Optimization of Sperm Cryopreservation Formulation in Portunus trituberculatus
Abstract
:1. Introduction
2. Results
2.1. Sperm Collection
2.2. The Morphological Evaluation of Sperm
2.3. Cryopreservation of Sperm in P. trituberculatus
2.3.1. Effects of Different Kinds and Concentrations of Cryoprotectants
2.3.2. Effects of Different Equilibrium Times at 4 °C
2.3.3. Effects of Different Cooling Procedures on Cryopreservation
2.3.4. Effects of Different Thawing Temperatures
2.3.5. Effects of Different Freezing Times on Cryopreservation
2.4. Gene Expression and Enzyme Activity Analysis of Fresh and Frozen Sperm
2.4.1. Sperm-Related Gene Expression of Fresh and Frozen Sperm
2.4.2. Enzyme Activity Analysis of Fresh and Frozen Sperm
3. Discussion
3.1. Comparison of Different Methods of Acquiring Free Sperm of P. trituberculatus
3.2. The Most Suitable Cryopreservation Conditions of Sperm in P. trituberculatus
3.2.1. The Most Suitable Cryoprotectants
3.2.2. The Most Suitable Equilibrium Times at 4 °C
3.2.3. The Most Suitable Cooling Procedures and Thawing Temperatures
3.3. Sperm Cryopreservation Damages the Sperm of P. trituberculatus
3.4. Optimal Sperm Cryopreservation Formulation and Its Application
4. Materials and Methods
4.1. Spermatophore Collection
4.2. Sperm Collection
4.2.1. Trypsin Digestion Method
4.2.2. Mesh-Rubbing Method
4.2.3. Mechanical Grinding Method
4.3. Sperm Viability Assessment
4.4. Screening of Cryopreservation Conditions for Sperm of P. trituberculatus
4.4.1. Different Kinds and Concentrations of Cryoprotectants
4.4.2. Different Balancing Times at 4 °C
4.4.3. Different Heights and Times for the Two-Step Temperature-Reduction Method
4.4.4. Different Thawing Temperatures and Freezing Times
4.5. Gene Expression and Enzyme Activity Analysis of Fresh and Frozen Sperm
4.5.1. Sperm-Related Gene Expression of Sperm in P. trituberculatus
4.5.2. Enzyme Activity Analysis of Fresh and Frozen Sperm
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamasaki, K.; Fukunaga, K.; Kitada, S. Batch fecundity of the swimming crab Portunus trituberculatus (Brachyura: Portunidae). Aquaculture 2006, 253, 359–365. [Google Scholar] [CrossRef]
- Zhang, X.S.; Huang, C.K.; Guo, C.; Xie, S.C.; Luo, J.X.; Zhu, T.T.; Yuan, Y.; Jin, M.; Zhou, Q.C. Effect of dietary carbohydrate sources on the growth, glucose metabolism and insulin pathway for swimming crab, Portunus trituberculatus. Aquac. Rep. 2021, 21, 100967. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, X.; Shang, D.; Zhai, Y.; Ning, J.; Ding, H.; Sheng, X. Study of Cd Content Distribution and Its Bioaccessibility in Edible Tissues of Crab Portunus trituberculatus from the Coastal Area of Shandong, China. Biol. Trace. Elem. Res. 2020, 197, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, J.; Chen, R.S.; Huang, J.X.; Zuo, T.; Luan, Q.S.; Jin, X.S. Biological characteristics, temporal-spatial distribution of Portunus trituberculatus and relationships between its density and impact factors in Laizhou Bay, Bohai Sea, China. J. Appl. Ecol. 2016, 27, 1993–2001. [Google Scholar] [CrossRef]
- Ng’ambi, J.W.; Li, R.; Mu, C.; Song, W.; Liu, L.; Wang, C. Dietary administration of saponin stimulates growth of the swimming crab Portunus trituberculatus and enhances its resistance against Vibrio alginolyticus infection. Fish Shellfish Immunol. 2016, 59, 305–311. [Google Scholar] [CrossRef]
- Liu, X.; Lei, Y.; Ren, Z.; Zhou, S.; Qian, D.; Yu, Y.; Yin, F.; Wang, C. Isolation, characterization and virulence of Mesanophrys sp. (Ciliophora: Orchitophryidae) in farmed swimming crab (Portunus trituberculatus) in eastern China. J. Fish Dis. 2020, 43, 1419–1429. [Google Scholar] [CrossRef]
- Yoshida, M. Conservation of sperms: Current status and new trends. Anim. Reprod. Sci. 2000, 60–61, 349–355. [Google Scholar] [CrossRef]
- Okutsu, T.; Yano, A.; Nagasawa, K.; Shikina, S.; Kobayashi, T.; Takeuchi, Y.; Yoshizaki, G. Manipulation of fish germ cell: Visualization, cryopreservation and transplantation. J. Reprod. Dev. 2006, 52, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, C.; Westerfield, M.; Varga, Z.M. Cryopreservation and in vitro fertilization at the zebrafish international resource center. Methods Mol. Biol. 2009, 546, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hu, J. Research progress on cryopreservation of laboratory animal resources. Mod. J. Anim. Husb. Vet. Med. 2017, 5, 25–30. [Google Scholar]
- Cabrita, E.; Sarasquete, C.; Martínez-Páramo, S.; Robles, V.; Beiro, J.; Pérez-Cerezales, S.; Herraez, M.P. Cryopreservation of fish sperm: Applications and perspectives. J. Appl. Ichthyol. 2010, 26, 623–635. [Google Scholar] [CrossRef]
- Asturiano, J.F.; Cabrita, E.; Horváth, Á. Progress, challenges and perspectives on fish gamete cryopreservation: A mini-review. Gen. Comp. Endocrinol. 2017, 245, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Bhavanishankar, S.; Subramoniam, T. Cryopreservation of spermatozoa of the edible mud crab Scylla serrata (Forskal). J. Exp. Zool. 1997, 277, 326–336. [Google Scholar] [CrossRef]
- Holt, W.V. Alternative strategies for the long-term preservation of spermatozoa. Reprod. Fertil. Dev. 1997, 9, 309–319. [Google Scholar] [CrossRef]
- Anger, J.T.; Gilbert, B.R.; Goldstein, M. Cryopreservation of sperm: Indications, methods and results. J. Urol. 2003, 170, 1079–1084. [Google Scholar] [CrossRef]
- Mocé, E.; Vicente, J.S. Rabbit sperm cryopreservation: A review. Anim. Reprod. Sci. 2009, 110, 1–24. [Google Scholar] [CrossRef]
- Sharma, R.; Kattoor, A.J.; Ghulmiyyah, J.; Agarwal, A. Effect of sperm storage and selection techniques on sperm parameters. Syst. Biol. Reprod. Med. 2015, 61, 1–12. [Google Scholar] [CrossRef]
- Bhakat, M.; Mohanty, T.K.; Raina, V.S.; Gupta, A.K.; Khan, H.M. Frozen semen production performance of Murrah buffalo bull. Buffalo Bull. 2011, 30, 157–162. Available online: https://www.researchgate.net/publication/265726836 (accessed on 10 March 2022).
- Liu, Y.; Li, X.; Robinson, N.; Qin, J. Sperm cryopreservation in marine mollusk: A review. Aquacult. Int. 2015, 23, 1505–1524. [Google Scholar] [CrossRef]
- Li, J.C.; Ke, W.J.; Yang, H.; Yu, H.; Yang, Y. Research progress of cryopreservation technology applied to fish sperm preservation. Jiangsu Agric. Sci. 2019, 47, 66–69. [Google Scholar] [CrossRef]
- Nimrat, S.; Siriboonlamom, S.; Zhang, S.; Xu, Y.; Vuthiphandchai, V. Chilled storage of white shrimp (Litopenaeus vannamei) spermatophores. Aquaculture 2006, 261, 944–951. [Google Scholar] [CrossRef]
- Kang, X.; Li, G.; Mu, S.; Guo, M.; Ge, S. Acrosome reaction of Chinese mitten-handed crab Eriocheir sinensis (Crustacea: Decapoda) spermatozoa: Promoted by long-term cryopreservation. Aquaculture 2009, 295, 195–199. [Google Scholar] [CrossRef]
- Dunn, R.S.; McLachlan, J. Cryopreservation of echinoderm sperm. Can. J. Zool. 1973, 51, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Asahina, E.; Takahashi, T. Freezing tolerance in embryos and spermatozoa of the sea urchin. Cryobiology 1978, 15, 122–127. [Google Scholar] [CrossRef]
- Ieropoli, S.; Masullo, P.; Santo, M.; Sansone, G. Effects of extender composition, cooling rate and freezing on the fertilisation viability of spermatozoa of the Pacific oyster (Crassostrea gigas). Cryobiology 2004, 49, 250–257. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, C.; Eudeline, B.; Tiersch, T.R. Systematic factor optimization for cryopreservation of shipped sperm samples of diploid pacific oysters, Crassostrea gigas. Cryobiology 2005, 51, 176–197. [Google Scholar] [CrossRef]
- Xu, S.; Sun, J.C.; Liu, S.L.; Lin, C.G.; Zhang, L.B.; Sun, L.N.; Yang, H.S. Progress in research on cryopreservation technology for echinoderm sperm. Prog. Fish. Sci. 2021, 42, 26–37. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Li, J.; Zhou, Z.; Du, Y.; Lin, M.; Sha, J. Involvement of ALF in human spermatogenesis and male infertility. Int. J. Mol. Med. 2006, 17, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Winkler, S.; Hedrich, C.M.; Rösen-Wolff, A. Caspase-1 regulates autoinflammation in rheumatic diseases. Z. Rheumatol. 2016, 75, 265–275. [Google Scholar] [CrossRef]
- Stuchell-Brereton, M.D.; Siglin, A.; Li, J.; Ahmed, S.; Williams, J.C.; Cooper, J.A. Functional interaction between dynein light chain and intermediate chain is required for mitotic spindle positioning. Mol. Biol. Cell 2011, 22, 2690–2701. [Google Scholar] [CrossRef]
- Wei, C.G.; Mu, D.L.; Tang, D.J.; Zhu, J.Q.; Hou, C.C. Expression and functional analysis of cytoplasmic dynein during spermatogenesis in Portunus trituberculatus. Cell Tissue Res. 2021, 386, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Xiang, Q.M.; Zhu, J.Q.; Chen, Y.E.; Tang, D.J.; Zhang, C.D.; Hou, C.C. Transport of Acrosomal Enzymes by KIFC1 via the Acroframosomal Cytoskeleton during Spermatogenesis in Macrobrachium rosenbergii (Crustacea, Decapoda, Malacostracea). Animals 2022, 12, 991. [Google Scholar] [CrossRef]
- Yang, W.X. A review of organelle changes and functions during spermatogenesis of decapod crustacean. Donghai Marine Science 1998, 16, 53–57. [Google Scholar]
- Amadio, L.M.; Mantelatto, F.L. Description of the Male Reproductive System of the Hermit Crab Calcinus Tibicen (Decapoda: Anomura: Diogenidae). J. Crustacean Biol. 2009, 2009, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, A.; Harlıoğlu, M.M.; Gür, S. Artificial extrusion of spermatophores for insemination of the narrow-clawed crayfish Pontastacus leptodactylus (Eschscholtz, 1823). Aquac. Rep. 2019, 14, 100200. [Google Scholar] [CrossRef]
- Vuthiphandchai, V.; Nimrat, S.; Kotcharat, S.; Bart, A.N. Development of a cryopreservation protocol for long-term storage of black tiger shrimp (Penaeus monodon) spermatophores. Theriogenology 2007, 68, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, A.; Harlıoğlu, A.G. Molecular and cellular biology of the crayfish spermatozoon: Toward development of artificial reproduction in aquaculture. Rev. Fish. Sci. Aquac. 2019, 27, 198–214. [Google Scholar] [CrossRef]
- Lezcano, M.; Granja, C.; Salazar, M. The use of flow cytometry in the evaluation of cell viability of cryopreserved sperm of the marine shrimp (Litopenaeus vannamei). Cryobiology 2004, 48, 349–356. [Google Scholar] [CrossRef]
- Xu, X.H.; Yan, B.L.; Xu, J.T.; Xu, G.C.; Pu, Y.F.; Xu, J.H. Cryopreservation of spermatozoa in japanese swimming crab Charybdis japonica. Fish. Sci. 2010, 29, 601–604. [Google Scholar] [CrossRef]
- Chen, D.H. Cryopreervation of Spermatozoa of Eriocheir sinensis. Master’s Thesis, East China Normal University, Shanghai, China, 2006. [Google Scholar]
- Liu, C.L.; Zou, Y.; Wu, Y.Y.; Wang, Y.J.; Liu, T.; Song, A.H.; Tang, X.X.; Liu, H.J. Study on the isolation and cryopreservation of the sperms of Charybdis japonica. J. Ocean Univ. Qingdao 2020, 50, 87–93. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Q.; Li, K.; Ding, Y. Comparative study of trypsinase digestion and homogenization in acquiring free sperms from (Chinese). J. East China Norm. Univ. Shanghai 2006, 2, 82–87. [Google Scholar]
- Zhang, B.; Wei, P.Y.; Xiong, J.H.; Chen, X.H.; Zhao, Y.Z.; Xie, D.X. Preliminary study on semen preparation and sperm quality evaluation of Ltiopenaeus vannamei. Southwest China J. Agric. Sci. 2014, 45, 489–493. [Google Scholar]
- Niksirat, H.; Kouba, A.; Kozák, P. Post-mating morphological changes in the spermatozoon and spermatophore wall of the crayfish Astacus leptodactylus: Insight into a non-motile spermatozoon. Anim. Reprod. Sci. 2014, 149, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Misamore, M.; Jiang, C.Q.; Browdy, C.L. Egg water induced reaction and biostain assay of sperm from marine shrimp Penaeus vannamei: Dietary effects on sperm quality. J. World Aquacult. soc. 2010, 26, 261–271. [Google Scholar] [CrossRef]
- Anchordoguy, T.; Crowe, J.H.; Griffin, F.J.; Clark, W.H. Cryopreservation of sperm from the marine shrimp Sicyonia ingentis. Cryobiology 1988, 25, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L.; Liu, X.T.; Lu, D.C.; Zhang, L.Z.; Fang, J.P. Cryopreservation of spermatozoa of silver carp, common carp, blunt snout bream and grass carp. Acta. Zool. 1992, 38, 413–424. [Google Scholar]
- Guan, W.B.; Wang, G.Z.; Li, S.J.; Chen, G.F. Cryopreservation of spermatozoa of mud crab (Scylla serrata) and viability assay by biostain method. J. Oceanogr. Taiwan Strait 2002, 21, 457–462. [Google Scholar]
- Jia, P.Y.; Guo, H.Y.; Zhu, K.C.; Liu, B.S.; Guo, L.; Zhang, N.; Jiang, S.G.; Zhang, D.C. Cryopreservation of sperm of Acanthopagrus latus. South China Fish. Sci. 2021, 17, 58–65. [Google Scholar] [CrossRef]
- Hyne, R.V. Bicarbonate- and calcium-dependent induction of rapid guinea pig sperm acrosome reactions by monovalent ionophores. Biol. Reprod. 1984, 31, 312–323. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.F.; Cai, N.E. Cryopreservation of Spermatozoa from the Marine Shrimp Penaeus Chinensis. Oceanol. Limnol. Sin. 1996, 27, 187–193. [Google Scholar]
- Liao, X.; Ge, J.C.; Ding, S.Y.; Chen, C.J.; Lu, Q.P.; Huang, Y.H. Study on cryopreservation of the sperm of freshwater prawn Macrobrachium nipponense (crustacea, decapoda). J. Nanjing Univ. 2008, 44, 421–426. [Google Scholar]
- Santana, J.; Cabrita, E.; Eggen, B.; Beirão, J. Step by step optimization of a sperm cryopreservation protocol for spotted wolffish (Anarhichas minor Olafsen, 1772). Theriogenology 2020, 149, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhu, D.F.; Wang, C.L.; Xue, L.Y. Preservation of spermatozoa of blue crab Portunus trituberculatus. Mar. Sci. 2007, 31, 37–42. [Google Scholar]
- Arita, K.; Takamatsu, S.; Isowa, K.; Aoki, H.; Ohta, H. Development of a novel non-programmable cryopreservation method capable of accurate cooling rate manipulation. Aquaculture 2018, 484, 145–151. [Google Scholar] [CrossRef]
- Yang, C.L.; Zhao, Y.Z.; Chen, X.L.; Li, Y.M.; Peng, M.; Yang, Y.H.; He, P.P.; Chen, X.H. Spermatozoa cryopreservation of Litopenaeus vannamei. J. South Agric. 2013, 44, 1382–1389. [Google Scholar] [CrossRef]
- Watson, P.F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 2000, 60–61, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Cartón-García, F.; Riesco, M.F.; Cabrita, E.; Herráez, M.P.; Robles, V. Quantification of lesions in nuclear and mitochondrial genes of Sparus aurata cryopreserved sperm. Aquaculture 2013, 402–403, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Robles, V.; Herráez, P.; Labbé, C.; Cabrita, E.; Pšenička, M.; Valcarce, D.G.; Riesco, M.F. Molecular basis of spermatogenesis and sperm quality. Gen. Comp. Endocrinol. 2017, 245, 5–9. [Google Scholar] [CrossRef]
- Guerriero, G.; Trocchia, S.; Abdel-Gawad, F.K.; Ciarcia, G. Roles of reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. 2014, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Graddis, T.J.; McMahan, C.J.; Tamman, J.; Page, K.J.; Trager, J.B. Prostatic acid phosphatase expression in human tissues. Int. J. Clin. Exp. Pathol. 2011, 4, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Imlay, J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77, 755–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Zhang, J.; Wang, Y.; Chen, J.; Liang, C.; Li, R.; Li, Q. Non-specific immune factors differences in coelomic fluid from polian vesicle and coelom of Apostichopus japonicus, and their early response after evisceration. Fish Shellfish Immunol. 2020, 98, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical-induced damage to DNA: Mechanisms and measurement. Free Radic. Biol. Med. 2002, 32, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cederbaum, A.I. Alcohol, oxidative stress, and free radical damage. Alcohol. Res. Health 2003, 27, 277–284. [Google Scholar] [PubMed]
- Lopes, F.; Pinto-Pinho, P.; Gaivão, I.; Martins-Bessa, A.; Gomes, Z.; Moutinho, O.; Oliveira, M.M.; Peixoto, F.; Pinto-Leite, R. Sperm DNA damage and seminal antioxidant activity in subfertile men. Andrologia 2021, 53, e14027. [Google Scholar] [CrossRef]
- Afromeev, V.I.; Tkachenko, V.N. Change in the percent of lactate dehydrogenase isoenzyme level in testes of animals exposed to superhigh frequency radiation. Biofizika 1999, 44, 931–932. [Google Scholar] [PubMed]
- Liu, C.; Ren, Y.S.; Zhang, C.X.; Yue, W.B. Correlation Analysis of Antioxidant Enzyme Activity and Sperm Motility in Goat Seminal. China Herbiv. Sci. 2010, 30, 20–23. [Google Scholar]
- Yang, Z.L.; Choi, H. Single-Cell, Time-Lapse Reactive Oxygen Species Detection in E. coli. Curr. Protoc. Cell Biol. 2018, 80, e60. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, Y.; Terasaki, M.; Shimizu, A. Protective Effects of Hydrogen against Irradiation. Curr. Pharm. Des. 2021, 27, 679–686. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, P.; Cai, M.; Wu, D.; Zhang, M.; Chen, M.; Zhao, Y. Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir sinensis. Sci. Total Environ. 2019, 685, 836–846. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, Y.; Yan, G.; Pan, C.; Zhang, J. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate. Fish Shellfish Immunol. 2019, 86, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.M.; Wei, C.G.; Gao, X.M.; Chen, Y.E.; Tang, D.J.; Zhu, J.Q.; Hou, C.C. Molecular Cloning of Dynein Heavy Chain and the Effect of Dynein Inhibition on the Testicular Function of Portunus trituberculatus. Animals 2021, 11, 3582. [Google Scholar] [CrossRef] [PubMed]
Collection of Sperm | Extender and Cryoprotectants and Dilution Ration | Equilibration Time and Freezing Vessel | Cooling Procedure and Thawing Conditions |
---|---|---|---|
Mesh-rubbing method | Sterile Ca2+-free artificial seawater; 20% glycerol; 1:1 | 15 min at 4 °C; 0.25 mL straw | 15 min at 3.5 cm above the liquid nitrogen surface, then put into liquid nitrogen; 42 °C water bath |
Primer Name | Sequence (5′ to 3′) | Purpose |
---|---|---|
ALF-F | ACAACGACTCGGTGGACTTCA | qPCR |
ALF-R | TGTGACGAGTCCGTTCTGTAAAG | qPCR |
caspase1-F | GGAAGTGGATGCTGGGGGAC | qPCR |
caspase1-R | TGTTACACGGTCAAAGTAGCGAT | qPCR |
DIC-F | GATGGAGAGGCTAACGAGGC | qPCR |
DIC-R | AGGTGATACAGCGATTACGGG | qPCR |
acrosin-F | GGCTGGAGTTTGTGAGGCTGG | qPCR |
acrosin-R | CTCGTATTGCGGGTGTGGAAT | qPCR |
GAPDH-F | GGTTGTGGCGGTGAATGAT | qPCR |
GAPDH-R | CTCGGGCTTCATCTCATTGTAT | qPCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.; Lu, C.; Zhu, J.; Chen, Y.; Wang, C.; Mu, C.; Hou, C. Optimization of Sperm Cryopreservation Formulation in Portunus trituberculatus. Int. J. Mol. Sci. 2023, 24, 4358. https://doi.org/10.3390/ijms24054358
Chang L, Lu C, Zhu J, Chen Y, Wang C, Mu C, Hou C. Optimization of Sperm Cryopreservation Formulation in Portunus trituberculatus. International Journal of Molecular Sciences. 2023; 24(5):4358. https://doi.org/10.3390/ijms24054358
Chicago/Turabian StyleChang, Le, Chengpeng Lu, Junquan Zhu, Yiner Chen, Chunlin Wang, Changkao Mu, and Congcong Hou. 2023. "Optimization of Sperm Cryopreservation Formulation in Portunus trituberculatus" International Journal of Molecular Sciences 24, no. 5: 4358. https://doi.org/10.3390/ijms24054358
APA StyleChang, L., Lu, C., Zhu, J., Chen, Y., Wang, C., Mu, C., & Hou, C. (2023). Optimization of Sperm Cryopreservation Formulation in Portunus trituberculatus. International Journal of Molecular Sciences, 24(5), 4358. https://doi.org/10.3390/ijms24054358