Differential Interactions of Chiral Nanocapsules with DNA
Abstract
:1. Introduction
2. Results
2.1. Chiral Nanocapsules Formation and Characterization
2.2. DNA Adsorption onto Chiral Polyurea Nanocapsules
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Synthesis of the Chiral Polyurea Nanocapsules
4.3. Procedure of Adsorbing DNA from Dilute Solution onto the Chiral Nanocapsules
4.4. Procedure of Adsorbing DNA from Concentrated Solution onto the Chiral Nanocapsules
4.5. Characterization of Nanocapsules
4.5.1. Size and ζ-Potential
4.5.2. Chiroptical Activity Measurements
4.5.3. Free Single Stranded DNA (ssDNA) Concentration Determination
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Shi, L.; Tang, Z. Chiral Nanomaterials: Preparation, Properties and Applications; Wiley-VCH: Hoboken, NJ, USA, 2018. [Google Scholar]
- Zhou, Y.; Zhu, Z.; Huang, W.; Liu, W.; Wu, S.; Liu, X.; Gao, Y.; Zhang, W.; Tang, Z. Optical Coupling Between Chiral Biomolecules and Semiconductor Nanoparticles: Size-Dependent Circular Dichroism Absorption. Angew. Chem. Int. Ed. 2011, 50, 11456–11459. [Google Scholar] [CrossRef] [PubMed]
- di Gregorio, M.C.; Ben Moshe, A.; Tirosh, E.; Galantini, L.; Markovich, G. Chiroptical Study of Plasmon–Molecule Interaction: The Case of Interaction of Glutathione with Silver Nanocubes. J. Phys. Chem. C 2015, 119, 17111–17116. [Google Scholar] [CrossRef]
- Yeom, J.; Guimaraes, P.P.G.; Ahn, H.M.; Jung, B.-K.; Hu, Q.; McHugh, K.; Mitchell, M.J.; Yun, C.-O.; Langer, R.; Jaklenec, A. Chiral Supraparticles for Controllable Nanomedicine. Adv. Mater. 2020, 32, 1903878. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, C.; Tang, S.; Zhou, P.; Deng, J.; Zhang, Z.; Wang, Y.; Wang, Z. Chiral Active β-Glucan Nanoparticles for Synergistic Delivery of Doxorubicin and Immune Potentiation. Int. J. Nanomed. 2020, 15, 5083–5095. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Fan, N.; Li, J.; Zhang, H.; Shang, L.; He, Z.; Sun, J. Amino functionalized chiral mesoporous silica nanoparticles for improved loading and release of poorly water-soluble drug. Asian J. Pharm. Sci. 2019, 14, 405–412. [Google Scholar] [PubMed]
- Yuan, L.; Zhang, F.; Qi, X.; Yang, Y.; Yan, C.; Jiang, J.; Deng, J. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation. J. Nanobiotechnol. 2018, 16, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocas, P.; Cusco, C.; Rocas, J.; Albericio, F. On the Importance of Polyurethane and Polyurea Nanosystems for Future Drug Delivery. Curr. Drug Deliv. 2018, 15, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.P.; Cuscó, C.; Bonelli, J.; Farcic, B.; Arias, A.; Andreu, A.; García, D.M.; Cerrato, V.S.; Rocas, J.; Tomás, R.P. Novel polyurea/polyurethane nanocapsules loaded with a tambjamine analog to improve cancer chemotherapy delivery and safety in lung cancer. Ann. Oncol. 2019, 30, v788–v789. [Google Scholar] [CrossRef]
- Cusco, C.; Garcia, J.; Nicolas, E.; Rocas, P.; Rocas, J. Multisensitive drug-loaded polyurethane/polyurea nanocapsules with pH-synchronized shell cationization and redox-triggered release. Polym. Chem. 2016, 7, 6457–6466. [Google Scholar] [CrossRef]
- He, W.; Gu, X.; Liu, S. Surfactant-Free One-Step Synthesis of Dual-Functional Polyurea Microcapsules: Contact Infection Control and Drug Delivery. Adv. Funct. Mater. 2012, 22, 4023–4031. [Google Scholar] [CrossRef]
- Zoabi, A.; Santiago, M.G.; Gelman, D.; Rosenblatt, C.; Avnir, D.; Abu-Reziq, R. Chiral Polymeric Nanocapsules and Their Use for Conformational Deracemization of Liquid Crystals. J. Phys. Chem. C 2018, 122, 17936–17941. [Google Scholar] [CrossRef]
- Igoucheva, O.; Alexeev, V.; Yoon, K. Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Ther. 2001, 8, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.D.; Rhodes, D.G.; Burgess, D.J. DNA-based therapeutics and DNA delivery systems: A comprehensive review. AAPS J. 2005, 7, E61–E77. [Google Scholar] [PubMed] [Green Version]
- Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune Responses to Viral Gene Therapy Vectors. Mol. Ther. 2020, 28, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012, 7, 5577–5591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhou, H.; Ou-Yang, Z.-C. Stretching Single-Stranded DNA: Interplay of Electrostatic, Base-Pairing, and Base-Pair Stacking Interactions. Biophys. J. 2001, 81, 1133–1143. [Google Scholar] [CrossRef] [Green Version]
- Oaki, Y.; Imai, H. Amplification of chirality from molecules into morphology of crystals through molecular recognition. J. Am. Chem. Soc. 2004, 126, 9271–9275. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, T.; Suwa, Y.; Ohkawa, K.; Yamamoto, H. Chiral Biomineralization: Mirror-Imaged Helical Growth of Calcite with Chiral Phosphoserine Copolypeptides. Macromol. Rapid Commun. 2003, 24, 847–851. [Google Scholar] [CrossRef]
Type of the Nanocapsules | ζ-Potential before DNA Addition | ζ-Potential after DNA Addition 1 |
---|---|---|
l-nanocapsules | −1.1 ± 1.3 mV | −9 ± 2.6 mV |
d-nanocapsules | −1.2 ± 1.5 mV | −21.3 ± 1.4 mV |
Type of the Nanocapsules | ζ-Potential before DNA Addition | ζ-Potential after DNA Addition 1 | ζ-Potential after Concentrated DNA Addition 2 |
---|---|---|---|
l-nanocapsules | −1.1 ± 1.3 mV | −9 ± 2.6 mV | −18.8 ± 2.0 mV |
d-nanocapsules | −1.2 ± 1.5 mV | −21.3 ± 1.4 mV | −28.5 ± 0.1 mV |
System | Free DNA Concentration | Decrease in Free DNA Concentration |
---|---|---|
DNA solution | 10.42 × 10−4 µM | - |
l-nanocapsules | 8.19 × 10−4 µM | 2.23 × 10−4 µM |
d-nanocapsules | 4.16 × 10−4 µM | 6.26 × 10−4 µM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoabi, A.; Margulis, K. Differential Interactions of Chiral Nanocapsules with DNA. Int. J. Mol. Sci. 2021, 22, 584. https://doi.org/10.3390/ijms22020584
Zoabi A, Margulis K. Differential Interactions of Chiral Nanocapsules with DNA. International Journal of Molecular Sciences. 2021; 22(2):584. https://doi.org/10.3390/ijms22020584
Chicago/Turabian StyleZoabi, Amani, and Katherine Margulis. 2021. "Differential Interactions of Chiral Nanocapsules with DNA" International Journal of Molecular Sciences 22, no. 2: 584. https://doi.org/10.3390/ijms22020584
APA StyleZoabi, A., & Margulis, K. (2021). Differential Interactions of Chiral Nanocapsules with DNA. International Journal of Molecular Sciences, 22(2), 584. https://doi.org/10.3390/ijms22020584