β-Cyclodextrin/Triclosan Complex-Grafted Methacrylated Glycol Chitosan Hydorgel by Photocrosslinking via Visible Light Irradiation for a Tissue Bio-Adhesive
Abstract
:1. Introduction
2. Results and Discussion
2.1. 1H NMR Spectra of MGC-g-CD and MGC-g-CD-ic-TCS
2.2. DSC Curve and Storage/Loss Moduli of MGC-g-CD-ic-TCS
2.3. In Vitro Cell Proliferation Ratio
2.4. Antibacterial Activity
2.5. Adhesion Strength of Hydrogels to Tissues
2.6. Observation of Gross Appearances of Skin Incisions
2.7. Histological Evaluations of Skin Incisions
3. Materials and Methods
3.1. Materials
3.2. Preparation of MGC-g-CD-ic-TCS
3.3. Preparation of MGC-g-CD-ic-TCS Hydrogel
3.4. In Vitro Release Test
3.5. In Vitro Cell Proliferation Assay
3.6. Tissue Adhesive Strength Measurement
3.7. Evaluation of Antibacterial Activity
3.8. In Vivo Animal Study
3.9. Histological Evaluations
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCS | Triclosan |
β-CD-COOH | Succinyl beta-cyclodextrin |
MGC | Methacrylated glycol chitosan |
1H NMR | Proton nuclear magnetic resonance |
DSC | Differential scanning calorimetry |
MGC-g-CD-ic-TCS | TCS-complexed β-CD-conjugated MGC |
3-D | Three-dimensional |
CCK-8 | Cell counting kit-8 |
GC | Glycol chitosan |
H&E | Hematoxylin and eosin |
MT | Masson’s trichrome |
GM | Glycidyl methacrylate |
Riboflavin | Riboflavin 5′-monophosphate sodium salt |
DMT-MM | 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morphoninium chloride |
References
- Rahimnejad, M.; Zhong, W. Mussel-inspired hydrogel tissue adhesives for wound closure. RSC Adv. 2017, 7, 47380. [Google Scholar] [CrossRef] [Green Version]
- Pascual, G.; Sotomayor, S.; Rodriguez, M.; Pérez-Köhler, B.; Kühnhardt, A.; Fernández-Gutiérrez, M.; San Román, J.; Bellón, J.M. Cytotoxicity of cyanoacrylate-based tissue adhesives and short-term preclinical in vivo biocompatibility in abdominal hernia repair. PLoS ONE 2016, 11, e0157920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.; Chen, S. Recent advances in tissue adhesives for clinical medicine. Polymers 2020, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wang, C.; Yang, S.; Wang, Q.; Liang, F.; Liu, C.; Qiu, D.; Qu, X.; Hu, Z.; Yang, Z. Injectable tissue adhesive composite hydrogel with fibroblasts for treating skin defects. J. Mater. Chem. B 2017, 5, 2416. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X. Antibacterial hydrogels. Adv. Sci. 2018, 5, 1700527. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Tanaka, M.; Huang, Y.-Y.; Hamblin, M.R. Chitosan preparation for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti. Infect. Ther. 2011, 9, 857–879. [Google Scholar] [CrossRef]
- Puckett, M.M.; Morris, A.N.; Kuehn, J.L. The effect of triclosan on the proliferation of peritoneal tissue explants. Bios 2015, 86, 104–108. [Google Scholar] [CrossRef]
- Du, X.; Liu, Y.; Rafique, M.; Li, S.; Shan, X.; Wu, L.; Qiao, M.; King, D.; Wang, L. Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure. Biomacromolecules 2020, 21, 1243–1253. [Google Scholar] [CrossRef]
- Bhagat, V.; Becker, M.L. Degradable adhesives for surgery and tissue engineering. Biomacromolecules 2017, 18, 3009–3039. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Ma, K.; Cheng, Y.; Sun, L.; Chen, D.; Zhao, X.; Lu, H.; Song, B.; Yang, K.; Jia, P. Adhesive, conductive, self-healing, and antibacterial hydrogel based on chitosan-polyoxometalate complexes for wearable strain sensor. ACS Appl. Polym. Mater. 2020, 2, 2541–2549. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Yoo, Y.; Nam, S.E.; Hyun, H.; Lee, D.-W.; Um, S.; Kim, S.Y.; Hong, S.O.; Yang, D.H.; Chun, H.J. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar. Drugs 2018, 16, 351. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.; Hyun, H.; Yoon, S.-J.; Kim, S.Y.; Lee, D.-W.; Um, S.; Hong, S.O.; Yang, D.H. Visible light-cured glycol chitosan hydrogel dressing containing endothelial growth factor and basic fibroblast growth factor accelerates wound healing in vivo. J. Ind. Eng. Chem. 2018, 67, 365–372. [Google Scholar] [CrossRef]
- Yang, D.H.; Seo, D.I.; Lee, D.-W.; Bhang, S.H.; Park, K.; Jang, G.; Kim, C.H.; Chun, H.J. Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. J. Ind. Eng. Chem. 2017, 53, 360–370. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Hyun, H.; Lee, D.-W.; Yang, D.H. Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules 2017, 22, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, F.; Oveisi, Z.; Mohammadi Samani, S.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1–16. [Google Scholar] [PubMed]
- Goycoolea, F.M.; Fernández-Valle, M.E.; Aranaz, I.; Heras, Á. pH- and temperature-sensitive chitosan hydrogels: Swelling and MRI studies. Macromol. Chem. Phys. 2011, 212, 887–895. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, T.; Newland, B.; Duffy, P.; Annaidh, A.N.; O’Cearbhaill, E.D.; Wang, W. On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG-catechol copolymers. J. Mater. Chem. B 2015, 3, 6420. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Z.; Lou, J.; Hsing, I.-M.; Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl. Acad. Sci. USA 2017, 114, 5912–5917. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z.Y.; Cui, W.; Annabi, N.; Ng, K.W.; Dokmeci, M.R.; Ghaemmaghami, A.M.; Khademhosseini, A. Photocrosslinkabel gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 2016, 5, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, S.E. Sunlight and skin cancer: Lessons from the immune system. Mol. Carcinog. 2007, 46, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Li, L.; Zhang, Y.; Chen, K.; Wang, H.; Gong, R. Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React. Funct. Polym. 2017, 117, 10–15. [Google Scholar] [CrossRef]
- Jiang, R.-J.; Yang, B.; Yi, D.; Wang, F.; Han, B.; Zhao, Y.-L.; Liao, X.-L.; Yang, J.; Gao, C.-Z. Synthesis and characterization of a series of novel amino β-cyclodextrin-conjugated poly(ε-lysine) derivatives. J. Polym. Eng. 2014, 34, 133–139. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.H.; Kim, S.H. Fabrication of bio-based polyurethane nanofibers incorporated with a triclosan/cyclodextrin complex for antibacterial applications. RSC Adv. 2020, 10, 3450. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, G.; Deng, L.; Zhang, J.; Liu, H.; Mu, S.; Wu, T. Degradable UV-crosslinked hydrogel for the controlled release of triclosan with reduced cytotoxicity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 151–158. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Lou, C.; Tian, X.; Deng, H.; Wang, Y.; Jiang, X. Dialdehyde-β-cyclodextrin-crosslinked carboxymethyl chitosan hydrogel for drug release. Carbohy. Polym. 2020, 231, 115678. [Google Scholar] [CrossRef]
- Zuckerbraun, H.L.; Babich, H.; May, R.; Sinensky, M.C. Triclosan: Cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur. J. Oral. Sci. 1998, 106, 628–636. [Google Scholar] [CrossRef]
- Zu, G.; Steinmüller, M.; Keskin, D.; van der Mei, H.C.; Mergel, O.; van Rijn, P. Antimicrobial nanogels with nanoinjection capabilities for delivery of the hydrophobic antibacterial agent triclosan. ACS Appl. Polym. Mater. 2020, 2, 5779–5789. [Google Scholar] [CrossRef]
- Cui, Z.-K.; Kim, S.; Baljon, J.J.; Wu, B.M.; Aghaloo, T.; Lee, M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat. Comm. 2019, 10, 3523. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Pedrosa, S.S.; Correia, A.; Lima, C.F.; Olmedo, M.P.; González-Fernández, Á.; Vilanova, M.; Gama, F.M. Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol. Vitr. 2015, 29, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Akamatsu, M.; Okamoto, K.; Sumita, M.; Tateyama, Y.; Sakai, H. Micrometer-level naked-eye detection of caesium particulates in the solid state. Sci. Technol. Adv. Mater. 2012, 13, 015002. [Google Scholar] [CrossRef] [PubMed]
- Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agents: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H.-G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 2008, 74, 3764–3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuro, S.; Akiko, N. Complex formation of heparin or sulfated cellulose with glycol chitosan. Bull. Inst. Chem. Res. 1975, 53, 392. [Google Scholar]
- Kampf, G.; Kramer, A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin. Microbiol. Rev. 2004, 17, 863–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizrahi, B.; Weldon, C.; Kohane, D.S. Tissue adhesives as active implants. In Active Implants and Scaffolds for Tissue Regeneration; Meital, Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 8, pp. 39–56. [Google Scholar]
- Duarte, A.P.; Coelho, J.F.; Bordado, J.C.; Cidada, M.T.; Gil, M.H. Surgical adhesives: Systematic review of the main types and development forecast. Prog. Polym. Sci. 2012, 37, 1031–1050. [Google Scholar] [CrossRef]
- Oliveira, M.I.; Santos, S.G.; Oliveira, M.J.; Torres, A.L.; Barbosa, M.A. Chitosan drives anti-inflammatory macrophage polarization and pro-inflammatory dendritic cell stimulation. Eur. Cell Mater. 2012, 24, 136–152. [Google Scholar] [CrossRef]
- Delavary, B.M.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J. Macrophages in skin injury and repair. Immunobiology 2011, 216, 753–762. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, M.; Chen, S.; Wang, X.; Tian, Z.; Chen, Y.; Xu, P.; Zhang, L.; Zhang, L.; Zhang, L. Peptide-modified chitosan hydrogels accelerate skin wound healing by promoting fibroblast proliferation, migration, and secretion. Cell Transpl. 2017, 26, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.S.; Evancho-Chapman, M.; Li, H.; Huang, H.; George, R.L.; Shriver, L.P.; Leipzig, N.D. Fluorinated methacrylamide chitosan hydrogel dressings enhance healing in an acute porcine wound model. PLoS ONE 2018, 13, e0203371. [Google Scholar] [CrossRef] [Green Version]
- Hilmi, A.B.M.; Halim, A.S.; Jaafar, H.; Asiah, A.B.; Hassan, A. Chitosan dermal substitute and chitosan skin substitute contribute to accelerated full-thickness wound healing in irradiated rats. Biomed. Res. Int. 2013, 2013, 795458. [Google Scholar]
- Maxon, S.; Lopez, E.A.; Yoo, D.; Danilkovitch-Miagkova, A.; Leroux, M.A. Concise review: Role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med. 2012, 1, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Kashimura, N.; Noji, T.; Suzuki, O.; Ambo, Y.; Nakamura, F.; Kishida, A. Triclosan-coated sutures reduce the incidence of wound infections and the costs after colorectal surgery: A randomized controlled trial. Surgery 2013, 153, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wu, T.; Zhang, J.; Lin, M.; Mai, W.; Tan, S.; Xue, W.; Cai, X. Supramolecular hydrogels sustained release triclosan with controlled antibacterial activity and limited cytotoxicity. Sci. Adv. Mater. 2013, 5, 1400–1409. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, Y.J.; Yoon, S.-J.; Koo, J.-H.; Yoon, Y.; Byun, H.J.; Kim, H.S.; Khang, G.; Chun, H.J.; Yang, D.H. β-Cyclodextrin/Triclosan Complex-Grafted Methacrylated Glycol Chitosan Hydorgel by Photocrosslinking via Visible Light Irradiation for a Tissue Bio-Adhesive. Int. J. Mol. Sci. 2021, 22, 700. https://doi.org/10.3390/ijms22020700
Moon YJ, Yoon S-J, Koo J-H, Yoon Y, Byun HJ, Kim HS, Khang G, Chun HJ, Yang DH. β-Cyclodextrin/Triclosan Complex-Grafted Methacrylated Glycol Chitosan Hydorgel by Photocrosslinking via Visible Light Irradiation for a Tissue Bio-Adhesive. International Journal of Molecular Sciences. 2021; 22(2):700. https://doi.org/10.3390/ijms22020700
Chicago/Turabian StyleMoon, Young Jae, Sun-Jung Yoon, Jeung-Hyun Koo, Yihyun Yoon, Hye Jun Byun, Hyeon Soo Kim, Gilson Khang, Heung Jae Chun, and Dae Hyeok Yang. 2021. "β-Cyclodextrin/Triclosan Complex-Grafted Methacrylated Glycol Chitosan Hydorgel by Photocrosslinking via Visible Light Irradiation for a Tissue Bio-Adhesive" International Journal of Molecular Sciences 22, no. 2: 700. https://doi.org/10.3390/ijms22020700
APA StyleMoon, Y. J., Yoon, S. -J., Koo, J. -H., Yoon, Y., Byun, H. J., Kim, H. S., Khang, G., Chun, H. J., & Yang, D. H. (2021). β-Cyclodextrin/Triclosan Complex-Grafted Methacrylated Glycol Chitosan Hydorgel by Photocrosslinking via Visible Light Irradiation for a Tissue Bio-Adhesive. International Journal of Molecular Sciences, 22(2), 700. https://doi.org/10.3390/ijms22020700