Cryopreservation of Gametes and Embryos and Their Molecular Changes
Abstract
:1. Introduction
2. Vitrification and Slow-Freezing Procedures
2.1. General Principles
2.2. Effects of Cryopreservation in Germ Cells and Embryos
3. Molecular Alterations in Cryopreserved Embryos
3.1. Cellular Changes in Embryos
3.2. Proteomic Changes
3.3. Epigenetic Changes in Embryos
3.4. Transcriptomic and Genomic Changes in Embryos
3.5. Offspring Changes in Embryos
4. Molecular Alterations in Cryopreserved Oocytes
4.1. Cellular Changes in Oocytes
4.2. Proteomic Changes in Oocytes
4.3. Epigenetic Changes in Oocytes
4.4. Transcriptomic and Genomic Changes in Oocytes
5. Molecular Alterations in Cryopreserved Sperm
5.1. Cellular and Proteomic Changes in Sperm
5.2. Epigenetic Changes in Sperm
5.3. Genetic and Transcriptomic Changes in Sperm
6. Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barkay, J.; Zuckerman, H.; Heiman, M. A New, Pracitical Method of Freezing and Storing Human Sperm and a Preliminary Report on Its Use. Fertil. Steril. 1974, 25, 399–406. [Google Scholar] [CrossRef]
- Friberg, J.; Gemzell, C. Inseminations of Human Sperm after Freezing in Liquid Nitrogen Vapors with Glycerol or Glycerol--Egg-Yolk--Citrate as Protective Media. Am. J. Obstet. Gynecol. 1973, 116, 330–334. [Google Scholar] [CrossRef]
- Ali, J.; Alharbi, N.H.; Ali, N. Chapter 1 Historical Background on Gamete and Embryo Cryopreservation. Methods Mol. Biol. 2017, 1568, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Bunge, R.G.; Sherman, J.K. Fertilizing Capacity of Frozen Human Spermatozoa. Nature 1953, 172, 767–768. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.K. Synopsis of the Use of Frozen Human Semen Since 1964: State of the Art of Human Semen Banking. Fertil. Steril. 1973, 24, 397–412. [Google Scholar] [CrossRef]
- Perloff, W.H.; Steinberger, E. In Vivo Survival of Spermatozoa in Cervical Mucus. Am. J. Obstet. Gynecol. 1964, 88, 439–442. [Google Scholar] [CrossRef]
- Schill, W.B.; Trotnow, S. Use of Frozen Sperm for in Vitro Fertilization. A Case Report. Hautarzt Z. Dermatol. Venerol. Verwandte Geb. 1984, 35, 313–315. [Google Scholar]
- Byrd, W.; Bradshaw, K.; Carr, B.; Edman, C.; Odom, J.; Ackerman, G. A Prospective Randomized Study of Pregnancy Rates Following Intrauterine and Intracervical Insemination Using Frozen Donor Sperm. Fertil. Steril. 1990, 53, 521–527. [Google Scholar] [CrossRef]
- Levron, J.; Lightman, A.; Stein, D.W.; Brandes, J.M.; Itskovitz-Eldor, J. Pregnancy after Subzonal Insertion of Cryopreserved Spermatozoa from a Patient with Testicular Seminoma. Fertil. Steril. 1992, 58, 839–840. [Google Scholar] [CrossRef]
- Payne, D.; Flaherty, S.P.; Jeffrey, R.; Warnes, G.M.; Matthews, C.D. Successful Treatment of Severe Male Factor Infertility in 100 Consecutive Cycles Using Intracytoplasmic Sperm Injection. Hum. Reprod. 1994, 9, 2051–2057. [Google Scholar] [CrossRef]
- Whittingham, D.G. Survival of Mouse Embryos after Freezing and Thawing. Nature 1971, 233, 125–126. [Google Scholar] [CrossRef]
- Wilmut, I.; Rowson, L.E.A. Experiments on the Low Temperature Preservation of Cow Embryos. Vet. Rec. 1973, 92, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Bank, H.; Maurer, R.R. Survival of Frozen Rabbit Embryos. Exp. Cell Res. 1974, 89, 188–196. [Google Scholar] [CrossRef]
- Whittingham, D.G. Survival of Rat Embryos after Freezing and Thawing. J. Reprod. Fertil. 1975, 43, 575–578. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Oguri, N.; Tsutsumi, Y.; Hachinohe, Y. Experiments in the Freezing and Storage of Equine Embryos. J. Reprod. Fertil. Suppl. 1982, 32, 399–403. [Google Scholar] [PubMed]
- Pope, C.E.; Pope, V.Z.; Beck, L.R. Live Birth Following Cryopreservation and Transfer of a Baboon Embryo. Fertil. Steril. 1984, 42, 143–145. [Google Scholar] [CrossRef]
- Summers, P.M.; Shephard, A.M.; Taylor, C.T.; Hearn, J.P. The Effects of Cryopreservation and Transfer on Embryonic Development in the Common Marmoset Monkey, Callithrix Jacchus. J. Reprod. Fertil. 1987, 79, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Trounson, A.; Mohr, L. Human Pregnancy Following Cryopreservation, Thawing and Transfer of an Eight-Cell Embryo. Nature 1983, 305, 707–709. [Google Scholar] [CrossRef]
- Zeilmaker, G.H.; Alberda, A.T.; van Gent, I.; Rijkmans, C.M.; Drogendijk, A.C. Two Pregnancies Following Transfer of Intact Frozen-Thawed Embryos. Fertil. Steril. 1984, 42, 293–296. [Google Scholar] [CrossRef]
- Rall, W.F.; Fahy, G.M. Ice-Free Cryopreservation of Mouse Embryos at −196 °C by Vitrification. Nature 1985, 313, 573–575. [Google Scholar] [CrossRef]
- Ali, J. Chromosomal Analysis of Day-2 Human Embryos Vitrified with VS14. Med. Sci. Res. 1995, 23, 539–540. [Google Scholar] [CrossRef]
- Chen, C. Pregnancies after Human Oocyte Cryopreservation. Ann. N. Y. Acad. Sci. 1988, 541, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Cobo, A.; Domingo, J.; Pérez, S.; Crespo, J.; Remohí, J.; Pellicer, A. Vitrification: An Effective New Approach to Oocyte Banking and Preserving Fertility in Cancer Patients. Clin. Transl. Oncol. 2008, 10, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Porcu, E.; Ciotti, P.M.; Fabbri, R.; Magrini, O.; Seracchioli, R.; Flamigni, C. Birth of a Healthy Female after Intracytoplasmic Sperm Injection of Cryopreserved Human Oocytes. Fertil. Steril. 1997, 68, 724–726. [Google Scholar] [CrossRef]
- Nakagata, N. High Survival Rate of Unfertilized Mouse Oocytes after Vitrification. J. Reprod. Fertil. 1989, 87, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.Y. Pregnancy and Implantation from Vitrified Oocytes Following in Vitro Fertilization (IVF) and in Vitro Culture (IVC). Fertil. Steril. 1999, 72, S2. [Google Scholar]
- Iussig, B.; Maggiulli, R.; Fabozzi, G.; Bertelle, S.; Vaiarelli, A.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L. A Brief History of Oocyte Cryopreservation: Arguments and Facts. Acta Obstet. Gynecol. Scand. 2019, 98, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Noyes, N.; Porcu, E.; Borini, A. Over 900 Oocyte Cryopreservation Babies Born with No Apparent Increase in Congenital Anomalies. Reprod. Biomed. Online 2009, 18, 769–776. [Google Scholar] [CrossRef]
- Doyle, J.O.; Richter, K.S.; Lim, J.; Stillman, R.J.; Graham, J.R.; Tucker, M.J. Successful Elective and Medically Indicated Oocyte Vitrification and Warming for Autologous in Vitro Fertilization, with Predicted Birth Probabilities for Fertility Preservation According to Number of Cryopreserved Oocytes and Age at Retrieval. Fertil. Steril. 2016, 105, 459–466.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.D.; Silva, C.A.S.E. Developmental Consequences of Cryopreservation of Mammalian Oocytes and Embryos. Reprod. Biomed. Online 2004, 9, 171–178. [Google Scholar] [CrossRef]
- Kroløkke, C. Life in the Cryo-Kennel: The ‘Exceptional’ Life of Frozen Pet DNA. Soc. Stud. Sci. 2019, 49, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, T.B.; Hermes, R.; Goeritz, F.; Appeltant, R.; Colleoni, S.; de Mori, B.; Diecke, S.; Drukker, M.; Galli, C.; Hayashi, K.; et al. The ART of Bringing Extinction to a Freeze—History and Future of Species Conservation, Exemplified by Rhinos. Theriogenology 2021, 169, 76–88. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V. Art in Europe, 2014: Results Generated from European Registries by Eshre: The European Ivf-Monitoring Consortium (Eim) for the European Society of Human Reproduction and Embryology (Eshre). Hum. Reprod. 2018, 33, 1586–1601. [Google Scholar] [CrossRef] [PubMed]
- Gliozheni, O.; Hambartsoumian, E.; Strohmer, H.; Petrovskaya, E.; Tishkevich, O.; Bogaerts, K.; Wyns, C.; Balic, D.; Antonova, I.; Pelekanos, M.; et al. ART in Europe, 2016: Results Generated from European Registries by ESHRE. Hum. Reprod. Open 2020, 2020. [Google Scholar] [CrossRef]
- Zheng, D.; Zeng, L.; Yang, R.; Lian, Y.; Zhu, Y.M.; Liang, X.; Tang, L.; Wang, H.; Cao, Y.; Hao, G.; et al. Intracytoplasmic Sperm Injection (ICSI) versus Conventional in Vitro Fertilisation (IVF) in Couples with Non-Severe Male Infertility (NSMI-ICSI): Protocol for a Multicentre Randomised Controlled Trial. BMJ Open 2019, 9, e030366. [Google Scholar] [CrossRef] [Green Version]
- R Hart, R.N. The Longer-Term Health Outcomes for Children Born as a Result of Ivf Treatment: Part I–General Health Outcomes. Hum. Reprod. Update 2013, 19, 232–243. [Google Scholar] [CrossRef] [Green Version]
- JP Vermeiden, R.B. Are Imprinting Disorders More Prevalent after Juman in Vitro Fertilization or Intracytoplasmic Sperm Injection? Fertil. Steril. 2013, 99, 642–651. [Google Scholar] [CrossRef]
- Cortessis, V.K.; Azadian, M.; Buxbaum, J.; Sanogo, F.; Song, A.Y.; Sriprasert, I.; Wei, P.C.; Yu, J.; Chung, K.; Siegmund, K.D. Comprehensive Meta-Analysis Reveals Association between Multiple Imprinting Disorders and Conception by Assisted Reproductive Technology. J. Assist. Reprod. Genet. 2018, 35, 943–952. [Google Scholar] [CrossRef]
- Vrooman, L.A.; Bartolomei, M.S. Can Assisted Reproductive Technologies Cause Adult-Onset Disease? Evidence from Human and Mouse. Reprod. Toxicol. 2017, 68, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.M.; Mastenbroek, S.; Repping, S. Cryopreservation of Human Embryos and Its Contribution to in Vitro Fertilization Success Rates. Fertil. Steril. 2014, 102, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The Effect of Cryopreservation on the Genome of Gametes and Embryos: Principles of Cryobiology and Critical Appraisal of the Evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serdarogullari, M.; Coban, O.; Boynukalin, F.K.; Bilgin, E.M.; Findikli, N.; Bahceci, M. Successful Application of a Single Warming Protocol for Embryos Cryopreserved by Either Slow Freezing or Vitrification Techniques. Syst. Biol. Reprod. Med. 2019, 65, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Critser, J.K. Mechanisms of Cryoinjury in Living Cells. ILAR J. 2000, 41, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegg, D.E. Principles of Cryopreservation. Methods Mol. Biol. 2007, 368, 39–57. [Google Scholar] [CrossRef]
- Jeseta, M.; Zakova, J.; Ventruba, P.; Bartosz, K.; Crha, I. Cryopreservation of Human Gametes and Embryos: Current State and Future Perspectives. In Cryopreservation in Eukaryotes; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Wiesak, T.; Wasielak, M.; Złotkowska, A.; Milewski, R. Effect of Vitrification on the Zona Pellucida Hardening and Follistatin and Cathepsin B Genes Expression and Developmental Competence of in Vitro Matured Bovine Oocytes. Cryobiology 2017, 76, 18–23. [Google Scholar] [CrossRef]
- Jang, T.H.; Park, S.C.; Yang, J.H.; Kim, J.Y.; Seok, J.H.; Park, U.S.; Choi, C.W.; Lee, S.R.; Han, J. Cryopreservation and Its Clinical Applications. Integr. Med. Res. 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, D.C.; Borges, E.D.; Viana, I.G.R.; Navarro, P.A.; Vireque, A.A. Risk of Contamination of Gametes and Embryos during Cryopreservation and Measures to Prevent Cross-Contamination. BioMed Res. Int. 2017, 2017, 1840417. [Google Scholar] [CrossRef]
- Jin, B.; Mazur, P. High Survival of Mouse Oocytes/Embryos after Vitrification without Permeating Cryoprotectants Followed by Ultra-Rapid Warming with an IR Laser Pulse. Sci. Rep. 2015, 5, 9271. [Google Scholar] [CrossRef] [Green Version]
- Yavin, S.; Arav, A. Measurement of Essential Physical Properties of Vitrification Solutions. Theriogenology 2007, 67, 81–89. [Google Scholar] [CrossRef]
- Balaban, B.; Urman, B.; Ata, B.; Isiklar, A.; Larman, M.G.; Hamilton, R.; Gardner, D.K. A Randomized Controlled Study of Human Day 3 Embryo Cryopreservation by Slow Freezing or Vitrification: Vitrification Is Associated with Higher Survival, Metabolism and Blastocyst Formation. Hum. Reprod. 2008, 23, 1976–1982. [Google Scholar] [CrossRef] [Green Version]
- Rezazadeh Valojerdi, M.; Eftekhari-Yazdi, P.; Karimian, L.; Hassani, F.; Movaghar, B. Vitrification versus Slow Freezing Gives Excellent Survival, Post Warming Embryo Morphology and Pregnancy Outcomes for Human Cleaved Embryos. J. Assist. Reprod. Genet. 2009, 26, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Grifo, J.A.; Noyes, N. Delivery Rate Using Cryopreserved Oocytes Is Comparable to Conventional in Vitro Fertilization Using Fresh Oocytes: Potential Fertility Preservation for Female Cancer Patients. Fertil. Steril. 2010, 93, 391–396. [Google Scholar] [CrossRef]
- Edgar, D.H.; Gook, D.A. A Critical Appraisal of Cryopreservation (Slow Cooling versus Vitrification) of Human Oocytes and Embryos. Hum. Reprod. Update 2012, 18, 536–554. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, V.; Lappi, M.; Bonu, M.A.; Borini, A. Oocyte Slow Freezing Using a 0.2-0.3 M Sucrose Concentration Protocol: Is It Really the Time to Trash the Cryopreservation Machine? Fertil. Steril. 2012, 97, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.G.; Liu, Y.; Xing, Q.; Zhou, P.; Cao, Y. Cryopreservation of Human Failed-Matured Oocytes Followed by in Vitro Maturation: Vitrification Is Superior to the Slow Freezing Method. Reprod. Biol. Endocrinol. 2011, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Dalman, A.; Deheshkar Gooneh Farahani, N.S.; Totonchi, M.; Pirjani, R.; Ebrahimi, B.; Rezazadeh Valojerdi, M. Slow Freezing versus Vitrification Technique for Human Ovarian Tissue Cryopreservation: An Evaluation of Histological Changes, WNT Signaling Pathway and Apoptotic Genes Expression. Cryobiology 2017, 79, 29–36. [Google Scholar] [CrossRef]
- Konc, J.; Kanyó, K.; Kriston, R.; Somoski, B.; Cseh, S. Cryopreservation of Embryos and Oocytes in Human Assisted Reproduction. BioMed Res. Int. 2014, 2014, 307268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insogna, I.G.; Lanes, A.; Lee, M.S.; Ginsburg, E.S.; Fox, J.H. Association of Fresh Embryo Transfers Compared with Cryopreserved-Thawed Embryo Transfers with Live Birth Rate among Women Undergoing Assisted Reproduction Using Freshly Retrieved Donor Oocytes. JAMA J. Am. Med Assoc. 2021, 325, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Somoskoi, B.; Martino, N.A.; Cardone, R.A.; Lacalandra, G.M.; Dell’Aquila, M.E.; Cseh, S. Different Chromatin and Energy/Redox Responses of Mouse Morulae and Blastocysts to Slow Freezing and Vitrification. Reprod. Biol. Endocrinol. 2015, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; di Nardo, M.; Adiga, S.K.; Talevi, R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants 2021, 10, 337. [Google Scholar] [CrossRef]
- Hayashi, T.; Ueda, S.; Mori, M.; Baba, T.; Abe, T.; Iwata, H. Influence of Resveratrol Pretreatment on Thawed Bovine Embryo Quality and Mitochondrial DNA Copy Number. Theriogenology 2018, 106, 271–278. [Google Scholar] [CrossRef]
- Hayashi, T.; Kansaku, K.; Abe, T.; Ueda, S.; Iwata, H. Effects of Resveratrol Treatment on Mitochondria and Subsequent Embryonic Development of Bovine Blastocysts Cryopreserved by Slow Freezing. Anim. Sci. J. Nihon Chikusan Gakkaiho 2019, 90, 849–856. [Google Scholar] [CrossRef]
- Chen, Y.N.; Dai, J.J.; Wu, C.F.; Zhang, S.S.; Sun, L.W.; Zhang, D.F. Apoptosis and Developmental Capacity of Vitrified Parthenogenetic Pig Blastocysts. Anim. Reprod. Sci. 2018, 198, 137–144. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, J.; Wen, Y.; Li, Y.; Zhou, C.; Wang, Z. Effect of Embryo Vitrification on the Expression of Brain Tissue Proteins in Mouse Offspring. Gynecol. Endocrinol. 2020, 36, 973–977. [Google Scholar] [CrossRef]
- Qin, N.; Zhou, Z.; Zhao, W.; Zou, K.; Shi, W.; Yu, C.; Liu, X.; Dong, Z.; Mao, Y.; Liu, X.; et al. Abnormal Glucose Metabolism in Male Mice Offspring Conceived by in Vitro Fertilization and Frozen-Thawed Embryo Transfer. Front. Cell Dev. Biol. 2021, 9, 186. [Google Scholar] [CrossRef]
- Chen, M.; Norman, R.J.; Heilbronn, L.K. Does in Vitro Fertilisation Increase Type 2 Diabetes and Cardiovascular Risk? Curr. Diabetes Rev. 2011, 7, 426–432. [Google Scholar] [CrossRef]
- Coussa, A.; Hasan, H.A.; Barber, T.M. Impact of Contraception and IVF Hormones on Metabolic, Endocrine, and Inflammatory Status. J. Assist. Reprod. Genet. 2020, 37, 1267–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangiri, M.; Shahhoseini, M.; Movaghar, B. The Effect of Vitrification on Expression and Histone Marks of Igf2 and Oct4 in Blastocysts Cultured from Two-Cell Mouse Embryos. Cell J. 2018, 19, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.T.; Gardner, D.K. Antioxidants Increase Blastocyst Cryosurvival and Viability Post-Vitrification. Hum. Reprod. 2020, 35, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Cuello, C.; Martinez, C.A.; Cambra, J.M.; Parrilla, I.; Rodriguez-Martinez, H.; Gil, M.A.; Martinez, E.A. Effects of Vitrification on the Blastocyst Gene Expression Profile in a Porcine Model. Int. J. Mol. Sci. 2021, 22, 1222. [Google Scholar] [CrossRef]
- Kader, A.; Agarwal, A.; Abdelrazik, H.; Sharma, R.K.; Ahmady, A.; Falcone, T. THE EMBRYO Evaluation of Post-Thaw DNA Integrity of Mouse Blastocysts after Ultrarapid and Slow Freezing. Fertil. Steril. 2009, 91, 2087–2094. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Zhao, L.; Xia, X.; Wang, W. Comparison of DNA Apoptosis in Mouse and Human Blastocysts after Vitrification and Slow Freezing. Mol. Reprod. Dev. 2012, 79, 229–236. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Chen, S.; Zhu, W.J.; Shen, X.T.; Li, Y.B.; Zheng, J.X. Comparison of the Effects of Vitrification and Slow Freezing on the Growth and Development of Offspring Using a Mouse Model. Clin. Exp. Obstet. Gynecol. 2020, 47, 701–708. [Google Scholar] [CrossRef]
- Martínez-Burgos, M.; Herrero, L.; Megías, D.; Salvanes, R.; Montoya, M.C.; Cobo, A.C.; Garcia-Velasco, J.A. Vitrification versus Slow Freezing of Oocytes: Effects on Morphologic Appearance, Meiotic Spindle Configuration, and DNA Damage. Fertil. Steril. 2011, 95, 374–377. [Google Scholar] [CrossRef]
- Bromfield, J.J.; Coticchio, G.; Hutt, K.; Sciajno, R.; Borini, A.; Albertini, D.F. Meiotic Spindle Dynamics in Human Oocytes Following Slow-Cooling Cryopreservation. Hum. Reprod. 2009, 24, 2114–2123. [Google Scholar] [CrossRef] [Green Version]
- Luyet, B.J.; Hodapp, E.L. Revival of Frog’s Spermatozoa Vitrified in Liquid Air. Proc. Soc. Exp. Biol. Med. 1938, 39, 433–434. [Google Scholar] [CrossRef]
- Inhorn, M.C. The Egg Freezing Revolution? Gender, Technology, and Fertility Preservation in the Twenty-First Century. In Emerging Trends in the Social and Behavioral Sciences; Wiley: Hoboken, NJ, USA, 2017; pp. 1–14. [Google Scholar]
- Vogt, K.S.; Hughes, J.; Wilkinson, A.; Mahmoodi, N.; Skull, J.; Wood, H.; McDougall, S.; Slade, P.; Greenfield, D.M.; Pacey, A.; et al. Preserving Fertility in Women with Cancer (PreFer): Decision-Making and Patient-Reported Outcomes in Women Offered Egg and Embryo Freezing Prior to Cancer Treatment. Psychooncology 2018, 27, 2725–2732. [Google Scholar] [CrossRef]
- Larman, M.G.; Katz-Jaffe, M.G.; Sheehan, C.B.; Gardner, D.K. 1,2-Propanediol and the Type of Cryopreservation Procedure Adversely Affect Mouse Oocyte Physiology. Hum. Reprod. 2007, 22, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Lowther, K.M.; Weitzman, V.N.; Maier, D.; Mehlmann, L.M. Maturation, Fertilization, and the Structure and Function of the Endoplasmic Reticulum in Cryopreserved Mouse Oocytes. Biol. Reprod. 2009, 81, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, R.; Mollo, V.; Barbato, V.; Fiorentino, I.; Iaccarino, M.; Talevi, R. Ultrastructure and Intracellular Calcium Response during Activation in Vitrified and Slow-Frozen Human Oocytes. Hum. Reprod. 2011, 26, 2452–2460. [Google Scholar] [CrossRef] [Green Version]
- Nottola, S.A.; Albani, E.; Coticchio, G.; Palmerini, M.G.; Lorenzo, C.; Scaravelli, G.; Borini, A.; Levi-Setti, P.E.; Macchiarelli, G. Freeze/Thaw Stress Induces Organelle Remodeling and Membrane Recycling in Cryopreserved Human Mature Oocytes. J. Assist. Reprod. Genet. 2016, 33, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Yoon, S.Y.; Cha, S.K.; Kwak, K.H.; Fissore, R.A.; Parys, J.B.; Yoon, T.K.; Lee, D.R. Alterations in Calcium Oscillatory Activity in Vitrified Mouse Eggs Impact on Egg Quality and Subsequent Embryonic Development. Pflug. Arch. Eur. J. Physiol. 2011, 461, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Demant, M.; Trapphoff, T.; Fröhlich, T.; Arnold, G.J.; Eichenlaub-Ritter, U. Vitrification at the Pre-Antral Stage Transiently Alters Inner Mitochondrial Membrane Potential but Proteome of in Vitro Grown and Matured Mouse Oocytes Appears Unaffected. Hum. Reprod. 2012, 27, 1096–1111. [Google Scholar] [CrossRef] [Green Version]
- Um, D.E.; Shin, H.; Park, D.; Ahn, J.M.; Kim, J.; Song, H.; Lim, H.J. Molecular Analysis of Lipid Uptake-and Necroptosis-Associated Factor Expression in Vitrified-Warmed Mouse Oocytes. Reprod. Biol. Endocrinol. 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, R.; Iaccarino, M.; Mollo, V.; Prisco, M.; Iaccarino, S.; Talevi, R. Slow Cooling of Human Oocytes: Ultrastructural Injuries and Apoptotic Status. Fertil. Steril. 2009, 91, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Marchesi, D.; Qiao, J.; Feng, H.L. Effect of Slow Freeze versus Vitrification on the Oocyte: An Animal Model. Fertil. Steril. 2012, 98, 752.e3–760.e3. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, B.; Valojerdi, M.R.; Eftekhari-Yazdi, P.; Baharvand, H. In Vitro Maturation, Apoptotic Gene Expression and Incidence of Numerical Chromosomal Abnormalities Following Cryotop Vitrification of Sheep Cumulus-Oocyte Complexes. J. Assist. Reprod. Genet. 2010, 27, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Xiang, D.; Fu, X.; Shao, Q.; Hong, Q.; Quan, G.; Wu, G. Proteomic Changes of Porcine Oocytes After Vitrification and Subsequent in Vitro Maturation: A Tandem Mass Tag-Based Quantitative Analysis. Front. Cell Dev. Biol. 2020, 8, 1578. [Google Scholar] [CrossRef]
- Zhao, X.-M.; Ren, J.-J.; Du, W.-H.; Hao, H.-S.; Wang, D.; Qin, T.; Liu, Y.; Zhu, H.-B. Effect of Vitrification on Promoter CpG Island Methylation Patterns and Expression Levels of DNA Methyltransferase 1o, Histone Acetyltransferase 1, and Deacetylase 1 in Metaphase II Mouse Oocytes. Fertil. Steril. 2013, 100, 256–261. [Google Scholar] [CrossRef]
- Colombo, M.; Zahmel, J.; Jänsch, S.; Jewgenow, K.; Luvoni, G.C. Inhibition of Apoptotic Pathways Improves DNA Integrity but Not Developmental Competence of Domestic Cat Immature Vitrified Oocytes. Front. Vet. Sci. 2020, 7, 766. [Google Scholar] [CrossRef]
- Yan, L.-Y.; Yan, J.; Qiao, J.; Zhao, P.-L.; Liu, P. Effects of Oocyte Vitrification on Histone Modifications. Reprod. Fertil. Dev. 2010, 22, 920–925. [Google Scholar] [CrossRef]
- Spinaci, M.; Vallorani, C.; Bucci, D.; Tamanini, C.; Porcu, E.; Galeati, G. Vitrification of Pig Oocytes Induces Changes in Histone H4 Acetylation and Histone H3 Lysine 9 Methylation (H3K9). Vet. Res. Commun. 2012, 36, 165–171. [Google Scholar] [CrossRef]
- Maldonado, M.B.C.; Penteado, J.C.T.; Faccio, B.M.C.; Lopes, F.L.; Arnold, D.R. Changes in Tri-Methylation Profile of Lysines 4 and 27 of Histone H3 in Bovine Blastocysts after Cryopreservation. Cryobiology 2015, 71, 481–485. [Google Scholar] [CrossRef] [PubMed]
- de Munck, N.; Petrussa, L.; Verheyen, G.; Staessen, C.; Vandeskelde, Y.; Sterckx, J.; Bocken, G.; Jacobs, K.; Stoop, D.; de Rycke, M.; et al. Chromosomal Meiotic Segregation, Embryonic Developmental Kinetics and DNA (Hydroxy)Methylation Analysis Consolidate the Safety of Human Oocyte Vitrification. Mol. Hum. Reprod. 2015, 21, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Saunders, K.M.; Parks, J.E. Effects of Cryopreservation Procedures on the Cytology and Fertilization Rate of In Vitro-Matured Bovine Oocytes. Biol. Reprod. 1999, 61, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhou, W.; Chu, D.; Fu, L.; Sha, W.; Liu, S.; Li, Y. A Modified Vitrification Method Reduces Spindle and Chromosome Abnormalities. Syst. Biol. Reprod. Med. 2017, 63, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Chamayou, S.; Bonaventura, G.; Alecci, C.; Tibullo, D.; di Raimondo, F.; Guglielmino, A.; Barcellona, M.L. Consequences of Metaphase II Oocyte Cryopreservation on MRNA Content. Cryobiology 2011, 62, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Monzo, C.; Haouzi, D.; Roman, K.; Assou, S.; Dechaud, H.; Hamamah, S. Slow Freezing and Vitrification Differentially Modify the Gene Expression Profile of Human Metaphase II Oocytes. Hum. Reprod. 2012, 27, 2160–2168. [Google Scholar] [CrossRef]
- Kuhtz, J.; Romero, S.; de Vos, M.; Smitz, J.; Haaf, T.; Anckaert, E. Human in Vitro Oocyte Maturation Is Not Associated with Increased Imprinting Error Rates at LIT1, SNRPN, PEG3 and GTL2. Hum. Reprod. 2014, 29, 1995–2005. [Google Scholar] [CrossRef]
- Huo, Y.; Yuan, P.; Qin, Q.; Yan, Z.; Yan, L.; Liu, P.; Li, R.; Yan, J.; Qiao, J. Effects of Vitrification and Cryostorage Duration on Single-Cell RNA-Seq Profiling of Vitrified-Thawed Human Metaphase II Oocytes. Front. Med. 2021, 15, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Bogle, O.A.; Kumar, K.; Attardo-Parrinello, C.; Lewis, S.E.M.; Estanyol, J.M.; Ballescà, J.L.; Oliva, R. Identification of Protein Changes in Human Spermatozoa throughout the Cryopreservation Process. Andrology 2017, 5, 10–22. [Google Scholar] [CrossRef]
- Kao, S.H.; Chao, H.T.; Chen, H.W.; Hwang, T.I.S.; Liao, T.L.; Wei, Y.H. Increase of Oxidative Stress in Human Sperm with Lower Motility. Fertil. Steril. 2008, 89, 1183–1190. [Google Scholar] [CrossRef]
- Vatannejad, A.; Tavilani, H.; Sadeghi, M.R.; Karimi, M.; Lakpour, N.; Amanpour, S.; Shabani Nashtaei, M.; Doosti, M. Evaluation of the NOX5 Protein Expression and Oxidative Stress in Sperm from Asthenozoospermic Men Compared to Normozoospermic Men. J. Endocrinol. Investig. 2019, 42, 1181–1189. [Google Scholar] [CrossRef]
- Aitken, R.J.; de Iuliis, G.N.; Finnie, J.M.; Hedges, A.; McLachlan, R.I. Analysis of the Relationships between Oxidative Stress, DNA Damage and Sperm Vitality in a Patient Population: Development of Diagnostic Criteria. Hum. Reprod. 2010, 25, 2415–2426. [Google Scholar] [CrossRef] [Green Version]
- Lasso, J.L.; Noiles, E.E.; Alvarez, J.G.; Storey, B.T. Mechanism of Superoxide Dismutase Loss from Human Sperm Cells during Cryopreservation. J. Androl. 1994, 15, 255–265. [Google Scholar] [CrossRef]
- Toro, E.; Fernández, S.; Colomar, A.; Casanovas, A.; Álvarez, J.G.; López-Teijón, M.; Velilla, E. Processing of Semen Can Result in Increased Sperm DNA Fragmentation. Fertil. Steril. 2009, 92, 2109–2112. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, F.; Varanloo, N.; Heydari Nasrabadi, M.; Vatannejad, A.; Amjadi, F.S.; Javedani Masroor, M.; Bajelan, L.; Mehdizadeh, M.; Aflatoonian, R.; Zandieh, Z. Supplementation of Sperm Freezing Medium with Myoinositol Improve Human Sperm Parameters and Protects It against DNA Fragmentation and Apoptosis. Cell Tissue Bank. 2019, 20, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, N.; Mohammadi, M.; Mohammadi, H.; Khalatbari, A.; Zare, Z. Acrosome and Chromatin Integrity, Oxidative Stress, and Expression of Apoptosis-Related Genes in Cryopreserved Mouse Epididymal Spermatozoa Treated with L-Carnitine. Cryobiology 2020, 95, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Bath, M.L. Inhibition of in Vitro Fertilizing Capacity of Cryopreserved Mouse Sperm by Factors Released by Damaged Sperm, and Stimulation by Glutathione. PLoS ONE 2010, 5, e9387. [Google Scholar] [CrossRef] [PubMed]
- Zribi, N.; Chakroun, N.F.; ben Abdallah, F.; Elleuch, H.; Sellami, A.; Gargouri, J.; Rebai, T.; Fakhfakh, F.; Keskes, L.A. Effect of Freezing-Thawing Process and Quercetin on Human Sperm Survival and DNA Integrity. Cryobiology 2012, 65, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Paasch, U.; Sharma, R.K.; Gupta, A.K.; Grunewald, S.; Mascha, E.J.; Thomas, A.J.; Glander, H.J.; Agarwal, A. Cryopreservation and Thawing Is Associated with Varying Extent of Activation of Apoptotic Machinery in Subsets of Ejaculated Human Spermatozoa. Biol. Reprod. 2004, 71, 1828–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabulut, S.; Demiroǧlu-Zergeroǧlu, A.; Yllmaz, E.; Kutlu, P.; Keskin, I. Effects of Human Sperm Cryopreservation on Apoptotic Markers in Normozoospermic and Non-Normozoospermic Patients. Zygote 2018, 26, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, P.; Légaré, C.; Leclerc, P.; Sullivan, R. Membranous and Structural Damage That Occur during Cryopreservation of Human Sperm May Be Time-Related Events. Fertil. Steril. 2006, 85, 1744–1752. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Xu, Y.; Tang, M.; Fang, J.; Sun, H.; Sun, Y.; Gu, M.; Liu, Z.; Zhang, Z.; et al. Proteomic Characteristics of Human Sperm Cryopreservation. Proteomics 2014, 14, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Alshawa, E.; Laqqan, M.; Montenarh, M.; Hammadeh, M.E. Influence of Cryopreservation on the CATSPER2 and TEKT2 Expression Levels and Protein Levels in Human Spermatozoa. Toxicol. Rep. 2019, 6, 819–824. [Google Scholar] [CrossRef]
- Faraji, S.; Rashki Ghaleno, L.; Sharafi, M.; Hezavehei, M.; Totonchi, M.; Shahverdi, A.; Fathi, R. Gene Expression Alteration of Sperm-Associated Antigens in Human Cryopreserved Sperm. Biopreservation Biobanking 2021. [Google Scholar] [CrossRef]
- Marchiani, S.; Tamburrino, L.; Ricci, B.; Nosi, D.; Cambi, M.; Piomboni, P.; Belmonte, G.; Forti, G.; Muratori, M.; Baldi, E. SUMO1 in Human Sperm: New Targets, Role in Motility and Morphology and Relationship with DNA Damage. Reproduction 2014, 148, 453–467. [Google Scholar] [CrossRef] [Green Version]
- González-Rojo, S.; Fernández-Díez, C.; Lombó, M.; Herráez, M. Distribution of DNA Damage in the Human Sperm Nucleus: Implications of the Architecture of the Sperm Head. Asian J. Androl. 2020, 22, 401–408. [Google Scholar] [CrossRef]
- Valcarce, D.G.; Cartón-García, F.; Riesco, M.F.; Herráez, M.P.; Robles, V. Analysis of DNA Damage after Human Sperm Cryopreservation in Genes Crucial for Fertilization and Early Embryo Development. Andrology 2013, 1, 723–730. [Google Scholar] [CrossRef]
- Thomson, L.K.; Fleming, S.D.; Barone, K.; Zieschang, J.A.; Clark, A.M. The Effect of Repeated Freezing and Thawing on Human Sperm DNA Fragmentation. Fertil. Steril. 2010, 93, 1147–1156. [Google Scholar] [CrossRef]
- Amor, H.; Zeyad, A.; Alkhaled, Y.; Laqqan, M.; Saad, A.; ben Ali, H.; Hammadeh, M.E. Relationship between Nuclear DNA Fragmentation, Mitochondrial DNA Damage and Standard Sperm Parameters in Spermatozoa of Fertile and Sub-Fertile Men before and after Freeze-Thawing Procedure. Andrologia 2018, 50, e12998. [Google Scholar] [CrossRef]
- Aizpurua, J.; Medrano, L.; Enciso, M.; Sarasa, J.; Romero, A.; Fernández, M.A.; Gómez-Torres, M.J. New Permeable Cryoprotectant-Free Vitrification Method for Native Human Sperm. Hum. Reprod. 2017, 32, 2007–2015. [Google Scholar] [CrossRef]
- Grunewald, S.; Paasch, U.; Said, T.; Sharma, R.K.; Glander, H.-J.; Agarwal, A. Caspase Activation in Human Spermatozoa in Response to Physiological and Pathological Stimuli. Fertil. Steril. 2005, 83 (Suppl. 1), 1106–1112. [Google Scholar] [CrossRef]
- Ren, X.; Chen, X.; Wang, Z.; Wang, D. Is Transcription in Sperm Stationary or Dynamic? J. Reprod. Dev. 2017, 63, 439–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.; Wang, W.; Ali, M.A.; Wang, Y.; Zhang, Y.; Zhang, M.; Zhou, G.; Yang, J.; Zeng, C. Transcriptome-Wide M6A Profiling Reveals MRNA Post-Transcriptional Modification of Boar Sperm during Cryopreservation. BMC Genom. 2021, 22, 588. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Zhu, H.; Hao, H.; Zhao, X.; Qin, T.; Wang, D. Comparative Transcript Profiling of Gene Expression of Fresh and Frozen–Thawed Bull Sperm. Theriogenology 2015, 83, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, D.; Chang, Y.; Li, Y.; Zhang, M.; Zhou, G.; Peng, Z.; Zeng, C. Cryopreservation of Boar Sperm Induces Differential MicroRNAs Expression. Cryobiology 2017, 76, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-S.; Hara, H.; Chung, H.-J.; Hirabayashi, M.; Hochi, S. Rescue of Vitrified-Warmed Bovine Oocytes with Rho-Associated Coiled-Coil Kinase Inhibitor. Biol. Reprod. 2013, 89, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochi, S.; Abdalla, H.; Hara, H.; Shimoda, M.; Morita, H.; Kuwayama, M.; Hirabayashi, M. Stimulatory Effect of Rho-Associated Coiled-Coil Kinase (ROCK) Inhibitor on Revivability of in Vitro-Produced Bovine Blastocysts after Vitrification. Theriogenology 2010, 73, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Krawetz, R.; Liu, S.; Meng, G.; Rancourt, D.E. ROCK Inhibitor Improves Survival of Cryopreserved Serum/Feeder-Free Single Human Embryonic Stem Cells. Hum. Reprod. 2009, 24, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Vernardis, S.I.; Terzoudis, K.; Panoskaltsis, N.; Mantalaris, A. Human Embryonic and Induced Pluripotent Stem Cells Maintain Phenotype but Alter Their Metabolism after Exposure to ROCK Inhibitor. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Harrington, P.; Zhang, M.; Marjani, S.L.; Park, J.; Kuo, L.; Pribenszky, C.; Tian, X. (Cindy) Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Elo, M.; Sironen, R.; Lammi, M.; Goldring, M.B.; Eriksson, J.E.; Sistonen, L.; Helminen, H.J. Hsp70 Accumulation in Chondrocytic Cells Exposed to High Continuous Hydrostatic Pressure Coincides with MRNA Stabilization Rather than Transcriptional Activation. Proc. Natl. Acad. Sci. USA 1998, 95, 2319–2324. [Google Scholar] [CrossRef] [Green Version]
- Pribenszky, C.; Molnár, M.; Cseh, S.; Solti, L. Improving Post-Thaw Survival of Cryopreserved Mouse Blastocysts by Hydrostatic Pressure Challenge. Anim. Reprod. Sci. 2005, 87, 143–150. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Forouzanfar, M.; Hajian, M.; Asgari, V.; Abedi, P.; Hosseini, L.; Ostadhosseini, S.; Moulavi, F.; Langrroodi, M.S.; Sadeghi, H.M.-M.; et al. Antioxidant Supplementation of Culture Medium during Embryo Development and/or after Vitrification-Warming; Which Is the Most Important? J. Assist. Reprod. Genet. 2009, 26, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, I.-S.; Hochi, S. Recent Progress in Cryopreservation of Bovine Oocytes. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Len, J.S.; Koh, W.S.D.; Tan, S.-X. The Roles of Reactive Oxygen Species and Antioxidants in Cryopreservation. Biosci. Rep. 2019, 39, 20191601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciorio, R.; Esteves, S.C. Clinical Utility of Freeze-All Approach in ART Treatment: A Mini-Review. Cryobiology 2020, 92, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Roque, M.; Valle, M.; Kostolias, A.; Sampaio, M.; Geber, S. Freeze-All Cycle in Reproductive Medicine: Current. JBRA Assist. Reprod. 2017, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of Germline-Competent Induced Pluripotent Stem Cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Yamashiro, C.; Sasaki, K.; Yabuta, Y.; Kojima, Y.; Nakamura, T.; Okamoto, I.; Yokobayashi, S.; Murase, Y.; Ishikura, Y.; Shirane, K.; et al. Generation of Human Oogonia from Induced Pluripotent Stem Cells in Vitro. Science 2018, 362, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-Castrejon, A.; Oldak, B.; Shani, T.; Ghanem, N.; Itzkovich, C.; Slomovich, S.; Tarazi, S.; Bayerl, J.; Chugaeva, V.; Ayyash, M.; et al. Ex Utero Mouse Embryogenesis from Pre-Gastrulation to Late Organogenesis. Nature 2021, 593, 119–124. [Google Scholar] [CrossRef]
- Rienzi, L.F.; Iussig, B.; Dovere, L.; Fabozzi, G.; Cimadomo, D.; Ubaldi, F.M. Perspectives in Gamete and Embryo Cryopreservation. Semin. Reprod. Med. 2018, 36, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Takayama, S. Application of Microfluidic Technologies to Human Assisted Reproduction. Mol. Hum. Reprod. 2017, 23, 257–268. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estudillo, E.; Jiménez, A.; Bustamante-Nieves, P.E.; Palacios-Reyes, C.; Velasco, I.; López-Ornelas, A. Cryopreservation of Gametes and Embryos and Their Molecular Changes. Int. J. Mol. Sci. 2021, 22, 10864. https://doi.org/10.3390/ijms221910864
Estudillo E, Jiménez A, Bustamante-Nieves PE, Palacios-Reyes C, Velasco I, López-Ornelas A. Cryopreservation of Gametes and Embryos and Their Molecular Changes. International Journal of Molecular Sciences. 2021; 22(19):10864. https://doi.org/10.3390/ijms221910864
Chicago/Turabian StyleEstudillo, Enrique, Adriana Jiménez, Pablo Edson Bustamante-Nieves, Carmen Palacios-Reyes, Iván Velasco, and Adolfo López-Ornelas. 2021. "Cryopreservation of Gametes and Embryos and Their Molecular Changes" International Journal of Molecular Sciences 22, no. 19: 10864. https://doi.org/10.3390/ijms221910864
APA StyleEstudillo, E., Jiménez, A., Bustamante-Nieves, P. E., Palacios-Reyes, C., Velasco, I., & López-Ornelas, A. (2021). Cryopreservation of Gametes and Embryos and Their Molecular Changes. International Journal of Molecular Sciences, 22(19), 10864. https://doi.org/10.3390/ijms221910864