MicroRNA Expression Profiles and Breast Cancer Chemotherapy
Abstract
:1. Introduction
2. Breast Cancer Chemotherapy
2.1. Adjuvant Chemotherapy
2.2. Neoadjuvant Chemotherapy
3. MicroRNAs
4. MicroRNAs in Predicting Response to Neoadjuvant Chemotherapies
5. MicroRNAs and Chemoresistance
6. MicroRNAs for Therapeutic Use in Breast Cancer
6.1. Oncomir Inhibition
6.2. MiRNA Replacement Therapy
7. Future Directions for miRNA
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Sauer, A.G.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Cancer Research UK. Breast Cancer Statistics. 2021. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer (accessed on 20 July 2021).
- Sakorafas, G.; Safioleas, M. Breast cancer surgery: An historical narrative. Part II. 18th and 19th centuries. Eur. J. Cancer Care 2010, 19, 6–29. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Albain, K.S.; André, F.; Bergh, J.; et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef] [PubMed]
- Morigi, C. Highlights of the 16th St Gallen International Breast Cancer Conference, Vienna, Austria, 20–23 March 2019: Personalised treatments for patients with early breast cancer. Ecancermedicalscience 2019, 13, 924. [Google Scholar] [CrossRef]
- Pu, M.; Messer, K.; Davies, S.R.; Vickery, T.L.; Pittman, E.; Parker, B.A.; Ellis, M.J.; Flatt, S.W.; Marinac, C.R.; Nelson, S.H.; et al. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res. Treat. 2019, 179, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Dubsky, P.; Brase, J.C.; Jakesz, R.; Rudas, M.; Singer, C.F.; Greil, R.; Dietze, O.; Luisser, I.; Klug, E.; Sedivy, R.; et al. The EndoPredict score provides prognostic information on late distant metas-tases in ER+/HER2− breast cancer patients. Br. J. Cancer 2013, 109, 2959–2964. [Google Scholar] [CrossRef] [Green Version]
- Andre, F.; Ismaila, N.; Henry, N.L.; Somerfield, M.R.; Bast, R.C.; Barlow, W.; Collyar, D.E.; Hammond, M.E.; Kuderer, N.M.; Liu, M.C.; et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: ASCO clinical practice guideline update—Integration of results from TAILORx. J. Clin. Oncol. 2019, 37, 1956–1964. [Google Scholar] [CrossRef] [Green Version]
- Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F.; ESMO Guidelines Committee. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v8–v30. [Google Scholar] [CrossRef] [PubMed]
- Gene Expression Profiling and Expanded Immunohistochemistry Tests to Guide the Use of Adjuvant Chemotherapy in Breast Cancer Management: MammaPrint, Oncotype DX, IHC4 and Mammostrat. 2011. Available online: https://www.nice.org.uk/guidance/dg10/documents/gene-expression-profiling-and-expanded-immunohistochemistry-tests-to-guide-selection-of-chemotherapy-regimes-in-breast-cancer-management-mammaprint-oncotype-dx-ihc4-and-mammostrat-overview2 (accessed on 20 July 2020).
- Davey, M.; Davies, M.; Lowery, A.; Miller, N.; Kerin, M. The role of microRNA as clinical biomarkers for breast cancer surgery and treatment. Int. J. Mol. Sci. 2021, 22, 8290. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- McVeigh, T.; Boland, M.; Lowery, A. The impact of the biomolecular era on breast cancer surgery. Surgeon 2017, 15, 169–181. [Google Scholar] [CrossRef]
- Halsted, W.S. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann. Surg. 1894, 20, 497–555. [Google Scholar] [CrossRef]
- Bonadonna, G.; Brusamolino, E.; Valagussa, P.; Rossi, A.; Brugnatelli, L.; Brambilla, C.; de Lena, M.; Tancini, G.; Bajetta, E.; Musumeci, R.; et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 1976, 294, 405–410. [Google Scholar] [CrossRef]
- Fisher, B. Biological research in the evolution of cancer surgery: A personal perspective. Cancer Res. 2008, 68, 10007–10020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, L.A.; Mamounas, E.P. Review of breast cancer clinical trials conducted by the national surgical adjuvant breast project. Surg. Clin. N. Am. 2007, 87, 279–305. [Google Scholar] [CrossRef]
- Fisher, B.; Dignam, J.; Mamounas, E.P.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.; Wolmark, N.; Dimitrov, N.V.; Bowman, D.M.; Glass, A.G.; et al. Sequential methotrexate and fluorouracil for the treatment of node-negative breast cancer patients with estrogen receptor-negative tumors: Eight-year results from National Surgical Adjuvant Breast and Bowel Project (NSABP) B-13 and first report of findings from NSABP B-19 comparing methotrexate and fluorouracil with conventional cyclophosphamide, methotrexate, and fluorouracil. J. Clin. Oncol. 1996, 14, 1982–1992. [Google Scholar]
- Fisher, B.; Jeong, J.H.; Dignam, J.; Anderson, S.; Mamounas, E.; Wickerham, D.L.; Wolmark, N. Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage I breast cancer. JNCI Monographs. 2001, 30, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Redmond, C.; Dimitrov, N.V.; Bowman, D.; Legault-Poisson, S.; Wigkerham, D.L.; Wolmark, N.; Fisher, E.R.; Margolese, R.; Sutherland, C.; et al. A randomized clinical trial evaluating sequential methotrexate and fluorouracil in the treatment of patients with node-negative breast cancer who have estrogen-receptor-negative tumors. N. Engl. J. Med. 1989, 320, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Dignam, J.; Bryant, J.; Wolmark, N. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: Updated findings from the national surgical adjuvant breast and bowel project B-14 randomized trial. J. Natl. Cancer Inst. 2001, 93, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Jeong, J.; Bryant, J.; Anderson, S.; Dignam, J.; Fisher, E.R.; Wolmark, N. Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: Long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 2004, 364, 858–868. [Google Scholar] [CrossRef]
- Fisher, B.; Dignam, J.; Emir, B.; Bryant, J.; DeCillis, A.; Wolmark, N.; Wickerham, D.L.; Dimitrov, N.V.; Abramson, N.; Atkins, J.N.; et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J. Natl. Cancer Inst. 1997, 89, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Boland, M.R.; Al-Maksoud, A.; Ryan, É.J.; Balasubramanian, I.; Geraghty, J.; Evoy, D.; McCartan, D.; Prichard, R.S.; McDermott, E.W. Value of a 21-gene expression assay on core biopsy to predict neoadjuvant chemotherapy response in breast cancer: Systematic review and meta-analysis. BJS 2021, 108, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.; Ryan, É.J.; Boland, M.; Barry, M.; Lowery, A.; Kerin, M. Clinical utility of the 21-gene assay in predicting response to neoadjuvant endocrine therapy in breast cancer: A systematic review and meta-analysis. Breast 2021, 58, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Angulo, A.M.; Barlow, W.E.; Gralow, J.; Meric-Bernstam, F.; Hayes, D.F.; Moinpour, C.; Ramsey, S.D.; Schott, A.F.; Sparks, D.B.; Albain, K.S.; et al. SWOG S1007: A phase III, randomized clinical trial of standard adjuvant endocrine therapy with or without chemotherapy in patients with one to three positive nodes, hormone receptor (HR)-positive, and HER2-negative breast cancer with recurrence score (RS) of 25 or less. J. Clin. Oncol. 2011, 29, TPS104. [Google Scholar] [CrossRef]
- Kalinsky, K.; Barlow, W.E.; Meric-Bernstam, F. First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy (ET) +/− chemotherapy (CT) in patients (pts) with 1–3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2−) breast cancer (BC) with recurrence score (RS) <25: SWOG S1007 (RxPonder). Cancer Res. 2021, 81. [Google Scholar]
- Mamounas, E.P.; Bryant, J.; Lembersky, B.; Fehrenbacher, L.; Sedlacek, S.M.; Fisher, B.; Wickerham, D.L.; Yothers, G.; Soran, A.; Wolmark, N. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: Results from NSABP B-28. J. Clin. Oncol. 2005, 23, 3686–3696. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.D.; et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244, 707–712. [Google Scholar] [CrossRef]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Cobleigh, M.A.; Vogel, C.L.; Tripathy, D.; Robert, N.J.; Scholl, S.; Fehrenbacher, L.; Wolter, J.M.; Paton, V.; Shak, S.; Lieberman, G.; et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 1999, 17, 2639. [Google Scholar] [CrossRef] [PubMed]
- Pegram, M.D.; Lipton, A.; Hayes, D.F.; Weber, B.L.; Baselga, J.M.; Tripathy, D.; Baly, D.; Baughman, S.A.; Twaddell, T.; Glaspy, J.A.; et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 1998, 16, 2659–2671. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.H.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef] [Green Version]
- Pivot, X.; Romieu, G.; Debled, M.; Pierga, J.-Y.; Kerbrat, P.; Bachelot, T.; Lortholary, A.; Espié, M.; Fumoleau, P.; Serin, D.; et al. 6 months versus 12 months of adjuvant trastuzumab for patients with HER2-positive early breast cancer (PHARE): A randomised phase 3 trial. Lancet Oncol. 2013, 14, 741–748. [Google Scholar] [CrossRef]
- Tan-Chiu, E.; Yothers, G.; Romond, E.; Geyer, C.E., Jr.; Ewer, M.; Keefe, D.; Shannon, R.P.; Swain, S.M.; Brown, A.; Fehrenbacher, L. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J. Clin. Oncol. 2005, 23, 7811–7819. [Google Scholar]
- Baselga, J.; Tripathy, D.; Mendelsohn, J.; Baughman, S.; Benz, C.C.; Dantis, L.; Sklarin, N.T.; Seidman, A.D.; Hudis, C.A.; Moore, J.; et al. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin. Oncol. 1999, 26, 78–83. [Google Scholar] [PubMed]
- Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1673–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joensuu, H.; Kellokumpu-Lehtinen, P.-L.; Bono, P.; Alanko, T.; Kataja, V.; Asola, R.; Utriainen, T.; Kokko, R.; Hemminki, A.; Tarkkanen, M.; et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med. 2006, 354, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Untch, M.; Rezai, M.; Loibl, S.; Fasching, P.A.; Huober, J.; Tesch, H.; Bauerfeind, I.; Hilfrich, J.; Eidtmann, H.; Gerber, B.; et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: Results from the GeparQuattro study. J. Clin. Oncol. 2010, 28, 2024–2031. [Google Scholar] [CrossRef]
- Baselga, J.; Bradbury, I.; Eidtmann, H.; di Cosimo, S.; de Azambuja, E.; Aura, C.; Gomez, H.; Dinh, P.; Fauria, K.; van Dooren, V.; et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): A randomised, open-label, multicentre, phase 3 trial. Lancet 2012, 379, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.H.; Sledge, G.; Geyer, C.E., Jr.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2–positive breast cancer: Planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J. Clin. Oncol. 2014, 32, 3744–3752. [Google Scholar] [CrossRef]
- Gianni, L.; Eiermann, W.; Semiglazov, V.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Moliterni, A.; Vazquez, F.; Byakhov, M.J.; Lichinitser, M. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): Follow-up of a randomised controlled superiority trial with a par-allel HER2-negative cohort. Lancet Oncol. 2014, 15, 640–647. [Google Scholar] [CrossRef]
- Cameron, D.; Piccart-Gebhart, M.J.; Gelber, R.D.; Procter, M.; Goldhirsch, A.; de Azambuja, E.; Castro, G.; Untch, M.; Smith, I.; Gianni, L.; et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin adjuvant (HERA) trial. Lancet 2017, 389, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Earl, H.M.; Hiller, L.; Vallier, A.-L.; Loi, S.; McAdam, K.; Hughes-Davies, L.; Harnett, A.N.; Ah-See, M.-L.; Simcock, R.; Rea, D.; et al. 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial. Lancet 2019, 393, 2599–2612. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H.; Park, J.M.; Park, H.S.; Park, S.; Kim, S.I.; Park, B.-W. Oncologic safety of breast-conserving surgery compared to mastectomy in patients receiving neoadjuvant chemotherapy for locally advanced breast cancer. J. Surg. Oncol. 2013, 108, 531–536. [Google Scholar] [CrossRef]
- Davey, M.G.; Kerin, E.; O’Flaherty, C.; Maher, E.; Richard, V.; McAnena, P.; McLaughlin, R.P.; Sweeney, K.J.; Barry, M.K.; Malone, C.M.; et al. Clinicopathological response to neoadjuvant therapies and pathological complete response as a biomarker of survival in human epidermal growth factor receptor-2 enriched breast cancer—A retrospective cohort study. Breast 2021, 59, 67–75. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.A.; Reynolds, K.L.; Smith, B.L.; Alexander, B.M.; Moy, B.; Isakoff, S.J.; et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: A comprehensive meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Asselain, B.; Barlow, W.; Bartlett, J.; Bergh, J.; Bergsten-Nordström, E.; Bliss, J.; Boccardo, F.; Boddington, C.; Bogaerts, J.; Bonadonna, G.; et al. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018, 19, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Boughey, J.C.; Ballman, K.V.; McCall, L.M.; Mittendorf, E.A.; Symmans, W.F.; Julian, T.B.; Byrd, D.; Hunt, K.K. Tumor biology and response to chemotherapy impact breast cancer-specific survival in node-positive breast cancer patients treated with neoadjuvant chemotherapy: Long-term follow-up from ACOSOG Z1071 (Alliance). Ann. Surg. 2017, 266, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Brown, A.; Mamounas, E.; Wieand, S.; Robidoux, A.; Margolese, R.G.; Cruz, A.B., Jr.; Fisher, E.R.; Wickerham, D.L.; Wolmark, N.; et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-18. J. Clin. Oncol. 1997, 15, 2483–2493. [Google Scholar] [CrossRef]
- Fisher, B.; Bryant, J.; Wolmark, N.; Mamounas, E.; Brown, A.; Fisher, E.R.; Wickerham, D.L.; Begovic, M.; DeCillis, A.; Robidoux, A.; et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol. 1998, 16, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Wolmark, N.; Wang, J.; Mamounas, E.; Bryant, J.; Fisher, B. Preoperative Chemotherapy in patients with operable breast cancer: Nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J. Natl. Cancer Inst. Monogr. 2001, 2001, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Bear, H.D.; Anderson, S.; Brown, A.; Smith, R.; Mamounas, E.P.; Fisher, B.; Margolese, R.; Theoret, H.; Soran, A.; Wickerham, D.L.; et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: Preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 2003, 21, 4165–4174. [Google Scholar] [CrossRef] [PubMed]
- Bear, H.D.; Anderson, S.; Smith, R.E.; Geyer, C.E., Jr.; Mamounas, E.P.; Fisher, B.; Brown, A.M.; Robidoux, A.; Margolese, R.; Kahlenberg, M.S.; et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 2006, 24, 2019–2027. [Google Scholar] [CrossRef]
- Boughey, J.C.; McCall, L.M.; Ballman, K.V.; Mittendorf, E.A.; Ahrendt, G.M.; Wilke, L.G.; Taback, B.; Leitch, A.M.; Flippo-Morton, T.; Hunt, K.K. Tumor biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer: Findings from the ACOSOG Z1071 (Alliance) Prospective Multicenter Clinical Trial. Ann. Surg. 2014, 260, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef]
- Poggio, F.; Bruzzone, M.; Ceppi, M.; Pondé, N.; la Valle, G.; del Mastro, L.; de Azambuja, E.; Lambertini, M. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1497–1508. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, R.; Bergen, E.; Galid, A. Current concepts and future directions in neoadjuvant chemotherapy of breast cancer. Memo-Mag. Eur. Med. Oncol. 2018, 11, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon-Ferre, R.A.; Hieken, T.J.; Boughey, J.C. The landmark series: Neoadjuvant chemotherapy for triple-negative and HER2-positive breast cancer. Ann. Surg. Oncol. 2021, 28, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Mauri, D.; Pavlidis, N.; Ioannidis, J.P.A. Neoadjuvant versus adjuvant systemic treatment in breast cancer: A meta-analysis. J. Natl. Cancer Inst. 2005, 97, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Van Nes, J.G.; Putter, H.; Julien, J.P.; Tubiana-Hulin, M.; van de Vijver, M.; Bogaerts, J.; De Vos, M.; van de Velde, C.J. Preoperative chemotherapy is safe in early breast cancer, even after 10 years of follow-up; clinical and translational results from the EORTC trial 10902. Breast Cancer Res. Treat. 2009, 115, 101–113. [Google Scholar] [CrossRef]
- Heneghan, H.M.; Miller, N.; Lowery, A.; Sweeney, K.J.; Kerin, M.J. MicroRNAs as novel biomarkers for breast cancer. J. Oncol. 2009, 2010, 1–7. [Google Scholar] [CrossRef]
- Casey, M.-C.; Kerin, M.; Brown, J.A.; Sweeney, K.J. Evolution of a research field—A micro (RNA) example. PeerJ 2015, 3, 829. [Google Scholar] [CrossRef] [Green Version]
- Place, R.F.; Li, L.-C.; Pookot, D.; Noonan, E.J.; Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. USA 2008, 105, 1608–1613. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.-H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, M.T.; Czaplinski, K.; Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Lowery, A.J.; Miller, N.; Devaney, A.; McNeill, R.E.; Davoren, P.A.; Lemetre, C.; Benes, V.; Schmidt, S.; Blake, J.; Ball, G.; et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neureceptor status in breast cancer. Breast Cancer Res. 2009, 11, R27. [Google Scholar] [CrossRef]
- Søkilde, R.; Persson, H.; Ehinger, A.; Pirona, A.C.; Fernö, M.; Hegardt, C.; Larsson, C.; Loman, N.; Malmberg, M.; Rydén, L.; et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genom. 2019, 20, 503. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.; Casey, M.-C.; Waldron, R.M.; Heneghan, H.; Kalinina, O.; Holian, E.; McDermott, A.; Lowery, A.J.; Newell, J.; Dwyer, R.M.; et al. Prospective assessment of systemic microRNAs as markers of response to neoadjuvant chemotherapy in breast cancer. Cancers 2020, 12, 1820. [Google Scholar] [CrossRef] [PubMed]
- Di Cosimo, S.; Appierto, V.; Pizzamiglio, S.; Tiberio, P.; Iorio, M.; Hilbers, F.; de Azambuja, E.; de la Peña, L.; Izquierdo, M.; Huober, J.; et al. Plasma miRNA levels for predicting therapeutic response to neoadjuvant treatment in HER2-positive breast cancer: Results from the NeoALTTO trial. Clin. Cancer Res. 2019, 25, 3887–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, M.G.; Ryan, É.J.; Lowery, A.J.; Miller, N.; Kerin, M.J. Clinicopathological and prognostic significance of programmed cell death ligand 1 expression in patients diagnosed with breast cancer: Meta-analysis. BJS 2021, 108, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Ryan, É.J.; Folan, P.J.; O’Halloran, N.; Boland, M.R.; Barry, M.K.; Sweeney, K.J.; Malone, C.M.; McLaughlin, R.J.; Kerin, M.J.; et al. The impact of progesterone receptor negativity on oncological outcomes in oestrogen-receptor-positive breast cancer. BJS Open 2021, 5, zrab040. [Google Scholar] [CrossRef]
- Denkert, C.; Loibl, S.; Müller, B.M.; Eidtmann, H.; Schmitt, W.D.; Eiermann, W.; Gerber, B.; Tesch, H.; Hilfrich, J.; Huober, J.; et al. Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: A translational investigation in the neoadjuvant GeparTrio trial. Ann. Oncol. 2013, 24, 2786–2793. [Google Scholar] [CrossRef] [PubMed]
- Xing, A.-Y.; Wang, B.; Li, Y.-H.; Chen, X.; Wang, Y.-W.; Liu, H.-T.; Gao, P. Identification of miRNA signature in breast cancer to predict neoadjuvant chemotherapy response. Pathol. Oncol. Res. 2021, 27, 1609753. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Su, F.; Lv, X.; Zhang, W.; Shang, X.; Zhang, Y.; Zhang, J. Serum microRNA-21 predicted treatment outcome and survival in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy combined with trastuzumab. Cancer Chemother. Pharmacol. 2019, 84, 1039–1049. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Appierto, V.; Pizzamiglio, S.; Silvestri, M.; Baselga, J.; Piccart, M.; Huober, J.; Izquierdo, M.; de la Pena, L.; Hilbers, F.S.; et al. Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int. J. Mol. Sci. 2020, 21, 1386. [Google Scholar] [CrossRef] [Green Version]
- Stevic, I.; Müller, V.; Weber, K.; Fasching, P.A.; Karn, T.; Marmé, F.; Schem, C.; Stickeler, E.; Denkert, C.; van Mackelenbergh, M.; et al. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med. 2018, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kassem, N.M.; Makar, W.S.; Kassem, H.A.; Talima, S.; Tarek, M.; Hesham, H.; El-Desouky, M.A. Circulating miR-34a and miR-125b as promising non invasive biomarkers in egyptian locally advanced breast cancer patients. Asian Pac. J. Cancer Prev. 2019, 20, 2749–2755. [Google Scholar] [CrossRef]
- García-García, F.; Salinas-Vera, Y.M.; García-Vázquez, R.; Marchat, L.A.; Rodríguez-Cuevas, S.; López-González, J.S.; Carlos-Reyes, Á.; Ramos-Payán, R.; Aguilar-Medina, M.; Pérez-Plasencia, C.; et al. MiR-145-5p is associated with pathological complete response to neoadjuvant chemotherapy and impairs cell proliferation by targeting TGFβR2 in breast cancer. Oncol. Rep. 2019, 41, 3527–3534. [Google Scholar]
- Müller, V.; Gade, S.; Steinbach, B.; Loibl, S.; von Minckwitz, G.; Untch, M.; Schwedler, K.; Lübbe, K.; Schem, C.; Fasching, P.A.; et al. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: A translational research project within the Geparquinto trial. Breast Cancer Res. Treat. 2014, 147, 61–68. [Google Scholar] [CrossRef]
- Xue, J.; Chi, Y.; Chen, Y.; Huang, S.; Ye, X.; Niu, J.; Wang, W.; Pfeffer, L.M.; Shao, Z.-M.; Wu, Z.-H.; et al. MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene 2015, 35, 448–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Liu, M.; Fan, Y.; Ma, F.; Xu, N.; Xu, B. Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med. 2018, 7, 4420–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep. 2018, 8, 11584. [Google Scholar] [CrossRef]
- Lindholm, E.M.; Aure, M.R.; Haugen, M.H.; Sahlberg, K.K.; Kristensen, V.N.; Nebdal, D.; Børresen-Dale, A.; Lingjærde, O.C.; Engebraaten, O. MiRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol. Oncol. 2019, 13, 2278–2296. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Martínez, A.; de Miguel-Pérez, D.; Ortega, F.G.; García-Puche, J.L.; Robles-Fernández, I.; Exposito, J.; Martorell-Marugan, J.; Carmona-Sáez, P.; Garrido-Navas, M.D.C.; Rolfo, C.; et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wang, Y.; Peng, J.; Yuan, C.; Zhou, L.; Xu, S.; Lin, Y.; Du, Y.; Yang, F.; et al. Serum miR-222-3p as a double-edged sword in predicting efficacy and trastuzumab-induced cardiotoxicity for HER2-positive breast cancer patients receiving neoadjuvant target therapy. Front. Oncol. 2020, 10, 631. [Google Scholar] [CrossRef]
- Li, H.; Yang, B.B. Friend or foe: The role of microRNA in chemotherapy resistance. Acta Pharmacol. Sin. 2013, 34, 870–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med. 2015, 3, 332. [Google Scholar] [CrossRef] [PubMed]
- Griñán-Lisón, C.; Olivares-Urbano, M.A.; Jiménez, G.; Ruiz, E.L.; del Val, C.; Morata-Tarifa, C.; Entrena, J.M.; González, G.J.; Boulaiz, H.; Herrera, M.Z.; et al. MiRNAs as radio-response biomarkers for breast cancer stem cells. Mol. Oncol. 2020, 14, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Muluhngwi, P.; Klinge, C.M. Roles for miRNAs in endocrine resistance in breast cancer. Endocr.-Relat. Cancer 2015, 22, R279–R300. [Google Scholar] [CrossRef] [Green Version]
- Casey, M.; Sweeney, K.J.; Brown, J.A.L.; Kerin, M.J. Exploring circulating micro-RNA in the neoadjuvant treatment of breast cancer. Int. J. Cancer 2016, 139, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Gong, C.; Xu, R.; Chen, Y.; Wang, X. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2. Cell. Mol. Biol. Lett. 2019, 24, 1–11. [Google Scholar] [CrossRef]
- Sha, L.-Y.; Zhang, Y.; Wang, W.; Sui, X.; Liu, S.-K.; Wang, T.; Zhang, H. MiR-18a upregulation decreases dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2201–2208. [Google Scholar]
- Hou, X.; Niu, Z.; Liu, L.; Guo, Q.; Li, H.; Yang, X.; Zhang, X. MiR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to taxol treatment via the suppression of LZTS1 expression. Oncol. Lett. 2019, 17, 990–998. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, A.; Tan, T.; Wang, Y.; Shen, Z. Overexpression of microRNA-620 facilitates the resistance of triple negative breast cancer cells to gemcitabine treatment by targeting DCTD. Exp. Ther. Med. 2019, 18, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tan, G.; Dong, L.; Cheng, L.; Li, K.; Wang, Z.; Luo, H. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE 2012, 7, e34210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roscigno, G.; Puoti, I.; Giordano, I.; Donnarumma, E.; Russo, V.; Affinito, A.; Adamo, A.; Quintavalle, C.; Todaro, M.; Vivanco, M.; et al. MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget 2017, 8, 19507–19521. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.-D.; Lv, M.-M.; Chen, W.-X.; Zhong, S.; Zhang, X.-H.; Chen, L.; Ma, T.-F.; Tang, J.-H.; Zhao, J.-H. Role of miR-155 in drug resistance of breast cancer. Tumor Biol. 2015, 36, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, X.; Li, T.; Ren, Q.; Li, L.; Sun, X.; Zhang, B.; Wang, X.; Han, H.; He, Y.; et al. MicroRNA-221 promotes breast cancer resistance to adriamycin via modulation of PTEN/Akt/mTOR signaling. Cancer Med. 2020, 9, 1544–1552. [Google Scholar] [CrossRef]
- Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015, 5, 1122–1143. [Google Scholar] [CrossRef]
- Svoronos, A.; Engelman, D.M.; Slack, F.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, C.; Rücker, F.G.; Buske, C.; Döhner, H.; Kuchenbauer, F. Targeted therapies through microRNAs: Pulp or fiction? Ther. Adv. Hematol. 2011, 3, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, X.; Yang, M.; Kan, Q.; Duan, Z. MiR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp. Cell Res. 2019, 380, 20–28. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, F.; Anuchapreeda, S.; Chaiwongsa, R.; Duangmano, S.; Ran, B.; Pornprasert, S. Effect of miR-133b on progression and cisplatin resistance of triple-negative breast cancer through FGFR1-wnt-β-catenin axis. Am. J. Transl. Res. 2021, 13, 5969–5984. [Google Scholar] [PubMed]
- Li, Y.; Zhang, L.; Dong, Z.; Xu, H.; Yan, L.; Wang, W.; Yang, Q.; Chen, C. MicroRNA-155-5p promotes tumor progression and contributes to paclitaxel resistance via TP53INP1 in human breast cancer. Pathol. Res. Pract. 2021, 220, 153405. [Google Scholar] [CrossRef]
- Mei, M.; Ren, Y.; Zhou, X.; Yuan, X.B.; Han, L.; Wang, G.X.; Jia, Z.; Pu, P.Y.; Kang, C.S.; Yao, Z. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol. Cancer Res. Treat. 2010, 9, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, X.; Cobb, G.; Anderson, T. MicroRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007, 302, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mollaei, H.; Safaralizadeh, R.; Rostami, Z. MicroRNA replacement therapy in cancer. J. Cell. Physiol. 2019, 234, 12369–12384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res. 2019, 38, 53. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, D.R.; Spoelstra, N.S.; Howe, E.N.; Nordeen, S.K.; Richer, J.K. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol. Cancer Ther. 2009, 8, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Deng, H.; Yao, H.; Liu, Q.; Su, F.; Song, E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010, 29, 4194–4204. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Yao, H.; Zhu, P.; Zhang, X.; Pan, Q.; Gong, C.; Huang, Y.; Hu, X.; Su, F.; Lieberman, J.; et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007, 131, 1109–1123. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, F.; Brown, R.A.; Ganda, C.; Giles, K.M.; Epis, M.R.; Horsham, J.; Leedman, P.J. MicroRNA-7: A tumor suppressor miRNA with therapeutic potential. Int. J. Biochem. Cell Biol. 2014, 54, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Wright, G.S.; et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.N.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Trial | N | Patients | Arms | Findings | Journal |
---|---|---|---|---|---|---|---|
Pegram [39] | 1998 | Phase II Clinical Trial | 39 | Refractory metastatic HER2+ breast cancer | IV trastuzumab combined with Cisplatin | Of 37 patients followed up, 24.3% (9/37) achieved a clinical PR and had SD, respectively, while 51.3% (19/37) suffered PD. Grade III/IV toxicity was observed in 56.4% (22/39) | Journal of Clinical Oncology |
Cobleigh [38] | 1999 | Phase II Clinical Trial | 213 | Refractory metastatic HER2+ breast cancer | IV trastuzumab | 8 patients achieved a CR (3.8%), 26 achieved a PR (12.2%), while 16 achieved an objective response (7.6%) | Journal of Clinical Oncology |
Baselga [43] | 1999 | Phase II Clinical Trial | 46 | Metastatic HER2+ | IV trastuzumab | Of 42 followed patients, 5 patients achieved an OR (11.6%, 5/42), specifically, 1 CR and 4 PR. | Seminars in Oncology |
Slamon [37] | 2001 | Phase III RCT, (PIVOTAL Trial) | 469 | Metastatic HER2+ breast cancer | AC vs. trastuzumab combined with AC | Combined trastuzumab and chemotherapy were associated with longer PFS (7.4 months vs. 4.6 months), a higher OR rate (50% vs. 32%), a longer duration of response (9.1 months vs. 6.1 months), a lower mortality rate at 12 months (22% vs. 33%) and prolonged survival (25.1 months vs. 20.3 months) (all p < 0.05). | New England Journal of Medicine |
Piccart-Gebhart [40] | 2005 | HERceptin Adjuvant (HERA) Phase III RCT (NCT00045032) | 5081 | Resected HER2+ breast cancer | trastuzumab alone for 2 years, trastuzumab combined with (neo)adjuvant chemotherapy for 1-year, 2 years. | Overall, there were 347 events (i.e.: recurrence, contralateral cancer, new primary, or death) of which 220 were in the observational group, compared with 127 in the trastuzumab group (HR:0.54). Cardiotoxicity was reported in 0.5% of patients treated with trastuzumab | New England Journal of Medicine |
Romond [44] | 2005 | Phase III RCT, NSABP B-031 & N9831 (NCT00004067 & NCT00005970) | 3351 | Operable HER2+ breast cancer | AC and Paclitaxel vs. trastuzumab combined with AC and Paclitaxel | Overall, there were 394 events (i.e.: recurrence, new primary, or death) of which 261 were in the observational group, compared with 133 in the trastuzumab group. At 3 years, the trastuzumab group had a 12% absolute improvement in DFS and a 33% reduction in mortality. | New England Journal of Medicine |
Joensuu [45] | 2006 | Phase III RCT—FinHer trial (ISRCTN76560285) | 232 | Locally advanced HER2+ breast cancer | Docetaxel or Vinorelbine, followed by FEC randomised to receive 9 trastuzumab infusions | In those treated with trastuzumab, they had enhanced 3-year RFS (HR: 0.42, 89% vs. 78%). | New England Journal of Medicine |
Untch [46] | 2010 | GeparQuattro Phase III RCT (NCT00288002) | 1509 | Operable or locally advanced HER2+ breast cancer | Neoadjuvant EC-T(X) with trastuzumab | pCR rates were 31.7% in those treated for HER2+ cancers, compared with 15.7% in other subtypes. Patients with no response following EC showed an unexpectedly high pCR rate following trastuzumab (16.6% vs. 3.3% in the reference group). Cardiac toxicity was comparable for both groups. | Journal of Clinical Oncology |
Slamon [34] | 2011 | Phase III RCT (NCT00021255) | 3222 | Early stage HER2+ breast cancer | AC-T vs. AC-T with trastuzumab, vs. TCH | 5-year DFS rates were 75%, 84%, and 81%, with respective estimated survival rates of 87%, 92%, and 91%. The rates of cardiac dysfunction were significantly higher in the AC-T and trastuzumab group vs. TCH (p < 0.001). | New England Journal of Medicine |
Baselga [47] | 2012 | NeoALLTO Phase III RCT (NCT00553358) | 455 | Early stage HER2+ breast cancer | Neoadjuvant lapatinib, trastuzumab, or combined lapatinib and trastuzumab | pCR rates were highest in the lapatinib and trastuzumab group (51.3%) vs. 29.5% and 24.7% in the trastuzumab and lapatinib groups, respectively. There were no major cardiac dysfunctions suffered. | Lancet |
Perez [48] | 2014 | Phase III RCT, NSABP B-031 & N9831 (NCT00004067 & NCT00005970) | 4046 | Operable HER2+ breast cancer | AC and Paclitaxel vs. trastuzumab combined with AC and Paclitaxel | Adding trastuzumab to chemotherapy enhanced survival (HR: 0.63), increasing the 10-year survival from 75.2% to 84.0%. Moreover, this enhanced DFS by 40% (HR: 0.40) and improved the estimated 10-year DFS from 62.2% to 73.7%. | Journal of Clinical Oncology |
Gianni [49] | 2014 | NeOAdjuvant Herceptin (NOAH) Phase III RCT (ISRCTN86043495) | 235 | Operable HER2+ breast cancer | NAC vs. NAC and trastuzumab, both received adjuvant trastuzumab | After 5 years of follow-up, patients treated with NAC and trastuzumab had an EFS of 58% vs. 43% in the NAC group (HR: 0.64). Of patients achieving a pCR (N = 67), 44 had received NAC and trastuzumab (66%) vs. 23 in those treated with NAC alone (34%). | Lancet Oncology |
Cameron [50] | 2017 | HERceptin Adjuvant (HERA) Phase III RCT (NCT00045032) | 5102 | Early stage HER2+ breast cancer | Post-treatment (i.e.: surgery, (neo)adjuvant chemotherapy): trastuzumab alone for 1-year vs. trastuzumab alone for 2 years, vs. observation group | Following 11 years follow up, 1-year of trastuzumab enhanced DFS (HR: 0.76) and death (HR: 0.74) vs. observation. Receiving trastuzumab for 2 years did not improve survival vs. 1-year of treatment (HR: 1.02). Estimations of survival were 69% for 1-year, 69% for 2 years, and 63% for observations. There were increased cardiac toxicities in those treated with trastuzumab (1-year rate 4.4% and 2-year rate of 7.3%) vs. observations (0.9%) | New England Journal of Medicine |
Earl [51] | 2019 | PERSEPHONE Phase III RCT (NCT00712140) | 4089 | Early stage HER2+ breast cancer | Post-treatment (i.e.: surgery, (neo)adjuvant chemotherapy): Adjuvant trastuzumab for 1-year vs. trastuzumab for 6 months | At 5 years follow up, treatment with 6-month of trastuzumab in the adjuvant setting is non-inferior to 12-month treatment after conventional treatment. Events were comparable for both groups (1-year: 12% vs. 6 months: 13%), with 4-year DFS rates of 89.4% and 89.8%, respectively (HR: 1.07). There were fewer toxicities reported in the 6-month group (19% vs. 24%) | New England Journal of Medicine |
Author | Year | Study | N | Patients | Arms | Findings | Journal |
---|---|---|---|---|---|---|---|
Fisher [58] | 1998 | NSABP B-018 phase III, RCT | 1523 | Locally advanced breast cancer | Neoadjuvant vs. adjuvant chemotherapy prescription | Overall, 13% achieved a pCR to NAC, 36% achieved a CCR, 43% achieved a PCR, and 37% of patients downstaged their axilla previously palpable LNs. Overall, patients after NAC were more likely to undergo successful BCS (67% vs. 60%, p = 0.002) | Journal of Clinical Oncology |
Mauri [68] | 2005 | Meta-analysis of RCTs | 3946 | Early breast cancer | NAC vs. adjuvant chemotherapy | There was no difference in DP (RR: 0.99), DR (RR: 0.94), or OS (RR: 1.00) outcomes for NAC vs. adjuvant therapy. However, there were increased LRR rates following NAC (RR: 1.22) | Journal of the National Cancer Institute |
Bear [61] | 2006 | NSABP B-027 phase III, RCT | 2411 | Early breast cancer | NAC (AC) and Docetaxel vs. AC alone | There were increased pCR rates and axillary downstaging with added neoadjuvant docetaxel, however failed to increase BCS rates, DFS, and OS outcomes overall. The addition of neoadjuvant Docetaxel increased pCR rates | Journal of Clinical Oncology |
Van Nes [69] | 2009 | Preoperative chemotherapy in Primary Operable Breast Cancer (POCOB) | 698 | Early breast cancer | NAC vs. adjuvant chemotherapy | At 10 years of follow-up, there was no observed difference in OS, DFS, or LRR (all P>0.05); however, NAC was associated with increased BCS rates | Breast Cancer Research and Treatment |
EBCTCG [55] | 2018 | Meta-analysis of RCTs | 4756 | Early breast cancer | NAC vs. adjuvant chemotherapy | At 15 years follow-up, NAC was associated with increased LRR rates (21.4% vs. 15.9%), however there was no difference in DR (38.2% vs. 38.0%), BCM (34.4% vs. 33.7%) and OS (40.9% vs. 41.2%) | Lancet Oncology |
Author | Year | Study | N | Patients | Treatment Arms | Findings | Journal |
---|---|---|---|---|---|---|---|
Muller [90] | 2014 | Prospective phase II Geparquinto Trial (NCT00567554) | 127 | Early stage HER2+ breast cancer | NAC with trastuzumab or lapatinib | Increased miR-21, miR-210, and miR-373 in patient’s serum following treatment with NAC correlated to response to treatment. | Breast Cancer Research and Treatment |
Xue [91] | 2015 | Prospective phase II clinical trial | 50 | Early stage breast cancer | Carboplatin and Paclitaxel | Increased miR-621 expression profiles predicted pCR to NAC | Oncogene |
Stevic [87] | 2018 | Prospective phase II clinical trial GeparSixto Trial (NCT01426880) | 211 | Early stage breast cancer | Docetaxel or Paclitaxel +/− Carboplatin | Aberrant miR-199a expression correlates to pCR following neoadjuvant therapies | BMC Cancer |
Zhu [92] | 2018 | Prospective phase II clinical trial (NCT02041338) | 24 | Operable breast cancer | Epirubicin & Docetaxel | After the second cycle of NAC, reduced miR-34a expression was correlated with patients who did not respond to treatment | Cancer Medicine |
Kahraman [93] | 2018 | Prospective, case–control study (MODE-B study) | 42 | Early stage TNBC breast cancer | Carboplatin and Paclitaxel | Identification of 74 miRNAs which predicted pCR based on changes in expression profiles pre- and post-NAC. | Scientific Reports |
Di Cosimo [80] | 2019 | NeoALLTO Phase III RCT (NCT00553358) | 455 | Early stage HER2+ breast cancer | Neoadjuvant lapatinib, trastuzumab, or combined lapatinib and trastuzumab | Increased circulating plasma levels of miR-140a-5p, miR-148a-3p and 374a-5p were associated with pCR and miR-140a-5p predicted enhanced EFS | Clinical Cancer Research |
Lindholm [94] | 2019 | Randomised, phase II clinical trial (NCT00773695) | 132 | Early stage HER2- breast cancer | FEC-T or FEC-P, +/− Bevacizumab | Hierarchical clustering of 627 miRNAs with response at 12 and 25 weeks to neoadjuvant treatment with NAC or NAC combined with Bevacizumab; of these, 217 had differential expression profiles (71 upregulated and 146 downregulated) between responders and non-responders. | Molecular Oncology |
Rodriguez-Martinez [95] | 2019 | Prospective clinical trial | 53 | Locally advanced and advanced breast cancer | AC | Exosomal expression of miR-21 correlated in a stepwise fashion with patients achieving a CR having significantly reduced miR-21 vs. patients with PR and SD, respectively. | Breast Cancer Research |
Di Cosimo [86] | 2020 | NeoALLTO Phase III RCT (NCT00553358) | 455 | Early stage HER2+ breast cancer | Neoadjuvant lapatinib, trastuzumab, or combined lapatinib and trastuzumab | After 2 weeks of neoadjuvant treatment, increased expression of miR-15a-5p, miR-140-3p, miR-320a, miR-320b, miR-363-3p, miR-378a-3p, miR-486-5p & miR-660-5p and decreased miR-30d-5p correlated with pCR to lapatinib. At 2 weeks of therapy, increased expression of miR-26a-5p & miR-374b-5p correlated with pCR to trastuzumab. Increased let-7g-5p & miR-191-5p and reduced miR-195-5p correlated with pCR to combined trastuzumab and lapatinib. | International Journal of Molecular Sciences |
McGuire [79] | 2020 | Prospective phase II clinical trial [CTRIAL-IE ICORG] 10/11 (NCT00553358 | 114 | Early stage breast cancer | Various NAC regimens | Responders had reduced miR-21 and miR-195 vs. non-responders in all breast cancer subtypes. MiR-21 independent predicted response (OR 0.538, 95% CI 0.308–0.943). In luminal cancers, reduced expression of miR-145 and miR-21 correlated with response to NAC. | Cancers (Basel) |
Zhang [96] | 2020 | Prospective phase II trials; SHPD001 (NCT02199418) & SHPH02 (NCT02221999) | 65 | Early stage HER2+ breast cancer | Paclitaxel, Cisplatin & trastuzumab | Low miR-222-3p expression was predictive of achieving pCR (OR: 0.258, 95% confidence interval: 0.070–0.958, p = 0.043) and favourable DFS and survival | Frontiers in Oncology |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davey, M.G.; Lowery, A.J.; Miller, N.; Kerin, M.J. MicroRNA Expression Profiles and Breast Cancer Chemotherapy. Int. J. Mol. Sci. 2021, 22, 10812. https://doi.org/10.3390/ijms221910812
Davey MG, Lowery AJ, Miller N, Kerin MJ. MicroRNA Expression Profiles and Breast Cancer Chemotherapy. International Journal of Molecular Sciences. 2021; 22(19):10812. https://doi.org/10.3390/ijms221910812
Chicago/Turabian StyleDavey, Matthew G., Aoife J. Lowery, Nicola Miller, and Michael J. Kerin. 2021. "MicroRNA Expression Profiles and Breast Cancer Chemotherapy" International Journal of Molecular Sciences 22, no. 19: 10812. https://doi.org/10.3390/ijms221910812
APA StyleDavey, M. G., Lowery, A. J., Miller, N., & Kerin, M. J. (2021). MicroRNA Expression Profiles and Breast Cancer Chemotherapy. International Journal of Molecular Sciences, 22(19), 10812. https://doi.org/10.3390/ijms221910812