Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Disease Severity Criteria
- Clinical symptoms including blurred vision, persistent headache or scotomata, persistent right upper quadrant or epigastric pain;
- SBP >140 mmHg and DBP > 90 mmHg;
- Abnormal results in clinical laboratory tests such as those present in HELLP syndrome; or proteinuria > 2.0 g per 24 h; creatinine > 1.2 mg per 100 mL; blood urea nitrogen > 30 mg per 100 mL; aspartate aminotransferase > 70 U/L; and alanine aminotransferase > 60 U/L;
- Fetal hypoactivity or nonreactive fetus, as revealed by cardiotocography; intrauterine growth restriction, oligoamnio, abnormal biophysical profile score, and Doppler velocimetry abnormalities, as evaluated by ultrasound.
4.3. Sample Collection
4.4. Extraction and Quantification of DNA
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADMA | Asymmetric dimethylarginine |
ALT | Alanine transaminase |
AST | Aspartate aminotransferase |
AUC | Area under the curve |
BMI | Body mass index |
cfDNA | Cell-free deoxyribonucleic acid |
cGMP | Cyclic guanosine monophosphate |
CI | Confidence interval |
DBP | Diastolic blood pressure |
dsDNA | Double-stranded deoxyribonucleic acid |
FGR | Fetal growth restriction |
GA | Gestational age |
GH | Gestational hypertension |
HC-FMRP | General Hospital of the Ribeirao Preto Medical School |
HDP | Hypertensive disorders of pregnancy |
HELLP | Hemolysis, elevated liver enzymes and low platelet count syndrome; |
HP | Healthy pregnancy |
HR | Heart rate |
LDH | Lactate dehydrogenase |
MDA-TBARS | Malondialdehyde–thiobarbituric acid reactive substances |
MMP | Matrix metalloproteinase |
NG | Normal growth |
OR | Odds ratio |
PE | Preeclampsia |
qPCR | Quantitative real time-polymerase chain reaction |
ROC | Receiver-operating characteristic |
rTTM | Responsive to treatment |
SBP | Systolic blood pressure |
sEndoglin | Soluble endoglin |
sFLT | Soluble fms-like tyrosine kinase |
TIMP | Tissue inhibitor of metalloproteinase |
TTM | Treatment |
References
- Hutcheon, J.A.; Lisonkova, S.; Joseph, K. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pr. Res. Clin. Obstet. Gynaecol. 2011, 25, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Umesawa, M.; Kobashi, G. Epidemiology of hypertensive disorders in pregnancy: Prevalence, risk factors, predictors and prog-nosis. Hypertens. Res. 2017, 40, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.-B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Summary, Number 222. Obstet. Gynecol. 2020, 135, 1492–1495. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Monte, S. Biochemical markers for prediction of preclampsia: Review of the literature. J. Prenat. Med. 2011, 5, 69–77. [Google Scholar]
- Sahai, K.; Saraswathy, S.; Yadav, T.P.; Arora, D.; Krishnan, M. Pre-eclampsia: Molecular events to biomarkers. Med. J. Armed Forces India 2017, 73, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Palei, A.C.; Spradley, F.T.; Warrington, J.P.; George, E.M.; Granger, J.P. Pathophysiology of hypertension in pre-eclampsia: A lesson in integrative physiology. Acta Physiol. 2013, 208, 224–233. [Google Scholar] [CrossRef]
- Chan, K.C.A.; Zhang, J.; Hui, A.B.Y.; Wong, N.; Lau, T.K.; Leung, T.N.; Lo, K.-W.; Huang, D.W.S.; Lo, Y.M.D. Size Distributions of Maternal and Fetal DNA in Maternal Plasma. Clin. Chem. 2004, 50, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.M.D.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Abdelhalim, R.M.; Ramadan, D.I.; Zeyada, R.; Nasr, A.S.; Mandour, I.A. Circulating Maternal Total Cell-Free DNA, Cell-Free Fetal DNA and Soluble Endoglin Levels in Preeclampsia: Predictors of Adverse Fetal Outcome? A Cohort Study. Mol. Diagn. Ther. 2016, 20, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, S.; Mousty, E.; Fortier, M.; Demattei, C.; Mercier, E.; Nouvellon, E.; Chea, M.; Grosjean, F.; Letouzey, V.; Gris, J.-C. Placenta-mediated complications: Nucleosomes and free DNA concentrations differ depending on subtypes. J. Thromb. Haemost. 2020, 18, 3371–3380. [Google Scholar] [CrossRef] [PubMed]
- Eche, S.; Mackraj, I.; Moodley, J. Circulating fetal and total cell-free DNA, and sHLA-G in black South African women with gestational hypertension and pre-eclampsia. Hypertens. Pregnancy 2017, 36, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.W.; Kim, S.Y.; Kim, H.J.; Lim, J.H.; Kim, Y.H.; Ryu, H.M. Maternal total cell-free DNA in preeclampsia with and without intrauterine growth restriction. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lázár, L.; Rigó, J.; Nagy, B.; Balogh, K.; Makó, V.; Cervenak, L.; Mézes, M.; Prohászka, Z.; Molvarec, A. Relationship of circulating cell-free DNA levels to cell-free fetal DNA levels, clinical characteristics and laboratory parameters in preeclampsia. BMC Med. Genet. 2009, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.L.; Macher, H.C.; Muñoz-Hernández, R.; Vallejo-Vaz, A.; Moreno-Luna, R.; Villar, J.; Guerrero, J.M.; Stiefel, P. Role of Circulating Cell-free DNA Levels in Patients with Severe Preeclampsia and HELLP Syndrome. Am. J. Hypertens. 2013, 26, 1377–1380. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Hernández, R.; Medrano-Campillo, P.; Miranda, M.L.; Macher, H.C.; Praena-Fernández, J.M.; Vallejo-Vaz, A.J.; Dominguez-Simeon, M.J.; Moreno-Luna, R.; Stiefel, P. Total and Fetal Circulating Cell-Free DNA, Angiogenic, and Antiangiogenic Factors in Preeclampsia and HELLP Syndrome. Am. J. Hypertens. 2017, 30, 673–682. [Google Scholar] [CrossRef]
- Rafaeli-Yehudai, T.; Imterat, M.; Douvdevani, A.; Tirosh, D.; Benshalom-Tirosh, N.; Mastrolia, S.A.; Beer-Weisel, R.; Klaitman, V.; Riff, R.; Greenbaum, S.; et al. Maternal total cell-free DNA in preeclampsia and fetal growth restriction: Evidence of differences in maternal response to abnormal implantation. PLoS ONE 2018, 13, e0200360. [Google Scholar] [CrossRef] [Green Version]
- Salvianti, F.; Inversetti, A.; Smid, M.; Valsecchi, L.; Candiani, M.; Pazzagli, M.; Cremonesi, L.; Ferrari, M.; Pinzani, P.; Galbiati, S. Prospective evaluation of RASSF1A cell-free DNA as a biomarker of pre-eclampsia. Placenta 2015, 36, 996–1001. [Google Scholar] [CrossRef]
- Sekizawa, A.; Farina, A.; Koide, K.; Iwasaki, M.; Honma, S.; Ichizuka, K.; Saito, H.; Okai, T. Beta-globin DNA in maternal plasma as a molecular marker of pre-eclampsia. Prenat. Diagn. 2004, 24, 697–700. [Google Scholar] [CrossRef]
- Chowdhury, C.S.; Hahn, S.; Hasler, P.M.; Hoesli, I.; Lapaire, O.; Giaglis, S.P. Elevated Levels of Total Cell-Free DNA in Maternal Serum Samples Arise from the Generation of Neutrophil Extracellular Traps. Fetal Diagn. Ther. 2016, 40, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Swinkels, D.W.; De Kok, J.B.; Hendriks, J.C.M.; Wiegerinck, E.; Zusterzeel, P.L.M.; Ap Steegers, E. Hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome as a complication of preeclampsia in pregnant women increases the amount of cell-free fetal and maternal DNA in maternal plasma and serum. Clin. Chem. 2002, 48, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.Y.; Laivuori, H.; Livingston, J.C.; Ylikorkala, O.; Sibai, B.M.; Holzgreve, W.; Hahn, S. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am. J. Obstet. Gynecol. 2001, 184, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Alberry, M.; Maddocks, D.G.; Hadi, M.A.; Metawi, H.; Hunt, L.P.; Abdel-Fattah, S.A.; Avent, N.D.; Soothill, P. Quantification of cell free fetal DNA in maternal plasma in normal pregnancies and in pregnancies with placental dysfunction. Am. J. Obstet. Gynecol. 2009, 200, 98.e1–98.e6. [Google Scholar] [CrossRef] [PubMed]
- Nabiel, Y.; Mosbah, A. Maternal Serum sEndoglin and Cell-Free Fetal DNA as Probable Markers of Preeclampsia: A Study in Single Center, Egypt. Immunol. Invest. 2019, 48, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, A.; Farina, A.; Sugito, Y.; Matsuoka, R.; Iwasaki, M.; Saito, H.; Okai, T. Proteinuria and Hypertension Are Independent Factors Affecting Fetal DNA Values: A Retrospective Analysis of Affected and Unaffected Patients. Clin. Chem. 2004, 50, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Smid, M.; Galbiati, S.; Lojacono, A.; Valsecchi, L.; Platto, C.; Cavoretto, P.; Calza, S.; Ferrari, A.; Ferrari, M.; Cremonesi, L. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat. Diagn. 2006, 26, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; Rusterholz, C.; Hösli, I.; Lapaire, O. Cell-free Nucleic Acids as Potential Markers for Preeclampsia. Placenta 2011, 32, S17–S20. [Google Scholar] [CrossRef]
- Alberry, M.; Maddocks, D.; Jones, M.; Hadi, M.A.; Abdel-Fattah, S.; Avent, N.; Soothill, P.W. Free fetal DNA in maternal plasma in anembryonic pregnancies: Confirmation that the origin is the trophoblast. Prenat. Diagn. 2007, 27, 415–418. [Google Scholar] [CrossRef]
- Lau, T.W.; Leung, T.N.; Chan, L.Y.; Lau, T.K.; Chan, K.A.; Tam, W.H.; Lo, Y.D. Fetal DNA clearance from maternal plasma is impaired in preeclampsia. Clin. Chem. 2002, 48, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Konečná, B.; Lauková, L.; Vlková, B. Immune activation by nucleic acids: A role in pregnancy complications. Scand. J. Immunol. 2018, 87, e12651. [Google Scholar] [CrossRef] [PubMed]
- Goulopoulou, S.; Davidge, S.T. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol. Med. 2015, 21, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Eleuterio, N.M.; Palei, A.C.T.; Machado, J.S.R.; Tanus-Santos, J.E.; Cavalli, R.C.; Sandrim, V.C. Role of adiponectin on antioxidant profile: Evaluation during healthy and hypertensive disorders of pregnancy. Blood Press. 2016, 25, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.F.; Palei, A.C.T.; Machado, J.S.R.; Da Silva, L.M.; Montenegro, M.F.; Jordao, A.A.; Duarte, G.; Tanus-Santos, J.E.; Cavalli, R.C.; Sandrim, V.C. Assessment of oxidative status markers and NO bioavailability in hypertensive disorders of pregnancy. J. Hum. Hypertens. 2013, 27, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Palei, A.C.T.; Sandrim, V.C.; Amaral, L.M.; Machado, J.S.R.; Cavalli, R.C.; Duarte, G.; Tanus-Santos, J.E. Association between matrix metalloproteinase (MMP)-2 polymorphisms and MMP-2 levels in hypertensive disorders of pregnancy. Exp. Mol. Pathol. 2012, 92, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Palei, A.C.T.; Sandrim, V.C.; Amaral, L.M.; Machado, J.S.R.; Cavalli, R.C.; Lacchini, R.; Duarte, G.; Tanus-Santos, J.E. Matrix metalloproteinase-9 polymorphisms affect plasma MMP-9 levels and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. Pharm. J. 2012, 12, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha-Penha, L.; Caldeira-Dias, M.; Tanus-Santos, J.E.; Cavalli, R.; Sandrim, V.C. Myeloperoxidase in Hypertensive Disorders of Pregnancy and Its Relation with Nitric Oxide. Hypertension 2017, 69, 1173–1180. [Google Scholar] [CrossRef]
- Sandrim, V.C.; Palei, A.C.T.; Metzger, I.F.; Cavalli, R.C.; Duarte, G.; Tanus-Santos, J.E. Interethnic differences in ADMA concentrations and negative association with nitric oxide formation in preeclampsia. Clin. Chim. Acta 2010, 411, 1457–1460. [Google Scholar] [CrossRef]
- Sandrim, V.C.; Palei, A.C.; Metzger, I.F.; Gomes, V.A.; Cavalli, R.C.; Tanus-Santos, J.E. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine ki-nase-1 and soluble endogline in preeclampsia. Hypertension 2008, 52, 402–407. [Google Scholar] [CrossRef] [Green Version]
- Sandrim, V.C.; Palei, A.C.; Sertório, J.T.; Amaral, L.M.; Cavalli, R.; Tanus-Santos, J.E. Alterations in cyclic GMP levels in preeclampsia may reflect increased B-type natriuretic peptide levels and not impaired nitric oxide activity. Clin. Biochem. 2011, 44, 1012–1014. [Google Scholar] [CrossRef]
- Taglauer, E.S.; Wilkins-Haug, L.; Bianchi, D.W. Review: Cell-free fetal DNA in the maternal circulation as an indication of pla-cental health and disease. Placenta 2014, 35, S64–S68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visca, E.; Lapaire, O.; Hösli, I.; Hahn, S. Cell-free fetal nucleic acids as prenatal biomarkers. Expert Opin. Med Diagn. 2011, 5, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Carbone, I.F.; Conforti, A.; Picarelli, S.; Morano, D.; Alviggi, C.; Farina, A. Circulating Nucleic Acids in Maternal Plasma and Serum in Pregnancy Complications: Are They Really Useful in Clinical Practice? A Systematic Review. Mol. Diagn. Ther. 2020, 24, 409–431. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Krishna, I.; Martina, B.; Samuel, A. Can the quantity of cell-free fetal DNA predict preeclampsia: A systematic review. Prenat. Diagn. 2014, 34, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Vlkova, B.; Turňa, J.; Celec, P. Fetal DNA in maternal plasma in preeclamptic pregnancies. Hypertens. Pregnancy 2014, 34, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Chiminqgi, M.; Moutereau, S.; Pernet, P.; Conti, M.; Barbu, V.; Lemant, J.; Sacko, M.; Vaubourdolle, M.; Loric, S. Specific real-time PCR vs. fluorescent dyes for serum free DNA quantification. Clin. Chem. Lab. Med. 2007, 45, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.M.; Leung, T.; Tein, M.S.; Sargent, I.I.L.; Zhang, J.; Lau, T.K.; Haines, C.; Redman, C.W. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem. 1999, 45, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekizawa, A.; Jimbo, M.; Saito, H.; Iwasaki, M.; Matsuoka, R.; Okai, T.; Farina, A. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am. J. Obstet. Gynecol. 2003, 188, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Seval, M.M.; Karabulut, H.G.; Tükün, A.; Koç, A. Cell free fetal DNA in the plasma of pregnant women with preeclampsia. Clin. Exp. Obstet. Gynecol. 2015, 42, 787–791. [Google Scholar]
- Shimada, K.; Murakami, K.; Shozu, M.; Segawa, T.; Sumitani, H.; Inoue, M. Sex-determining region Y levels in maternal plasma: Evaluation in abnormal pregnancy. J. Obstet. Gynaecol. Res. 2004, 30, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Zeybek, Y.G.; Gunel, T.; Benian, A.; Aydınlı, K.; Kaleli, S. Clinical evaluations of cell-free fetal DNA quantities in pre-eclamptic pregnancies. J. Obstet. Gynaecol. Res. 2012, 39, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Karina, E.; Tomasz, P.; Bilar, M.; Agnieszka, O.; Ewa, B.; Elżbieta, R.W. Assessment of the female fetal DNA concentration in the plasma of the pregnant women as preeclampsia indicator--preliminary report. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 146, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Sekizawa, A.; Iwasaki, M.; Matsuoka, R.; Ichizuka, K.; Okai, T. Total cell-free DNA (beta-globin gene) distribution in maternal plasma at the second trimester: A new prospective for preeclampsia screening. Prenat. Diagn. 2004, 24, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, H.J.; Park, S.-Y.; Han, Y.J.; Choi, J.S.; Ryu, H.M. Early Prediction of Hypertensive Disorders of Pregnancy Using Cell-Free Fetal DNA, Cell-Free Total DNA, and Biochemical Markers. Fetal Diagn. Ther. 2016, 40, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shen, Y.; Ge, Q.; He, Y.; Qiao, D.; Ren, M.; Zhang, J. Quantification of Maternal Serum Cell-Free Fetal DNA in Early-Onset Preeclampsia. Int. J. Mol. Sci. 2013, 14, 7571–7582. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.Y.; Holzgreve, W.; Hahn, S. The levels of circulatory cell free fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia. Hypertens. Pregnancy 2002, 21, 77–83. [Google Scholar] [CrossRef]
- Crowley, A.; Martin, C.; Fitzpatrick, P.; Sheils, O.; O’Herlihy, C.; O’Leary, J.J.; Byrne, B.M. Free fetal DNA is not increased before 20 weeks in intrauterine growth restriction or pre-eclampsia. Prenat. Diagn. 2007, 27, 174–179. [Google Scholar] [CrossRef]
- Kaufmann, I.; Rusterholz, C.; Hösli, I.; Hahn, S.; Lapaire, O. Can detection of late-onset PE at triage by sflt-1 or PlGF be improved by the use of additional biomarkers? Prenat. Diagn. 2012, 32, 1288–1294. [Google Scholar] [CrossRef]
- Poon, L.C.Y.; Musci, T.; Song, K.; Syngelaki, A.; Nicolaides, K.H. Maternal plasma cell-free fetal and maternal DNA at 11–13 weeks’ gestation: Relation to fetal and maternal charac-teristics and pregnancy outcomes. Fetal Diagn. Ther. 2013, 33, 215–223. [Google Scholar] [CrossRef]
- Rolnik, D.L.; O’Gorman, N.; Fiolna, M.; Boom, D.V.D.; Nicolaides, K.H.; Poon, L.C. Maternal Plasma Cell-Free DNA in the Prediction of Pre-Eclampsia. Obstet. Gynecol. Surv. 2015, 70, 377–378. [Google Scholar] [CrossRef]
- Myatt, L.; Hauth, J.C.; Leveno, K.J.; Peaceman, A.M.; Ramin, S.M.; Samuels, P.; Saade, G.; Sorokin, Y.; Clifton, R.G.; Reddy, U.M.; et al. Cell-Free Total and Fetal DNA in First Trimester Maternal Serum and Subsequent Development of Preeclampsia. Am. J. Perinatol. 2016, 34, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Nakib, M.; Desbrière, R.; Bonello, N.; Bretelle, F.; Boubli, L.; Gabert, J.; Levy-Mozziconacci, A. Total and Fetal Cell-Free DNA Analysis in Maternal Blood as Markers of Placental Insufficiency in Intrauterine Growth Restriction. Fetal Diagn. Ther. 2009, 26, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, P.; Miranda, M.L.; Macher, H.; Beltrán, L.M.; Muñoz-Hernandez, R. Description of a strong relationship among total cell-free DNA levels, LDH values, AST values and platelet count in patients with HELLP syndrome. Hypertens. Res. 2017, 40, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Jauniaux, E.; Harrington, K. Antihypertensive therapy and central hemodynamics in women with hypertensive dis-orders in pregnancy. Obstet. Gynecol. 2009, 113, 646–654. [Google Scholar] [CrossRef]
- Montan, S.; Anandakumar, C.; Arulkumaran, S.; Ingemarsson, I.; Ratnam, S.S. Effects of methyldopa on uteroplacental and fetal hemodynamics in pregnancy-induced hypertension. Am. J. Obstet. Gynecol. 1993, 168, 152–156. [Google Scholar] [CrossRef]
- Palei, C.T.A.; Granger, P.J.; Tanus-Santos, E.J. Matrix metalloproteinases as drug targets in preeclampsia. Curr. Drug Targets. 2013, 14, 325–334. [Google Scholar] [CrossRef]
- Hofmann-Kiefer, K.; Knabl, J.; Martinoff, N.; Schiessl, B.; Conzen, P.; Rehm, M.; Becker, B.F.; Chappell, D. Increased Serum Concentrations of Circulating Glycocalyx Components in HELLP Syndrome Compared to Healthy Pregnancy: An Observational Study. Reprod. Sci. 2012, 20, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Weissgerber, T.; Garcia-Valencia, O.; Milic, N.M.; Codsi, E.; Cubro, H.; Nath, M.C.; White, W.M.; Nath, K.A.; Garovic, V.D. Early Onset Preeclampsia Is Associated with Glycocalyx Degradation and Reduced Microvascular Perfusion. J. Am. Hear. Assoc. 2019, 8, e010647. [Google Scholar] [CrossRef] [Green Version]
- Bhagirath, V.C.; Dwivedi, D.J.; Liaw, P.C. Comparison of the Proinflammatory and Procoagulant Properties of Nuclear, Mitochondrial, and Bacterial DNA. Shock 2015, 44, 265–271. [Google Scholar] [CrossRef]
- Lee, T.-H.; Montalvo, L.; Chrebtow, V.; Busch, M.P. Quantitation of genomic DNA in plasma and serum samples: Higher concentrations of genomic DNA found in serum than in plasma. Transfusion 2001, 41, 276–282. [Google Scholar] [CrossRef]
- Wong, F.C.; Sun, K.; Jiang, P.; Cheng, Y.K.; Chan, K.; Leung, T.Y.; Chiu, R.W.; Lo, Y.D. Cell-free DNA in maternal plasma and serum: A comparison of quantity, quality and tissue origin using genomic and epigenomic approaches. Clin. Biochem. 2016, 49, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Toohey, J.; Powers, D.; Keegan, K.; Gupta, A.; Alikhani, S.; Mashood, M.; Barbari, A. Activation of intrinsic coagulation pathway in pre-eclampsia. Am. J. Med. 1986, 80, 103–107. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am. J. Obstet. Gynecol. 2000, 183, S1–S22. [Google Scholar] [CrossRef]
- Uzuelli, J.A.; Dias-Junior, C.A.; Izidoro-Toledo, T.C.; Gerlach, R.F.; Tanus-Santos, J.E. Circulating cell-free DNA levels in plasma increase with severity in experimental acute pulmonary thromboembolism. Clin. Chim. Acta. 2009, 409, 112–116. [Google Scholar] [CrossRef]
Parameter | Healthy Pregnancy (n = 98) | Gestational Hypertension (n = 88) | Preeclampsia (n = 91) |
---|---|---|---|
At enrollment | |||
Age (years) | 26.2 ± 0.7 | 26.6 ± 0.7 | 27.2 ± 0.8 |
Race (white) | 62 (63.3) | 62 (70.5) | 62 (68.1) |
Current smoking | 10 (10.2) | 11 (12.5) | 8 (8.8) |
Body mass index (kg/m2) | 29.7 {28.1–30.5} | 33.3 {31.6–35.1} * | 32.1 {30.1–33.8} * |
Primiparity | 34 (34.7) | 36 (40.9) | 37 (40.7) |
Gestational age (weeks) | 37 {37–38} | 37 {37–38} | 36 {35–37} *,& |
During follow-up | |||
Systolic blood pressure (mm Hg) | 113.3 {110.0–115.0} | 131.0 {130.0–135.0} * | 140.0 {136.7–144.0} *,& |
Diastolic blood pressure (mm Hg) | 72.4 ± 0.9 | 84.8 ± 1.3 * | 88.9 ± 1.1 *,& |
Antihypertensive therapy | |||
Under treatment | 0 (0) | 67 (76.1) | 78 (85.7) |
Non-responsiveness | N/A | 13 (14.8) | 39 (42.9) & |
Heart rate (bpm) | 80.7 {80.0–82.0} | 82.0 {80.0–83.3} | 81.0 {80.0–82.7} |
Creatinine (µM) | N/D | 53.0 {53.0–53.0} | 61.9 {53.0–61.9} & |
Proteinuria (mg/24 h) | N/D | 149.5 {121.0–169.6} | 449.9 {346.5–775.9} & |
Hematocrit (%) | 35.9 {33.7–37.0} | 36.8 {35.7–37.0} | 36.9 {35.1–37.5} |
Hemoglobin (g/dL) | 11.9 {11.1–12.4} | 12.1 {11.9–12.4} | 12.1 {11.9–12.4} |
White blood cells (×103/mm3) | 11.4 {9.7–12.7} | 9.9 {9.4–10.5} | 9.9 {8.9–10.6} |
Neutrophils (% of WBC) | 69.0 {65.0–73.5} | 70.3 {66.4–72.0} | 71.0 {68.0–73.0} |
Platelets (×103/mm3) | 228.4 ± 14.7 | 223.6 ± 58.2 | 211.2 ± 67.2 |
Fasting glucose (g/dL) | 69.5 {68.0–76.0} | 79.3 {76.0–82.0} * | 77.0 {73.5–80.0} * |
Alanine transaminase (U/L) | N/D | 14.0 {11.0–15.0} | 14.0 {12.0–15.0} |
Aspartate aminotransferase (U/L) | N/D | 17.0 {15.0–18.0} | 17.0 {16.0–19.0} |
Lactate dehydrogenase (U/L) | N/D | 436.0 {364.0–484.0} | 429.5 {389.0–466.0} |
At delivery | |||
Gestational age (weeks) | 39 {39–39} | 39 {38–40} | 37 {37–38} *,& |
Preterm birth | 1 (1.0) | 6 (6.8) | 31 (34.1) *,& |
Newborn weight (g) | 3380 {3125–3465} | 3160 {3020–3290} | 2900 {2620–3050} *,& |
Fetal growth restriction | 7 (7.1) | 18 (20.5) * | 30 (33.0) * |
Placental weight (g) | 562.5 ± 14.7 | 592.3 ± 13.1 | 543.0 ± 17.5 |
Parameter | Rho | 95% CI | p |
---|---|---|---|
Age (years) | 0.043 | −0.086 to 0.170 | 0.5032 |
Systolic blood pressure (mm Hg) | 0.420 | 0.311 to 0.519 | <0.0001 |
Diastolic blood pressure (mm Hg) | 0.374 | 0.260 to 0.478 | <0.0001 |
Heart rate (bpm) | −0.144 | −0.265 to −0.018 | 0.0213 |
Creatinine (μM) | 0.031 | −0.122 to 0.182 | 0.6843 |
Proteinuria (mg/24 h) | 0.093 | −0.111 to 0.290 | 0.3568 |
Hematocrit (%) | 0.061 | −0.074 to 0.194 | 0.3595 |
Hemoglobin (g/dL) | 0.056 | −0.080 to 0.189 | 0.4083 |
White blood cells (×103/mm3) | −0.041 | −0.185 to 0.104 | 0.5672 |
Neutrophils (% of WBC) | 0.079 | −0.091 to 0.244 | 0.3498 |
Platelets (×103/mm3) | −0.172 | −0.310 to 0.027 | 0.0167 |
Fasting glucose (g/dL) | 0.103 | −0.044 to 0.245 | 0.1577 |
Alanine transaminase (U/L) | 0.154 | −0.047 to 0.342 | 0.1213 |
Aspartate aminotransferase (U/L) | 0.188 | 0.033 to 0.333. | 0.0146 |
Lactate dehydrogenase (U/L) | 0.334 | 0.028 to 0.582 | 0.0288 |
Gestational age at enrollment (weeks) | −0.046 | −0.169 to 0.077 | 0.4493 |
Body mass index at enrollment (kg/m2) | 0.092 | −0.035 to 0.216 | 0.1443 |
Gestational age at delivery (weeks) | −0.181 | −0.307 to −0.049 | 0.0058 |
Newborn weight (g) | −0.256 | −0.375 to −0.129 | <0.0001 |
Placental weight (g) | −0.039 | −0.174 to 0.098 | 0.5699 |
Model 1 | Model 2 | |||
---|---|---|---|---|
Gestational Hypertension | Preeclampsia | Gestational Hypertension | Preeclampsia | |
Odds ratio | 1.02 | 1.05 | 1.02 | 1.10 |
95% Confidence interval | 1.01–1.03 | 1.03–1.07 | 1.01–1.04 | 1.04–1.16 |
p | <0.001 | <0.001 | 0.007 | 0.001 |
Plasma Parameter | Rho | 95% CI | p |
---|---|---|---|
Nitrite (nM) | −0.136 | −0.277 to 0.011 | 0.0612 |
ADMA (µM) | −0.037 | −0.264 to 0.193 | 0.7470 |
cGMP (nM) | 0.239 | 0.027 to 0.430 | 0.0234 |
sFLT−1 (ng/mL) | 0.299 | 0.094 to 0.479 | 0.0038 |
sEndoglin (ng/mL) | 0.296 | 0.097 to 0.473 | 0.0032 |
Myeloperoxidase (ng/mL) | 0.003 | −0.125 to 0.132 | 0.9588 |
MDA-TBARS (nM) | −0.019 | −0.169 to 0.131 | 0.7975 |
Leptin (ng/mL) | 0.082 | −0.093 to 0.252 | 0.3433 |
Adiponectin (µg/mL) | 0.066 | −0.109 to 0.237 | 0.4454 |
MMP−2 (ng/mL) | 0.228 | 0.109 to 0.341 | 0.0001 |
TIMP-2 (ng/mL) | 0.286 | 0.170 to 0.394 | <0.0001 |
MMP-2/TIMP-2 ratio | −0.160 | −0.277 to −0.038 | 0.0082 |
MMP-9 (ng/mL) | 0.114 | −0.008 to 0.233 | 0.0596 |
TIMP-1 (ng/mL) | 0.278 | 0.161 to 0.386 | <0.0001 |
MMP-9/TIMP-1 ratio | 0.042 | −0.080 to 0.163 | 0.4869 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, L.M.; Sandrim, V.C.; Kutcher, M.E.; Spradley, F.T.; Cavalli, R.C.; Tanus-Santos, J.E.; Palei, A.C. Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes. Int. J. Mol. Sci. 2021, 22, 564. https://doi.org/10.3390/ijms22020564
Amaral LM, Sandrim VC, Kutcher ME, Spradley FT, Cavalli RC, Tanus-Santos JE, Palei AC. Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes. International Journal of Molecular Sciences. 2021; 22(2):564. https://doi.org/10.3390/ijms22020564
Chicago/Turabian StyleAmaral, Lorena M., Valeria C. Sandrim, Matthew E. Kutcher, Frank T. Spradley, Ricardo C. Cavalli, Jose E. Tanus-Santos, and Ana C. Palei. 2021. "Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes" International Journal of Molecular Sciences 22, no. 2: 564. https://doi.org/10.3390/ijms22020564
APA StyleAmaral, L. M., Sandrim, V. C., Kutcher, M. E., Spradley, F. T., Cavalli, R. C., Tanus-Santos, J. E., & Palei, A. C. (2021). Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes. International Journal of Molecular Sciences, 22(2), 564. https://doi.org/10.3390/ijms22020564