NNS NNS NNS NNS NNS ATG ATT GTC GCC C 3′R1 Reverse 5′ GGG CGA CAA TCA T NNS NNS NNS NNS NNS CAT TGC TCT CTT CTC C 3′
- Region 2R2 Forward 5′ GCA GCA TAA GGC G NNS NNS NNS GC CCT GAT CGT CAT C 3′R2 Reverse 5′ GAT GAC GAT CAG GGC SNN SNN SNN CGC CTT ATG CTG C 3′
- Region 3R3 Forward 5′ GGC GAT GAT TGT C NNS NNS NNS GTC ATC TGT ATC ACC G 3′R3 Reverse 5′ CGG TGA TAC AGA TGA C SNN SNN SNN GAC AAT CAT CGC C 3′
- Region 4R4 Forward 5′ GTC GCC CTG ATC NNS NNS NNS ATC ACC GCC GTA GTG 3′R4 Reverse 5′ CAC TAC GGC GGT GAT SNN SNN SNN GAT CAG GGC GAC 3′
- Region 6R6 Forward 5′ CTG TAT CAC CGC C NNS NNS NNS GCG CTG GTA ACG 3′R6 Reverse 5′ CGT TAC CAG CGC SNN SNN SNN GGC GGT GAT ACA G 3′
- Region 7R7 Forward 5′ CGC CGT AGT GGC G NNS NNS NNS ACG AGA AAA GAC CTC TG 3′R7 Reverse 5′ CAG AGG TCT TTT CTC GT SNN SNN SNN CGC CAC TAC GGC G 3′
4.3. Selection of Clones
4.4. Sensitivity of Screening
4.5. Sequencing
4.6. Activity of PhoA Fusion Proteins
- Centrifuge 1.2 mL of the bacterial culture in Eppendorf tube.
- Wash cells in cold WB and resuspend pellet in 1.2 mL cold PM1 buffer.
- To permeabilize the cells, add 100 μL chloroform and 100 μL 0.05% SDS to 1 mL of the washed cells, vortex for 10 s, and incubate for 5 min at 37 °C. Then place tubes on ice for 5 min. After the chloroform has settled, transfer 100 μL of the upper phase of the bacterial suspension to a 96 plate well.
- To start the reaction, add 50 μL of the pNPP solution (0.15% in 1 M Tris–HCl, pH 8.0) to the bacterial suspension and incubate at RT until yellow color develops. Add 50 μL 2N NaOH to stop the reaction. Record incubation time and OD at 405 nm for each sample.
- Calculate enzymatic activity in relative units (A) according to the following formula:A = 1000 × (OD405sample − OD405control well)/(OD595 sample − OD595control well)/t (min) of incubation
4.7. Sequence Data Analysis
4.8. Sequence Alignment
4.9. Correlated Mutations Index
4.10. Analysis of Contacts in Proteins
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TM | Transmembrane |
IPTG | isopropyl-beta-D-thiogalactoside |
MSA | Multiple Sequence Alignment |
3D | Three-dimensional |
References
- Maggiora, G.M. The reductionist paradox: Are the laws of chemistry and physics sufficient for the discovery of new drugs? J. Comput. Mol. Des. 2011, 25, 699–708. [Google Scholar] [CrossRef]
- Besnard, J.; Ruda, G.F.; Setola, V.; Abecassis, K.; Rodriguiz, R.M.; Huang, X.-P.; Norval, S.; Sassano, M.F.; Shin, A.I.; Webster, L.A.; et al. Automated design of ligands to polypharmacological profiles. Nat. Cell Biol. 2012, 492, 215–220. [Google Scholar] [CrossRef]
- Kozma, D.; Simon, I.; Tusnády, G.E. PDBTM: Protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res. 2012, 41, D524–D529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arinaminpathy, Y.; Khurana, E.; Engelman, D.M.; Gerstein, M.B. Computational analysis of membrane proteins: The largest class of drug targets. Drug Discov. Today 2009, 14, 1130–1135. [Google Scholar] [CrossRef] [Green Version]
- Forrest, L.; Tang, C.L.; Honig, B. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 2006, 91, 508–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, P.C.; Henikoff, J.G.; Henikoff, S. PHAT: A transmembrane-specific substitution matrix. Bioinformatics 2000, 16, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Loeb, D.D.; Swanstrom, R.; Everitt, L.; Manchester, M.; Stamper, S.E.; Hutchison, C.A. Complete mutagenesis of the HIV-1 protease. Nat. Cell Biol. 1989, 340, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Rennell, D.; Bouvier, S.E.; Hardy, L.W.; Poteete, A.R. Systematic mutation of bacteriophage T4 lysozyme. J. Mol. Biol. 1991, 222, 67–88. [Google Scholar] [CrossRef]
- Suckow, J.; Markiewicz, P.; Kleina, L.G.; Miller, J.; Kisters-Woike, B.; Müller-Hill, B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J. Mol. Biol. 1996, 261, 509–523. [Google Scholar] [CrossRef]
- Huang, W.; Petrosino, J.; Hirsch, M.; Shenkin, P.S.; Palzkill, T. Amino acid sequence determinants of beta-lactamase structure and activity. J. Mol. Biol. 1996, 258, 688–703. [Google Scholar] [CrossRef]
- Guo, H.H.; Choe, J.; Loeb, L.A. Protein tolerance to random amino acid change. Proc. Natl. Acad. Sci. USA 2004, 101, 9205–9210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, D.M.; Araya, C.L.; Fleishman, S.J.; Kellogg, E.H.; Stephany, J.J.; Baker, D.; Fields, S. High-resolution mapping of protein sequence-function relationships. Nat. Methods. 2010, 7, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Ernst, A.; Gfeller, D.; Kan, Z.; Seshagiri, S.; Kim, P.M.; Bader, G.; Sidhu, S.S. Coevolution of PDZ domain–ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol. BioSyst. 2010, 6, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Hietpas, R.T.; Jensen, J.; Bolon, D.N.A. Experimental illumination of a fitness landscape. Proc. Natl. Acad. Sci. USA 2011, 108, 7896–7901. [Google Scholar] [CrossRef] [Green Version]
- Jr, R.N.M.; Poelwijk, F.J.; Raman, A.; Gosal, W.S.; Ranganathan, R. The spatial architecture of protein function and adaptation. Nat. Cell Biol. 2012, 491, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Huang, W.; Bakkalbasi, E.; Brown, N.G.; Adamski, C.J.; Rice, K.; Muzny, D.; Gibbs, R.A.; Palzkill, T. Deep sequencing of systematic combinatorial libraries reveals β-lactamase sequence constraints at high resolution. J. Mol. Biol. 2012, 424, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Adkar, B.; Tripathi, A.; Sahoo, A.; Bajaj, K.; Goswami, D.; Chakrabarti, P.; Swarnkar, M.K.; Gokhale, R.S.; Varadarajan, R. Protein model discrimination using mutational sensitivity derived from deep sequencing. Structures 2012, 20, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Traxlmayr, M.W.; Hasenhindl, C.; Hackl, M.; Stadlmayr, G.; Rybka, J.D.; Borth, N.; Grillari, J.; Rüker, F.; Obinger, C. Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J. Mol. Biol. 2012, 423, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Araya, C.; Fowler, D.M.; Chen, W.; Muniez, I.; Kelly, J.W.; Fields, S. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function. Proc. Natl. Acad. Sci. USA 2012, 109, 16858–16863. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.C.; Young, A.P.; Dandekar, S.; Wijersuriya, H.; Al-Mawsawi, L.Q.; Wu, T.-T.; Sun, R. Systematic identification of H274Y compensatory mutations in influenza A virus neuraminidase by high-throughput screening. J. Virol. 2013, 87, 1193–1199. [Google Scholar] [CrossRef] [Green Version]
- Melamed, D.; Young, D.L.; Gamble, C.E.; Miller, C.R.; Fields, S. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA 2013, 19, 1537–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roscoe, B.P.; Thayer, K.M.; Zeldovich, K.B.; Fushman, D.; Bolon, D.N. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J. Mol. Biol. 2013, 425, 1363–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starita, L.M.; Pruneda, J.; Lo, R.S.; Fowler, D.M.; Kim, H.J.; Hiatt, J.B.; Shendure, J.; Brzovic, P.S.; Fields, S.; Klevit, R.E. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. Proc. Natl. Acad. Sci. USA 2013, 110, E1263–E1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.; Cho, Y.; Choe, D.; Jeong, Y.; Cho, S.; Kim, S.C.; Cho, B.-K. Exploring the functional residues in a flavin-binding fluorescent protein using deep mutational scanning. PLoS ONE 2014, 9, e97817. [Google Scholar] [CrossRef] [PubMed]
- Schlinkmann, K.M.; Honegger, A.; Tureci, E.; Robison, K.E.; Lipovsek, D.; Plückthun, A. Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. Proc. Natl. Acad. Sci. USA 2012, 109, 9810–9815. [Google Scholar] [CrossRef] [Green Version]
- Corral-Corral, R.; Beltrán, J.A.; Brizuela, C.A.; Del Rio, G. Systematic identification of machine-learning models aimed to classify critical residues for protein function from protein structure. Molecules 2017, 22, 1673. [Google Scholar] [CrossRef]
- Studer, R.A.; Dessailly, B.H.; Orengo, C.A. Residue mutations and their impact on protein structure and function: Detecting beneficial and pathogenic changes. Biochem. J. 2013, 449, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.R. Small world network strategies for studying protein structures and binding. Comput. Struct. Biotechnol. J. 2013, 5, e201302006. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, J.E.; Fiser, A. Protein structure based prediction of catalytic residues. BMC Bioinform. 2013, 14, 63. [Google Scholar] [CrossRef] [Green Version]
- Cusack, M.P.; Thibert, B.; Bredesen, D.E.; Del Río, G. Efficient identification of critical residues based only on protein structure by network analysis. PLoS ONE 2007, 2, e421. [Google Scholar] [CrossRef] [Green Version]
- Göbel, U.; Sander, C.; Schneider, R.; Valencia, A. Correlated mutations and residue contacts in proteins. Proteins Struct. Funct. Bioinform. 1994, 18, 309–317. [Google Scholar] [CrossRef]
- Fodor, A.A.; Aldrich, R.W. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins Struct. Funct. Bioinform. 2004, 56, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Kowarsch, A.; Fuchs, A.; Frishman, D.; Pagel, P. Correlated mutations: A hallmark of phenotypic amino acid substitutions. PLoS Comput. Biol. 2010, 6, e1000923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibert, B.; Bredesen, D.E.; Del Rio, G. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinform. 2005, 6, 213. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, D.G.; Manolio, T.A.; Dimmock, D.; Rehm, H.L.; Shendure, J.; Abecasis, G.R.; Adams, D.R.; Altman, R.; Antonarakis, S.; Ashley, E.A.; et al. Guidelines for investigating causality of sequence variants in human disease. Nat. Cell Biol. 2014, 508, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, M.T.L.; Rosario, P.B.L.; Luna-Nevárez, P.; Gamez, A.S.; Campo, A.M.-D.; Del Río, G. Quality control test for sequence-phenotype assignments. PLoS ONE 2015, 10, e0118288. [Google Scholar] [CrossRef]
- Bocharov, E.V.; Volynsky, P.E.; Pavlov, K.V.; Efremov, R.G.; Arseniev, A.S. Structure elucidation of dimeric transmembrane domains of bitopic proteins. Cell Adh. Migr. 2010, 4, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, L.K.; Larsen, N.W.; Molin, S.; Andersson, P. A family of genes encoding a cell-killing function may be conserved in all Gram-negative bacteria. Mol. Microbiol. 1989, 3, 1463–1472. [Google Scholar] [CrossRef]
- Rapp, M.; Drew, D.; Daley, D.O.; Nilsson, J.; Carvalho, T.; Melén, K.; De Gier, J.-W.; Von Heijne, G. Experimentally based topology models for E. coli inner membrane proteins. Protein Sci. 2004, 13, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, L.K.; Refn, A.; Molin, S.; Andersson, P. Topographic analysis of the toxic Gef protein from Escherichia coli. Mol. Microbiol. 1991, 5, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- AlphaFold v2 Server. Available online: https://alphafold.ebi.ac.uk/entry/P0ACG4 (accessed on 21 September 2021).
- Davis, B.H.; Poon, A.; Whitlock, M. Compensatory mutations are repeatable and clustered within proteins. Proc. R. Soc. B Boil. Sci. 2009, 276, 1823–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacherjee, A.; Mallik, S.; Kundu, S. Compensatory mutations occur within the electrostatic interaction range of deleterious mutations in protein structure. J. Mol. Evol. 2014, 80, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Julenius, K.; Pedersen, A.G. Protein evolution is faster outside the cell. Mol. Biol. Evol. 2006, 23, 2039–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielman, S.J.; Wilke, C. Membrane environment imposes unique selection pressures on transmembrane domains of G Protein-coupled receptors. J. Mol. Evol. 2013, 76, 172–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.; Chen, X.; Bowie, J.U. Exploring the allowed sequence space of a membrane protein. Nat. Genet. 1996, 3, 141–148. [Google Scholar] [CrossRef]
- Rockah-Shmuel, L.; Tóth-Petróczy, Á.; Tawfik, D.S. Systematic mapping of protein mutational space by prolonged drift reveals the deleterious effects of seemingly neutral mutations. PLoS Comput. Biol. 2015, 11, e1004421. [Google Scholar] [CrossRef] [Green Version]
- Haran, G. How, when and why proteins collapse: The relation to folding. Curr. Opin. Struct. Biol. 2012, 22, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Popot, J.-L.; Engelman, D.M. Membranes do not tell proteins how to fold. Biochemistry 2015, 55, 5–18. [Google Scholar] [CrossRef]
- Fischer, H.; Polikarpov, I.; Craievich, A.F. Average protein density is a molecular-weight-dependent function. Protein Sci. 2009, 13, 2825–2828. [Google Scholar] [CrossRef]
- Corral, R.C.; Chavez, E.; Del Rio, G. Machine learnable fold space representation based on residue cluster classes. Comput. Biol. Chem. 2015, 59, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini-Calace, M.; Maiwald, T.; Thornton, J.M. PoreWalker: A novel tool for the identification and characteri-zation of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput. Biol. 2009, 5, e1000440. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, A.E.; Baase, W.A.; Zhang, X.J.; Heinz, D.W.; Blaber, M.; Baldwin, E.; Matthews, B.W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 1992, 255, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Halle, B. Flexibility and packing in proteins. Proc. Natl. Acad. Sci. USA 2002, 99, 1274–1279. [Google Scholar] [CrossRef] [Green Version]
- Gimpelev, M.; Forrest, L.; Murray, D.; Honig, B. Helical packing patterns in membrane and soluble proteins. Biophys. J. 2004, 87, 4075–4086. [Google Scholar] [CrossRef] [Green Version]
- Istrail, S.; Lam, F. Combinatorial algorithms for protein folding in lattice models: A survey of mathematical results. Commun. Inf. Syst. 2009, 9, 303–346. [Google Scholar] [CrossRef] [Green Version]
- Hales, T. A proof of the Kepler conjecture. Ann. Math. 2005, 162, 1065–1185. [Google Scholar] [CrossRef] [Green Version]
- Bagci, Z.; Jernigan, R.L.; Bahar, I. Residue coordination in proteins conforms to the closest packing of spheres. Polymers 2002, 43, 451–459. [Google Scholar] [CrossRef]
- Halabi, N.; Rivoire, O.; Leibler, S.; Ranganathan, R. Protein sectors: Evolutionary units of three-dimensional structure. Cell 2009, 138, 774–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teşileanu, T.; Colwell, L.J.; Leibler, S. Protein sectors: Statistical coupling analysis versus conservation. PLoS Comput. Biol. 2015, 11, e1004091. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-M.; Di Tommaso, P.; Taly, J.-F.; Notredame, C. Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinform. 2012, 13, S1. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010, 38, W529–W533. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Chan, A. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosciolek, T.; Jones, D.T. De novo structure prediction of globular proteins aided by sequence variation-derived contacts. PLoS ONE 2014, 9, e92197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TopDB Web Server. Available online: http://topdb.enzim.hu/ (accessed on 21 September 2021).
- HSSP Database. Available online: http://swift.cmbi.ru.nl/gv/hssp/ (accessed on 21 September 2021).
- Fontove, F.; Del Rio, G. Residue cluster classes: A unified protein representation for efficient structural and functional classification. Entropy 2020, 22, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supplementary Data. Available online: https://github.com/gdelrioifc/MutagenesisHokC (accessed on 21 September 2021).
- GnuPlot Software. Available online: http://www.gnuplot.info (accessed on 21 September 2021).
- Java Topology Suite. Available online: http://tsusiatsoftware.net/jts/main.html (accessed on 21 September 2021).
- RCC Software. Available online: https://github.com/C3-Consensus/RCC (accessed on 21 September 2021).
Combined Mutations (Experimental) | Counts | Combined Mutations (MSA) | Counts |
---|---|---|---|
M7W, I12S | 613 | V13I, A6T | 3 |
I12S, I14S | 317 | V19L, A6T | 8 |
L11P, I12S | 276 | A22T, V19L | 81 |
M7W, I12C | 221 | A6T, K2M | 1 |
M7W, I14S | 220 | A22S, V19L | 2 |
M7W, L11P | 184 | A22T, V13I | 1 |
I12S, V19G | 145 | V19L, V13I | 11 |
I12S, A22T | 136 | A21T, V19L | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara Ortiz, M.T.; Martinell García, V.; Del Rio, G. Saturation Mutagenesis of the Transmembrane Region of HokC in Escherichia coli Reveals Its High Tolerance to Mutations. Int. J. Mol. Sci. 2021, 22, 10359. https://doi.org/10.3390/ijms221910359
Lara Ortiz MT, Martinell García V, Del Rio G. Saturation Mutagenesis of the Transmembrane Region of HokC in Escherichia coli Reveals Its High Tolerance to Mutations. International Journal of Molecular Sciences. 2021; 22(19):10359. https://doi.org/10.3390/ijms221910359
Chicago/Turabian StyleLara Ortiz, Maria Teresa, Victor Martinell García, and Gabriel Del Rio. 2021. "Saturation Mutagenesis of the Transmembrane Region of HokC in Escherichia coli Reveals Its High Tolerance to Mutations" International Journal of Molecular Sciences 22, no. 19: 10359. https://doi.org/10.3390/ijms221910359
APA StyleLara Ortiz, M. T., Martinell García, V., & Del Rio, G. (2021). Saturation Mutagenesis of the Transmembrane Region of HokC in Escherichia coli Reveals Its High Tolerance to Mutations. International Journal of Molecular Sciences, 22(19), 10359. https://doi.org/10.3390/ijms221910359