Comparison of Light Condition-Dependent Differences in the Accumulation and Subcellular Localization of Glutathione in Arabidopsis and Wheat
Abstract
:1. Introduction
2. Results
2.1. Light Condition-Dependent Differences in the Amount and Redox State of Glutathione in Leaf Extracts
2.2. Levels of Glutathione Metabolism-Related Transcripts under Various Light Conditions in Leaf Extracts
2.3. Control of the Subcellular Glutathione Distribution by Light in Leaves
3. Discussion
3.1. Light Condition-Dependent Differences in the Glutathione Accumulation in Leaf Extracts
3.2. Control of the Subcellular Total Glutathione Distribution by Light in Leaves
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Different Light Treatments
4.3. Sampling
4.4. Measurement of Reduced (GSH) and Oxidized (GSSG) Glutathione
4.5. Analysis of the Expression of the Genes Encoding Enzymes with a Glutathione Metabolism
4.6. Sample Preparation for In Situ Glutathione Content Analysis via Immunohistochemical Labeling
4.7. TEM Imaging and Quantitative Analysis of Compartment-Specific Glutathione Levels
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
γ-ECS | γ-glutamylcysteine synthetase |
GR | Glutathione reductase |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione |
GSHS | Glutathione synthetase |
ROS | Reactive oxygen species |
roGFP | Reduction-oxidation sensitive green fluorescent protein |
TEM | Transmission electron microscope |
References
- Chiang, C.; Olsen, J.E.; Basler, D.; Bånkestad, D.; Hoch, G. Latitude and Weather Influences on Sun Light Quality and the Relationship to Tree Growth. Forests 2019, 10, 610. [Google Scholar] [CrossRef] [Green Version]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Heyneke, E.; Luschin-Ebengreuth, N.; Krajcer, I.; Wolkinger, V.; Müller, M.; Zechmann, B. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol. 2013, 13, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toldi, D.; Gyugos, M.; Darkó, É.; Szalai, G.; Gulyás, Z.; Gierczik, K.; Székely, A.; Boldizsár, Á.; Galiba, G.; Müller, M.; et al. Light intensity and spectrum affect metabolism of glutathione and amino acids at transcriptional level. PLoS ONE 2019, 14, e0227271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachter, A.; Wolf, S.; Steininger, H.; Bogs, J.; Rausch, T. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 2005, 41, 15–30. [Google Scholar] [CrossRef]
- Mhamdi, A.; Hager, J.; Chaouch, S.; Queval, G.; Han, Y.; Taconnat, L.; Saindrenan, P.; Gouia, H.; Issakidis-Bourguet, E.; Renou, J.-P.; et al. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 2010, 153, 1144–1160. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Devireddy, A.R.; Inupakutika, M.A.; Baxter, A.; Miller, G.; Song, L.; Shulaev, E.; Azad, R.K.; Shulaev, V.; Mittler, R. Ultra-fast alterations in mRNA levels uncover multiple players in light stress acclimation in plants. Plant J. 2015, 84, 760–772. [Google Scholar] [CrossRef]
- Ding, S.; Jiang, R.; Lu, Q.; Wen, X.; Lu, C. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta 2016, 1857, 665–677. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Devireddy, A.R.; Azad, R.K.; Shulaev, V.; Mittler, R. Rapid Accumulation of Glutathione During Light Stress in Arabidopsis. Plant Cell Physiol. 2018, 59, 1817–1826. [Google Scholar] [CrossRef] [Green Version]
- Zuccarelli, R.; Coelho, A.C.P.; Peres, L.E.P.; Freschi, L. Shedding light on NO homeostasis: Light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide 2017, 68, 77–90. [Google Scholar] [CrossRef]
- Janků, M.; Luhová, L.; Petřivalský, M. On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants 2019, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Moulé, P.; Golan, T.; Niyogi, K.K. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol. 2004, 134, 1163–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golan, T.; Müller-Moulé, P.; Niyogi, K.K. Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell Environ. 2006, 29, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Müller-Moulé, P.; Havaux, M.; Niyogi, K.K. Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol. 2003, 133, 748–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanwischer, M.; Porfirova, S.; Bergmüller, E.; Dörmann, P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 2005, 137, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Bräutigam, K.; Dietzel, L.; Kleine, T.; Ströher, E.; Wormuth, D.; Dietz, K.-J.; Radke, D.; Wirtz, M.; Hell, R.; Dörmann, P.; et al. Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 2009, 21, 2715–2732. [Google Scholar] [CrossRef] [Green Version]
- Wildi, B.; Lütz, C. Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 1996, 19, 138–146. [Google Scholar] [CrossRef]
- Zechmann, B. Diurnal changes of subcellular glutathione content in Arabidopsis thaliana. Biol Plant 2017, 61, 791–796. [Google Scholar] [CrossRef]
- Monostori, I.; Heilmann, M.; Kocsy, G.; Rakszegi, M.; Ahres, M.; Altenbach, S.B.; Szalai, G.; Pál, M.; Toldi, D.; Simon-Sarkadi, L.; et al. LED Lighting—Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Front. Plant Sci. 2018, 9, 605. [Google Scholar] [CrossRef]
- Bartoli, C.G.; Tambussi, E.A.; Diego, F.; Foyer, C.H. Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett. 2009, 583, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Shainberg, O.; Rubin, B.; Rabinowitch, H.D.; Libal-Weksler, Y.; Tel-Or, E. Adjustment to Low Light Intensity Enhances Susceptibility of Bean Leaves to Oxidative Stress. J. Plant Physiol. 1999, 155, 393–398. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Role of Glutathione in Plant Abiotic Stress Tolerance. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants; Hasanuzzaman, M., Fototpoulos, V., Nahar, K., Fujita, M., Eds.; Wiley Blackwell: Hoboken, NJ, USA; Chichester, UK, 2019; pp. 159–172. ISBN 9781119468691. [Google Scholar]
- Yang, B.; Tang, J.; Yu, Z.; Khare, T.; Srivastav, A.; Datir, S.; Kumar, V. Light Stress Responses and Prospects for Engineering Light Stress Tolerance in Crop Plants. J Plant Growth Regul. 2019, 38, 1489–1506. [Google Scholar] [CrossRef]
- Zechmann, B.; Müller, M. Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 2010, 246, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullineaux, P.M.; Exposito-Rodriguez, M.; Laissue, P.P.; Smirnoff, N. ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radic. Biol. Med. 2018, 122, 52–64. [Google Scholar] [CrossRef]
- Gallé, Á.; Czékus, Z.; Bela, K.; Horváth, E.; Ördög, A.; Csiszár, J.; Poór, P. Plant Glutathione Transferases and Light. Front. Plant Sci. 2018, 9, 1944. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-C.; Huang, I.-C.; Liu, M.-J.; Wang, Z.-G.; Chung, S.-S.; Hsieh, H.-L. Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol. 2007, 143, 1189–1202. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.H.; Paeng, S.K.; Kim, M.J.; Hwang, G.Y.; Melencion, S.M.B.; Oh, H.T.; Lee, S.Y. Redox-dependent functional switching of plant proteins accompanying with their structural changes. Front. Plant Sci. 2013, 4, 277. [Google Scholar] [CrossRef] [Green Version]
- Noctor, G.; Lelarge-Trouverie, C.; Mhamdi, A. The metabolomics of oxidative stress. Phytochemistry 2015, 112, 33–53. [Google Scholar] [CrossRef]
- Janda, T.; Hideg, É.; Vanková, R. Editorial: The Role of Light in Abiotic Stress Acclimation. Front. Plant Sci. 2020, 11, 184. [Google Scholar] [CrossRef] [Green Version]
- Gyugos, M.; Ahres, M.; Gulyás, Z.; Szalai, G.; Darkó, É.; Végh, B.; Boldizsár, Á.; Mednyánszky, Z.; Kar, R.K.; Dey, N.; et al. Role of light-intensity-dependent changes in thiol and amino acid metabolism in the adaptation of wheat to drought. J Agro. Crop Sci. 2019, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Noctor, G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid. Redox Signal. 2009, 11, 861–905. [Google Scholar] [CrossRef] [PubMed]
- Parisy, V.; Poinssot, B.; Owsianowski, L.; Buchala, A.; Glazebrook, J.; Mauch, F. Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 2007, 49, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Luschin-Ebengreuth, N.; Zechmann, B. Compartment-specific investigations of antioxidants and hydrogen peroxide in leaves of Arabidopsis thaliana during dark-induced senescence. Acta Physiol. Plant. 2016, 38, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koffler, B.E.; Luschin-Ebengreuth, N.; Zechmann, B. Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress. J. Plant Biol. 2015, 58, 8–16. [Google Scholar] [CrossRef]
- Koffler, B.E.; Polanschütz, L.; Zechmann, B. Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 2014, 251, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Zechmann, B.; Mauch, F.; Sticher, L.; Müller, M. Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J. Exp. Bot. 2008, 59, 4017–4027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koffler, B.E.; Luschin-Ebengreuth, N.; Stabentheiner, E.; Müller, M.; Zechmann, B. Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci. 2014, 227, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Sabetta, W.; Paradiso, A.; Paciolla, C.; de Pinto, M.C. Chemistry, Biosynthesis, and Antioxidative Function of Glutathione in Plants. In Glutathione in Plant Growth, Development, and Stress Tolerance; Hossain, M.A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–27. ISBN 978-3-319-66681-5. [Google Scholar]
- Szymańska, R.; Ślesak, I.; Orzechowska, A.; Kruk, J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 2017, 139, 165–177. [Google Scholar] [CrossRef]
- Oestreicher, J.; Morgan, B. Glutathione: Subcellular distribution and membrane transport. Biochem. Cell Biol. 2019, 97, 270–289. [Google Scholar] [CrossRef] [Green Version]
- Haber, Z.; Rosenwasser, S. Resolving the dynamics of photosynthetically produced ROS by high-resolution monitoring of chloroplastic EGSH in Arabidopsis. Available online: https://www.biorxiv.org/content/10.1101/2020.03.04.976092v2 (accessed on 9 September 2020).
- Bratt, A.; Rosenwasser, S.; Meyer, A.; Fluhr, R. Organelle redox autonomy during environmental stress. Plant Cell Environ. 2016, 39, 1909–1919. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. 1950, 347, 4–32. [Google Scholar]
- Kocsy, G.; von Ballmoos, P.; Suter, M.; Rüegsegger, A.; Galli, U.; Szalai, G.; Galiba, G.; Brunold, C. Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 2000, 211, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Kranner, I.; Grill, D. Determination of glutathione and glutathione disulphide in lichens: A comparison of frequently used methods. Phytochem. Anal. 1996, 7, 24–28. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Jiang, J.; Chen, S.; Guan, Z.; Liao, Y.; Chen, F. Reference genes for normalizing transcription in diploid and tetraploid Arabidopsis. Sci. Rep. 2014, 4, 6781. [Google Scholar] [CrossRef] [Green Version]
- Paolacci, A.R.; Tanzarella, O.A.; Porceddu, E.; Ciaffi, M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 2009, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons among Means. J. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar] [CrossRef]
Col-0 | MIT | POX | CHL | CYT | NUC |
---|---|---|---|---|---|
NL | 549 ± 18 | 169 ± 17 | 140 ± 4.2 | 185 ± 5.8 | 300 ± 15 |
HL | 699 ± 25 + 27% *** | 169 ± 23 | 107 ± 6.9 − 24% *** | 157 ± 7.2 − 16% *** | 220 ± 10 − 27% *** |
FRL | 519 ± 18 − 5% | 122 ± 10 − 28% | 123 ± 9.1 − 12% *** | 205 ± 10 + 10% | 247 ± 18 − 18% ** |
vtc2-1 | |||||
NL | 219 ± 8 | 19 ± 2.8 | 9 ± 0.5 | 19 ± 0.7 | 38 ± 1 |
HL | 191 ±9 − 13% | 22 ± 4.1 + 15% | 9 ± 0.6 | 15 ± 0.5 − 21% *** | 37 ± 2 − 3% |
FRL | 236 ± 10 + 8% | 53 ± 8.4 + 1.8× *** | 16 ± 1.3 + 78% *** | 25 ± 1.6 + 32% *** | 52 ± 2 + 37% *** |
pad2-1 | |||||
NL | 104 ± 7 | 3 ± 0.9 | 2 ± 0.2 | 2 ± 0.2 | 1.4 ± 0.2 |
HL | 205 ± 10 + 97% *** | 9 ± 1.9 + 2× ** | 3 ± 0.3 + 59% *** | 6 ± 0.5 + 2× *** | 6 ± 0.5 + 5× *** |
FRL | 157 ± 09 + 51% *** | 7 ± 1.5 + 1.3× | 2 ± 0.2 + 35%*** | 3 ± 0.3 + 94% *** | 3 ± 0.3 + 2× *** |
Wheat | |||||
LL | 224 ± 10 − 24% a | 31 ± 2 − 48% a | 19 ± 2 − 17% a | 25 ± 2.2 − 65% a | 32 ± 2 − 78% a |
NL | 295 ± 12 b | 60 ± 9 b | 23 ± 1.6 a | 72 ± 3.6 b | 146 ± 05 b |
HL | 375 ± 24 + 27% c | 145 ± 11 + 1.4× c | 46 ± 2.4 + 1× b | 157 ± 11 + 1× c | 271 ± 13 + 86% c |
FRL | 407 ± 17 + 38% c | 117 ± 11 + 95% c | 58 ± 3 + 1.5× c | 204 ± 10 + 1.8× d | 302 ± 8 + 1× d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasperl, A.; Balogh, E.; Boldizsár, Á.; Kemeter, N.; Pirklbauer, R.; Möstl, S.; Kalapos, B.; Szalai, G.; Müller, M.; Zellnig, G.; et al. Comparison of Light Condition-Dependent Differences in the Accumulation and Subcellular Localization of Glutathione in Arabidopsis and Wheat. Int. J. Mol. Sci. 2021, 22, 607. https://doi.org/10.3390/ijms22020607
Gasperl A, Balogh E, Boldizsár Á, Kemeter N, Pirklbauer R, Möstl S, Kalapos B, Szalai G, Müller M, Zellnig G, et al. Comparison of Light Condition-Dependent Differences in the Accumulation and Subcellular Localization of Glutathione in Arabidopsis and Wheat. International Journal of Molecular Sciences. 2021; 22(2):607. https://doi.org/10.3390/ijms22020607
Chicago/Turabian StyleGasperl, Anna, Eszter Balogh, Ákos Boldizsár, Nadine Kemeter, Richard Pirklbauer, Stefan Möstl, Balázs Kalapos, Gabriella Szalai, Maria Müller, Günther Zellnig, and et al. 2021. "Comparison of Light Condition-Dependent Differences in the Accumulation and Subcellular Localization of Glutathione in Arabidopsis and Wheat" International Journal of Molecular Sciences 22, no. 2: 607. https://doi.org/10.3390/ijms22020607
APA StyleGasperl, A., Balogh, E., Boldizsár, Á., Kemeter, N., Pirklbauer, R., Möstl, S., Kalapos, B., Szalai, G., Müller, M., Zellnig, G., & Kocsy, G. (2021). Comparison of Light Condition-Dependent Differences in the Accumulation and Subcellular Localization of Glutathione in Arabidopsis and Wheat. International Journal of Molecular Sciences, 22(2), 607. https://doi.org/10.3390/ijms22020607