Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models
Abstract
:1. Introduction
2. Long-Term Effects of Early Stress Models in Rodents
2.1. Pharmacological Models
2.2. Mother–Pup Interaction Manipulations
3. The Endocannabinoid (ECB) System
4. The Developmental Axis
5. Do Cannabinoids Exacerbate or Ameliorate the Long-Term Effects of ELS Exposure?
5.1. ELS and Cannabinoid Exposure at P10 (Infancy)
5.2. ELS and Cannabinoid Exposure during Mid-Adolescence
5.3. ELS and Cannabinoid Exposure during Late Adolescence
5.4. Direct Versus Indirect Agonists of the Endocannabinoid System
6. Sex Differences
7. Human Studies
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, R.J.; McEwen, B.S. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat. Neurosci. 2012, 15, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, C.; Binder, E.B. Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp. Neurol. 2012, 233, 102–111. [Google Scholar] [CrossRef]
- Pratchett, L.C.; Yehuda, R. Foundations of posttraumatic stress disorder: Does early life trauma lead to adult posttraumatic stress disorder? Dev. Psychopathol. 2011, 23, 477–491. [Google Scholar] [CrossRef]
- Andersen, S.L. Commentary on the special issue on the adolescent brain: Adolescence, trajectories, and the importance of prevention. Neurosci. Biobehav. Rev. 2016, 70, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gee, D.G.; Casey, B. The impact of developmental timing for stress and recovery. Neurobiol. Stress 2015, 1, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarris, J.; Sinclair, J.; Karamacoska, D.; Davidson, M.; Firth, J. Medicinal cannabis for psychiatric disorders: A clinically-focused systematic review. BMC Psychiatry 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, M.; Young, J.; Clark, A.J. A Case Series of Patients Using Medicinal Marihuana for Management of Chronic Pain under the Canadian Marihuana Medical access Regulations. J. Pain Symptom Manag. 2006, 32, 497–501. [Google Scholar] [CrossRef]
- Prentiss, D.; Power, R.; Balmas, G.; Tzuang, G.; Israelski, D.M. Patterns of Marijuana Use among Patients with HIV/AIDS Followed in a Public Health Care Setting. JAIDS J. Acquir. Immune Defic. Syndr. 2004, 35, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Reinarman, C.; Nunberg, H.; Lanthier, F.; Heddleston, T. Who Are Medical Marijuana Patients? Population Characteristics from Nine California Assessment Clinics. J. Psychoact. Drugs 2011, 43, 128–135. [Google Scholar] [CrossRef]
- Cameron, C.; Watson, D.; Robinson, J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder–related insomnia and nightmares, chronic pain, harm reduction, and other indications: A retrospective evaluation. J. Clin. Psychopharmacol. 2014, 34, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Fraser, G.A. The Use of a Synthetic Cannabinoid in the Management of Treatment-Resistant Nightmares in Posttraumatic Stress Disorder (PTSD). CNS Neurosci. Ther. 2009, 15, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Roitman, P.; Mechoulam, R.; Cooper-Kazaz, R.; Shalev, A. Preliminary, Open-Label, Pilot Study of Add-On Oral Δ9-Tetrahydrocannabinol in Chronic Post-Traumatic Stress Disorder. Clin. Drug Investig. 2014, 34, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Walsh, Z.; Gonzalez, R.; Crosby, K.; Thiessen, M.S.; Carroll, C.; Bonn-Miller, M.O. Medical cannabis and mental health: A guided systematic review. Clin. Psychol. Rev. 2017, 51, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Bedse, G.; Bluett, R.J.; Patrick, T.A.; Romness, N.K.; Gaulden, A.D.; Kingsley, P.J.; Plath, N.; Marnett, L.J.; Patel, S. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: Comparative profiling of FAAH, MAGL and dual inhibitors. Transl. Psychiatry 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Burstein, O.; Shoshan, N.; Doron, R.; Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Fidelman, S.; Zer-Aviv, T.M.; Lange, R.; Hillard, C.J.; Akirav, I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur. Neuropsychopharmacol. 2018, 28, 630–642. [Google Scholar] [CrossRef]
- Hill, M.N.; Gorzalka, B.B. Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur. Neuropsychopharmacol. 2005, 15, 593–599. [Google Scholar] [CrossRef]
- Lee, T.T.-Y.; Hill, M.N.; Lee, F.S. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. Genes Brain Behav. 2016, 15, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Vinod, K.Y.; Hungund, B.L. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol. Sci. 2006, 27, 539–545. [Google Scholar] [CrossRef]
- Zer-Aviv, T.M.; Segev, A.; Akirav, I. Cannabinoids and post-traumatic stress disorder: Clinical and preclinical evidence for treatment and prevention. Behav. Pharmacol. 2016, 27, 561–569. [Google Scholar] [CrossRef]
- Sbarski, B.; Akirav, I. Cannabinoids as therapeutics for PTSD. Pharmacol. Ther. 2020, 211, 107551. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Patel, S. Translational evidence for the involvement of the endocannabinoid system in stress-related psychiatric illnesses. Biol. Mood Anxiety Disord. 2013, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Hillard, C.J. Stress regulates endocannabinoid-CB1 receptor signaling. Semin. Immunol. 2014, 26, 380–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morena, M.; Patel, S.; Bains, J.S.; Hill, M.N. Neurobiological Interactions between Stress and the Endocannabinoid System. Neuropsychopharmacol. Rev. 2015, 41, 80–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M. Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict. Biol. 2008, 13, 253–263. [Google Scholar] [CrossRef]
- Hammond, C.J.; Chaney, A.; Hendrickson, B.; Sharma, P. Cannabis use among U.S. adolescents in the era of marijuana legalization: A review of changing use patterns, comorbidity, and health correlates. Int. Rev. Psychiatry 2020, 32, 221–234. [Google Scholar] [CrossRef]
- Hasin, D.S.U.S. Epidemiology of cannabis use and associated problems. Neuropsychpharmacology 2018, 43, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Rehan, W.; Antfolk, J.; Johansson, A.; Jern, P.; Santtila, P. Experiences of severe childhood maltreatment, depression, anxiety and alcohol abuse among adults in Finland. PLoS ONE 2017, 12, e0177252. [Google Scholar] [CrossRef]
- Van Der Werff, S.J.; Berg, S.M.V.D.; Pannekoek, J.N.; Elzinga, B.; Van Der Wee, N.J. Neuroimaging resilience to stress: A review. Front. Behav. Neurosci. 2013, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Cirulli, F.; Francia, N.; Berry, A.; Aloe, L.; Alleva, E.; Suomi, S.J. Early life stress as a risk factor for mental health: Role of neurotrophins from rodents to non-human primates. Neurosci. Biobehav. Rev. 2009, 33, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Molet, J.; Maras, P.M.; Avishai-Eliner, S.; Baram, T.Z. Naturalistic rodent models of chronic early-life stress. Dev. Psychobiol. 2014, 56, 1675–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.V.; Wang, X.-D.; Meijer, O.C. Early life stress paradigms in rodents: Potential animal models of depression? Psychopharmacology 2011, 214, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Levine, S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 2005, 30, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.; Ladd, C.O.; Plotsky, P.M. Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Dev. Psychopathol. 2001, 13, 419–449. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.R.; Weidemann, G.; Kabbaj, M.; Vazquez, D.M. Effect of neonatal dexamethasone exposure on growth and neurological development in the adult rat. Am. J. Physiol. Integr. Comp. Physiol. 2004, 287, R375–R385. [Google Scholar] [CrossRef] [Green Version]
- Bilbo, S.D.; Biedenkapp, J.C.; Der-Avakian, A.; Watkins, L.R.; Rudy, J.W.; Maier, S.F. Neonatal Infection-Induced Memory Impairment after Lipopolysaccharide in Adulthood Is Prevented via Caspase-1 Inhibition. J. Neurosci. 2005, 25, 8000–8009. [Google Scholar] [CrossRef] [Green Version]
- Lieblein-Boff, J.C.; McKim, D.B.; Shea, D.T.; Wei, P.; Deng, Z.; Sawicki, C.M.; Quan, N.; Bilbo, S.D.; Bailey, M.T.; McTigue, D.M.; et al. Coli Infection Causes Neuro-Behavioral Deficits Associated with Hypomyelination and Neuronal Sequestration of Iron. J. Neurosci. 2013, 33, 16334–16345. [Google Scholar] [CrossRef] [Green Version]
- Shanks, N.; Larocque, S.; Meaney, M.J. Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: Early illness and later responsivity to stress. J. Neurosci. 1995, 15, 376–384. [Google Scholar] [CrossRef]
- Shanks, N.; Windle, R.J.; Perks, P.A.; Harbuz, M.S.; Jessop, D.S.; Ingram, C.D.; Lightman, S.L. Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc. Natl. Acad. Sci. USA 2000, 97, 5645–5650. [Google Scholar] [CrossRef] [Green Version]
- Sominsky, L.; Fuller, E.; Bondarenko, E.; Ong, L.K.; Averell, L.; Nalivaiko, E.; Dunkley, P.R.; Dickson, P.W.; Hodgson, D.M. Functional Programming of the Autonomic Nervous System by Early Life Immune Exposure: Implications for Anxiety. PLoS ONE 2013, 8, e57700. [Google Scholar] [CrossRef] [Green Version]
- Amath, A.; Foster, J.; Sidor, M. Developmental alterations in CNS stress-related gene expression following postnatal immune activation. Neuroscience 2012, 220, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Raineki, C.; Cortés, M.R.; Belnoue, L.; Sullivan, R.M. Effects of Early-Life Abuse Differ across Development: Infant Social Behavior Deficits Are Followed by Adolescent Depressive-Like Behaviors Mediated by the Amygdala. J. Neurosci. 2012, 32, 7758–7765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alteba, S.; Korem, N.; Akirav, I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learn. Mem. 2016, 23, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, P.O.; Suderman, M.; Sasaki, A.; Huang, T.C.T.; Hallett, M.; Meaney, M.J.; Szyf, M. Broad Epigenetic Signature of Maternal Care in the Brain of Adult Rats. PLoS ONE 2011, 6, e14739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teissier, A.; Le Magueresse, C.; Olusakin, J.; Andrade da Costa, B.L.S.; De Stasi, A.M.; Bacci, A.; Kawasawa, Y.I.; Vaidya, V.A.; Gaspar, P. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behavior through activity-dependent mechanisms. Mol. Psychiatry 2020, 25, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Feldon, J. Long-term Biobehavioral Effects of Maternal Separation in the Rat: Consistent or Confusing? Rev. Neurosci. 2000, 11, 383–408. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.J.; Kim, J.G.; Ryu, V.; Kim, B.-T.; Kang, D.-W.; Jahng, J.W. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci. Res. 2007, 58, 32–39. [Google Scholar] [CrossRef]
- Bai, M.; Zhu, X.; Zhang, Y.; Zhang, S.; Zhang, L.; Xue, L.; Yi, J.; Yao, S.; Zhang, X. Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE 2012, 7, e46921. [Google Scholar] [CrossRef]
- Allen, L.; Dwivedi, Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol. Psychiatry 2020, 25, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Marco, E.M.; Adriani, W.; Llorente, R.; Laviola, G.; Viveros, M.-P. Detrimental psychophysiological effects of early maternal deprivation in adolescent and adult rodents: Altered responses to cannabinoid exposure. Neurosci. Biobehav. Rev. 2009, 33, 498–507. [Google Scholar] [CrossRef]
- Roceri, M.; Hendriks, W.; Racagni, G.; Ellenbroek, B.A.; Riva, M.A. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol. Psychiatry 2002, 7, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellenbroek, B.A.; Cools, A.R. Early maternal deprivation and prepulse inhibition the role of the post-deprivation environment. Pharmacol. Biochem. Behav. 2002, 73, 177–184. [Google Scholar] [CrossRef]
- Shepard, R.D.; Langlois, L.D.; Browne, C.A.; Berenji, A.; Lucki, I.; Nugent, F.S. Ketamine Reverses Lateral Habenula Neuronal Dysfunction and Behavioral Immobility in the Forced Swim Test Following Maternal Deprivation in Late Adolescent Rats. Front. Synaptic Neurosci. 2018, 10, 39. [Google Scholar] [CrossRef]
- Browne, C.A.; Hammack, R.; Lucki, I. Dysregulation of the Lateral Habenula in Major Depressive Disorder. Front. Synaptic Neurosci. 2018, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, S.; Gould, E. Early life stress in rodents: Animal models of illness or resilience? Front. Behav. Neurosci. 2018, 12, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avishai-Eliner, S.; Gilles, E.E.; Eghbal-Ahmadi, M.; Bar-El, Y.; Baram, T.Z. Altered Regulation of Gene and Protein Expression of Hypothalamic-Pituitary-Adrenal Axis Components in an Immature Rat Model of Chronic Stress. J. Neuroendocr. 2001, 13, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunson, K.L.; Kramar, E.; Lin, B.; Chen, Y.; Colgin, L.L.; Yanagihara, T.K.; Lynch, G.; Baram, T.Z. Mechanisms of Late-Onset Cognitive Decline after Early-Life Stress. J. Neurosci. 2005, 25, 9328–9338. [Google Scholar] [CrossRef]
- Cui, M.; Yang, Y.; Yang, J.; Zhang, J.; Han, H.; Ma, W.; Li, H.; Mao, R.; Xu, L.; Hao, W.; et al. Enriched environment experience overcomes the memory deficits and depressive-like behavior induced by early life stress. Neurosci. Lett. 2006, 404, 208–212. [Google Scholar] [CrossRef]
- Molle, R.D.; Portella, A.K.; Goldani, M.Z.; Kapczinski, F.; Leistner-Segala, S.; Salum, G.A.; Manfro, G.G.; Silveira, P.P. Associations between parenting behavior and anxiety in a rodent model and a clinical sample: Relationship to peripheral BDNF levels. Transl. Psychiatry 2012, 2, e195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilles, E.E.; Schultz, L.; Baram, T.Z. Abnormal corticosterone regulation in an immature rat model of continuous chronic stress. Pediatr. Neurol. 1996, 15, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Ivy, A.S.; Brunson, K.L.; Sandman, C.; Baram, T.Z. Dysfunctional nurturing behavior in rat dams with limited access to nesting material: A clinically relevant model for early-life stress. Neuroscience 2008, 154, 1132–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raineki, C.; Moriceau, S.; Sullivan, R.M. Developing a Neurobehavioral Animal Model of Infant Attachment to an Abusive Caregiver. Biol. Psychiatry 2010, 67, 1137–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, K.; McKinney, M.K.; Cravatt, B.F. Enzymatic Pathways That Regulate Endocannabinoid Signaling in the Nervous System. Chem. Rev. 2008, 108, 1687–1707. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Bátkai, S.; Kunos, G. The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [Green Version]
- Scarante, F.F.; Vila-Verde, C.; Detoni, V.L.; Ferreira-Junior, N.C.; Guimarães, F.S.; Campos, A.C. Cannabinoid Modulation of the Stressed Hippocampus. Front. Mol. Neurosci. 2017, 10, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghuis, P.; Rajnicek, A.M.; Morozov, Y.M.; Ross, R.A.; Mulder, J.; Urbán, G.M.; Monory, K.; Marsicano, G.; Matteoli, M.; Canty, A.; et al. Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science 2007, 316, 1212–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, J.; Aguado, T.; Keimpema, E.; Baraba’s, K.; Rosado, C.B.; Nguyen, F.; Monory, K.; Marsicano, G.; Marzo, V.D.; Hurd, Y.L.; et al. Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc. Natl. Acad. Sci. USA 2008, 105, 8760–8765. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.J.; Lovinger, D.M. Developmental Alteration of Endocannabinoid Retrograde Signaling in the Hippocampus. J. Neurophysiol. 2010, 103, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.N.; Patel, S.; Campolongo, P.; Tasker, J.G.; Wotjak, C.T.; Bains, J.S. Functional Interactions between Stress and the Endocannabinoid System: From Synaptic Signaling to Behavioral Output. J. Neurosci. 2010, 30, 14980–14986. [Google Scholar] [CrossRef]
- Hill, M.N.; Bierer, L.M.; Makotkine, I.; Golier, J.A.; Galea, S.; McEwen, B.S.; Hillard, C.J.; Yehuda, R. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the world trade center attacks. Psychoneuroendocrinology 2013, 38, 2952–2961. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.N.; Tasker, J.G. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 2012, 204, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Riebe, C.J.; Wotjak, C.T. Endocannabinoids and stress. Stress 2011, 14, 384–397. [Google Scholar] [CrossRef]
- Marsicano, G.; Wotjak, C.T.; Azad, S.C.; Bisogno, T.; Rammes, G.; Cascio, M.G.; Hermann, H.; Tang, J.; Hofmann, C.; Zieglgänsberger, W.; et al. The endogenous cannabinoid system controls extinction of aversive memories. Nat. Cell Biol. 2002, 418, 530–534. [Google Scholar] [CrossRef]
- Valverde, O.; Torrens, M. CB1 receptor-deficient mice as a model for depression. Neuroscience 2012, 204, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Yasar, S.; Goldberg, S.R. Endocannabinoid system involvement in brain reward processes related to drug abuse. Pharmacol. Res. 2007, 56, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Solinas, M.; Goldberg, S.R.; Piomelli, D. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 2008, 154, 369–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poleszak, E.; Wośko, S.; Sławińska, K.; Szopa, A.; Wróbel, A.; Serefko, A. Cannabinoids in depressive disorders. Life Sci. 2018, 213, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Gorzalka, B.B.; Hill, M.N.; Hillard, C.J. Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neurosci. Biobehav. Rev. 2008, 32, 1152–1160. [Google Scholar] [CrossRef]
- Parolaro, D.; Realini, N.; Vigano, D.; Guidali, C.; Rubino, T. The endocannabinoid system and psychiatric disorders. Exp. Neurol. 2010, 224, 3–14. [Google Scholar] [CrossRef]
- Bortolato, M.; Mangieri, R.A.; Fu, J.; Kim, J.H.; Arguello, O.; Duranti, A.; Tontini, A.; Mor, M.; Tarzia, G.; Piomelli, D. Antidepressant-like Activity of the Fatty Acid Amide Hydrolase Inhibitor URB597 in a Rat Model of Chronic Mild Stress. Biol. Psychiatry 2007, 62, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Campos, A.C.; Fogaça, M.V.; Sonego, A.B.; Guimarães, F.S. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 2016, 112, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Mangieri, R.A.; Piomelli, D. Enhancement of endocannabinoid signaling and the pharmacotherapy of depression. Pharmacol. Res. 2007, 56, 360–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, A.C.; Ferreira, F.R.; Guimarães, F.S. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: Possible involvement of 5HT1A receptors. J. Psychiatr. Res. 2012, 46, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Abrari, K.; Goudarzi, I.; Rashidy-Pour, A. Effect of WIN55-212-2 and Consequences of Extinction Training on Conditioned Fear Memory in PTSD Male Rats. Basic Clin. Neurosci. J. 2017, 8, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morena, M.; Berardi, A.; Colucci, P.; Palmery, M.; Trezza, V.; Hill, M.N.; Campolongo, P. Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats. Neuropsychopharmacology 2017, 43, 1284–1296. [Google Scholar] [CrossRef]
- Shoshan, N.; Segev, A.; Abush, H.; Zer-Aviv, T.M.; Akirav, I. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity. Hippocampus 2017, 27, 1093–1109. [Google Scholar] [CrossRef]
- Jetly, R.; Heber, A.; Fraser, G.; Boisvert, D. The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: A preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology 2015, 51, 585–588. [Google Scholar] [CrossRef]
- Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurother. 2015, 12, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Hindocha, C.; Cousijn, J.; Rall, M.; Bloomfield, M.A.P. The Effectiveness of Cannabinoids in the Treatment of Posttraumatic Stress Disorder (PTSD): A Systematic Review. J. Dual Diagn. 2019, 16, 120–139. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Chiappini, S.; Volpe, U.; De Berardis, D.; Latini, R.; Papanti, D.; Corkery, J.M. Use of Medicinal Cannabis and Synthetic Cannabinoids in Post-Traumatic Stress Disorder (PTSD): A Systematic Review. Medicina 2019, 55, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechoulam, R.; Parker, L.A. The Endocannabinoid System and the Brain. Annu. Rev. Psychol. 2013, 64, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, A.A.; Purrio, M.; Viveros, M.P.; Lutz, B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 2012, 37, 2624–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, M.N.; Eiland, L.; Lee, T.T.; Hillard, C.J.; Bs, M. Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats. Neuropharmocology 2019, 146, 154–162. [Google Scholar] [CrossRef] [PubMed]
- D’Asti, E.; Long, H.; Tremblay-Mercier, J.; Grajzer, M.; Cunnane, S.C.; Di Marzo, V.; Walker, C.-D. Maternal Dietary Fat Determines Metabolic Profile and the Magnitude of Endocannabinoid Inhibition of the Stress Response in Neonatal Rat Offspring. Endocrinology 2010, 151, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Llorente, R.; Llorente-Berzal, Á.; Petrosino, S.; Marco, E.M.; Guaza, C.; Prada, C.; Gallardo, M.L.; Di Marzo, V.; Viveros, M.-P. Gender-dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: A possible role for the endocannabinoid system. Dev. Neurobiol. 2008, 68, 1334–1347. [Google Scholar] [CrossRef]
- Marco, E.M.; Scattoni, M.L.; Rapino, C.; Ceci, C.; Chaves, N.; Macrì, S.; Maccarrone, M.; Laviola, G. Emotional, endocrine and brain anandamide response to social challenge in infant male rats. Psychoneuroendocrinology 2013, 38, 2152–2162. [Google Scholar] [CrossRef]
- Amancio-Belmont, O.; Meléndez, A.L.B.; Ruiz-Contreras, A.E.; Méndez-Díaz, M.; Prospéro-García, O. Opposed cannabinoid 1 receptor (CB1R) expression in the prefrontal cortex vs. nucleus accumbens is associated with alcohol consumption in male rats. Brain Res. 2019, 1725, 146485. [Google Scholar] [CrossRef]
- Atsak, P.; Morena, M.; Schoenmaker, C.; Tabak, E.; Oomen, C.A.; Jamil, S.; Hill, M.N.; Roozendaal, B. Glucocorticoid-endocannabinoid uncoupling mediates fear suppression deficits after early—Life stress. Psychoneuroendocrinology 2018, 91, 41–49. [Google Scholar] [CrossRef]
- Llorente-Berzal, Á.; Assis, M.A.; Rubino, T.; Zamberletti, E.; Marco, E.M.; Parolaro, D.; Ambrosio, E.; Viveros, M.-P. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure. Pharmacol. Res. 2013, 74, 23–33. [Google Scholar] [CrossRef]
- López-Gallardo, M.; López-Rodríguez, A.B.; Llorente-Berzal, Á.; Rotllant, D.; Mackie, K.; Armario, A.; Nadal, R.; Viveros, M.-P. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion. Neuroscience 2012, 204, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Naudon, L.; Piscitelli, F.; Giros, B.; Di Marzo, V.; Daugé, V. Possible involvement of endocannabinoids in the increase of morphine consumption in maternally deprived rat. Neuropharmacology 2013, 65, 193–199. [Google Scholar] [CrossRef]
- Marco, E.M.; Macrì, S.; Laviola, G. Critical Age Windows for Neurodevelopmental Psychiatric Disorders: Evidence from Animal Models. Neurotox. Res. 2011, 19, 286–307. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, E.; Laviola, G.; Adriani, W. Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci. Biobehav. Rev. 2003, 27, 163–178. [Google Scholar] [CrossRef]
- Levine, S.; Glick, D.; Nakane, P.K. Adrenal and Plasma Corticosterone and Vitamin A in Rat Adrenal Glands During Postnatal Development. Endocrinology 1967, 80, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Levine, S. The Pituitary—Adrenal System and the Developing Brain. In Brain Machine Interfaces: Implications for Science, Clinical Practice and Society; Elsevier: Amsterdam, The Netherlands, 2011; Volume 32, pp. 79–85. [Google Scholar] [CrossRef]
- Schmidt, M.V.; Enthoven, L.; van der Mark, M.; Levine, S.; De Kloet, E.R.; Oitzl, M.S. The postnatal development of the hypothalamic–pituitary–adrenal axis in the mouse. Int. J. Dev. Neurosci. 2003, 21, 125–132. [Google Scholar] [CrossRef]
- Levine, S. Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiol. Behav. 2001, 73, 255–260. [Google Scholar] [CrossRef]
- Schapiro, S.; Geller, E.; Eiduson, S. Neonatal Adrenal Cortical Response to Stress and Vasopressin. Exp. Biol. Med. 1962, 109, 937–941. [Google Scholar] [CrossRef]
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Galvan, A.; Hare, T.A.; Parra, C.E.; Penn, J.; Voss, H.; Glover, G.; Casey, B.J. Earlier Development of the Accumbens Relative to Orbitofrontal Cortex Might Underlie Risk-Taking Behavior in Adolescents. J. Neurosci. 2006, 26, 6885–6892. [Google Scholar] [CrossRef] [Green Version]
- Konrad, K.; Firk, C.; Uhlhaas, P.J. Brain development during adolescence: Neuroscientific insights into this developmental period. Dtsch. Arztebl. Int. 2013, 110, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Llorente, R.; Arranz, L.; Marco, E.-M.; Moreno, E.; Puerto, M.; Guaza, C.; De La Fuente, M.; Viveros, M.-P. Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats. Psychoneuroendocrinology 2007, 32, 636–650. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, R.J.; Verlezza, S.; Gray, J.M.; Hill, M.N.; Walker, C.-D. Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions. Stress 2015, 19, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.M.; Adriani, W.; Canese, R.; Podo, F.; Viveros, M.-P.; Laviola, G. Enhancement of endocannabinoid signalling during adolescence: Modulation of impulsivity and long-term consequences on metabolic brain parameters in early maternally deprived rats. Pharmacol. Biochem. Behav. 2007, 86, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Morel, L.J.; Giros, B.; Daugé, V. Val Adolescent Exposure to Chronic Delta-9-Tetrahydrocannabinol Blocks Opiate Dependence in Maternally Deprived Rats. Neuropsychopharmacology 2009, 34, 2469–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubino, T.; Prini, P.; Piscitelli, F.; Zamberletti, E.; Trusel, M.; Melis, M.; Sagheddu, C.; Ligresti, A.; Tonini, R.; Di Marzo, V.; et al. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol. Dis. 2015, 73, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Macrì, S.; Laviola, G. Single episode of maternal deprivation and adult depressive profile in mice: Interaction with cannabinoid exposure during adolescence. Behav. Brain Res. 2004, 154, 231–238. [Google Scholar] [CrossRef]
- Doenni, V.; Gray, J.; Song, C.; Patel, S.; Hill, M.; Pittman, Q. Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. Brain Behav. Immun. 2016, 58, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Zamberletti, E.; Prini, P.; Speziali, S.; Gabaglio, M.; Solinas, M.; Parolaro, D.; Rubino, T. Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience 2012, 204, 245–257. [Google Scholar] [CrossRef]
- Llorente-Berzal, A.; Fuentes, S.; Gagliano, H.; Lopez-Gallardo, M.; Armario, A.; Viveros, M.P.; Nadal, R. Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behavior. Addict. Biol. 2011, 16, 624–637. [Google Scholar] [CrossRef]
- Narita, M.; Suzuki, M.; Kuzumaki, N.; Miyatake, M.; Suzuki, T. Implication of activated astrocytes in the development of drug dependence: Differences between methamphetamine and morphine. Ann. N. Y. Acad. Sci. 2008, 1141, 96–104. [Google Scholar] [CrossRef]
- Alteba, S.; Portugalov, A.; Hillard, C.J.; Akirav, I. Inhibition of fatty acid amide hydrolase (FAAH) during adolescence and exposure to early life stress may exacerbate depression-like behaviors in male and female rats. Neuroscience 2021, 455, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Alteba, S.; Zer-Aviv, T.M.; Tenenhaus, A.; Ben David, G.; Adelman, J.; Hillard, C.J.; Doron, R.; Akirav, I. Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. Eur. Neuropsychopharmacol. 2020, 39, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Neumeister, A. The endocannabinoid system provides an avenue for evidence-based treatment development for PTSD. Depress. Anxiety 2012, 30, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, J.; Goodwin, R.S.; Li, C.-T.; Terry, G.; Zoghbi, S.S.; Morse, C.L.; Pike, V.W.; Volkow, N.D.A.; Huestis, M.; Innis, R.B. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 2011, 17, 642–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piomelli, D.; Tarzia, G.; Duranti, A.; Tontini, A.; Mor, M.; Compton, T.R.; Dasse, O.; Monaghan, E.P.; Parrott, J.A.; Putman, D. Pharmacological Profile of the Selective FAAH Inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006, 12, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Van Esbroeck, A.C.M.; Janssen, A.P.A.; Iii, A.B.C.; Ogasawara, D.; Shpak, G.; Van Der Kroeg, M.; Kantae, V.; Baggelaar, M.P.; De Vrij, F.M.S.; Deng, H.; et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 2017, 356, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Dow-Edwards, D. Sex differences in the interactive effects of early life stress and the endocannabinoid system. Neurotoxicology Teratol. 2020, 80, 106893. [Google Scholar] [CrossRef]
- MacLusky, N.J.; Naftolin, F. Sexual differentiation of the central nervous system. Science 1981, 211, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Buckner, J.D.; Mallott, M.A.; Schmidt, N.B.; Taylor, J. Peer influence and gender differences in problematic cannabis use among individuals with social anxiety. J. Anxiety Disord. 2006, 20, 1087–1102. [Google Scholar] [CrossRef]
- Handa, R.J.; Pak, T.R.; Kudwa, A.E.; Lund, T.D.; Hinds, L. An alternate pathway for androgen regulation of brain function: Activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5α-androstane-3β,17β-diol. Horm. Behav. 2008, 53, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Viveros, M.-P.; Llorente, R.; Suarez, J.; Llorente-Berzal, A.; López-Gallardo, M.; De Fonseca, F.R. The endocannabinoid system in critical neurodevelopmental periods: Sex differences and neuropsychiatric implications. J. Psychopharmacol. 2011, 26, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Reich, C.G.; Taylor, M.E.; McCarthy, M.M. Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav. Brain Res. 2009, 203, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Fonseca, F.; Cebeira, M.; Ramos, J.; Martín, M.; Fernández-Ruiz, J. Cannabinoid receptors in rat brain areas: Sexual differences, fluctuations during estrous cycle and changes after gonadectomy and sex steroid replacement. Life Sci. 1994, 54, 159–170. [Google Scholar] [CrossRef]
- Klug, M.; Buuse, M.V.D. Chronic cannabinoid treatment during young adulthood induces sex-specific behavioural deficits in maternally separated rats. Behav. Brain Res. 2012, 233, 305–313. [Google Scholar] [CrossRef]
- Altemus, M.; Sarvaiya, N.; Epperson, C.N. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocr. 2014, 35, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Pryce, C.; Bettschen, D.; Feldon, J. The Maternal Separation Paradigm and Adult Emotionality and Cognition in Male and Female Wistar Rats. Pharmacol. Biochem. Behav. 1999, 64, 705–715. [Google Scholar] [CrossRef]
- McIntosh, J.; Anisman, H.; Merali, Z. Short- and long-periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: Gender-dependent effects. Dev. Brain Res. 1999, 113, 97–106. [Google Scholar] [CrossRef]
- Eklund, M.B.; Arborelius, L. Twice daily long maternal separations in Wistar rats decrease anxiety-like behavior in females but does not affect males. Behav. Brain Res. 2006, 172, 278–285. [Google Scholar] [CrossRef]
- Slotten, H.A.; Kalinichev, M.; Hagan, J.J.; Marsden, C.A.; Fone, K.C.F. Long-lasting changes in behavioral and neuroendocrine indices in the rat following neonatal maternal separation: Gender-dependent effects. Brain Res. 2006, 1097, 123–132. [Google Scholar] [CrossRef]
- Neigh, G.N.; Gillespie, C.F.; Nemeroff, C.B. The Neurobiological Toll of Child Abuse and Neglect. Trauma Violence Abus. 2009, 10, 389–410. [Google Scholar] [CrossRef]
- Arseneault, L.; Cannon, M.; Poulton, R.; Murray, R.; Caspi, A.; Moffitt, T.E. Cannabis use in adolescence and risk for adult psychosis: Longitudinal prospective study. BMJ 2002, 325, 1212–1213. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, G.; Atkin, A.; Zytynski, T.; Wang, S.; Askari, S.; Boruff, J.; Ware, M.; Marmorstein, N.; Cipriani, A.; Dendukuri, N.; et al. Association of cannabis use in adolescence and risk of depression, anxiety, and suicidality in young adulthood: A systematic review and meta-analysis. JAMA Psychiatry 2019, 76, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Patton, G.C.; Coffey, C.; Carlin, J.B.; Degenhardt, L.; Lynskey, M.; Hall, W. Cannabis use and mental health in young people: Cohort study. BMJ 2002, 325, 1195–1198. [Google Scholar] [CrossRef] [Green Version]
- Echadwick, B.; Miller, M.L.; Hurd, Y.L. Cannabis Use during Adolescent Development: Susceptibility to Psychiatric Illness. Front. Psychiatry 2013, 4, 129. [Google Scholar] [CrossRef] [Green Version]
- Krebs, M.-O.; Kebir, O.; Jay, T.M. Exposure to cannabinoids can lead to persistent cognitive and psychiatric disorders. Eur. J. Pain 2019, 23, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubino, T.; Zamberletti, E.; Parolaro, D. Adolescent exposure to cannabis as a risk factor for psychiatric disorders. J. Psychopharmacol. 2011, 26, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Parolaro, D. Adolescent cannabis consumption and schizophrenia: Epidemiological and expeimental evidences. Addicciones 2010, 22, 185–189. [Google Scholar]
- Fontes, M.A.; Bolla, K.I.; Cunha, P.J.; Almeida, P.P.; Jungerman, F.; Laranjeira, R.R.; Bressan, R.A.; Lacerda, A.L.T. Cannabis use before age 15 and subsequent executive functioning. Br. J. Psychiatry 2011, 198, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.A.; Sagar, K.A.; Dahlgren, M.K.; Racine, M.; Lukas, S.E. Age of onset of marijuana use and executive function. Psychol. Addict. Behav. 2012, 26, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.H.; Caspi, A.; Ambler, A.; Harrington, H.; Houts, R.; Keefe, R.S.E.; McDonald, K.; Ward, A.; Poulton, R.; Moffitt, T.E. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc. Natl. Acad. Sci. USA 2012, 109, E2657–E2664. [Google Scholar] [CrossRef] [Green Version]
- Pope, H.G.; Gruber, A.J.; I Hudson, J.; Cohane, G.; Huestis, M.A.; Yurgelun-Todd, D. Early-onset cannabis use and cognitive deficits: What is the nature of the association? Drug Alcohol Depend. 2003, 69, 303–310. [Google Scholar] [CrossRef]
- Green, B.; Kavanagh, D.J.; Young, R.M. Being stoned: A review of self-reported cannabis effects. Drug Alcohol Rev. 2003, 22, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Feingold, D.; Rehm, J.; Factor, H.; Redler, A.; Lev-Ran, S. Clinical and functional outcomes of cannabis use among individuals with anxiety disorders: A 3-year population-based longitudinal study. Depression Anxiety 2018, 35, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Ketcherside, A.; Filbey, F. Mediating processes between stress and problematic marijuana use. Addict. Behav. 2015, 45, 113–118. [Google Scholar] [CrossRef]
- Spradlin, A.; Cuttler, C. Problems Associated with Using Cannabis to Cope with Stress. Cannabis 2019, 2, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Bujarski, S.J.; Feldner, M.T.; Lewis, S.F.; Babson, K.A.; Trainor, C.D.; Leen-Feldner, E.; Badour, C.L.; Bonn-Miller, M.O. Marijuana use among traumatic event-exposed adolescents: Posttraumatic stress symptom frequency predicts coping motivations for use. Addict. Behav. 2012, 37, 53–59. [Google Scholar] [CrossRef]
- Black, N.; Stockings, E.; Campbell, G.; Tran, L.T.; Zagic, D.; Hall, W.D.; Farrell, M.; Degenhardt, L. Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 995–1010. [Google Scholar] [CrossRef]
Reference | Animals | ELS Effects | Cannabinoid Effects | Interaction Effects |
---|---|---|---|---|
[117] | CD-1 mice (both sexes) | MD on P12 Reduced interest in socio-sexual interaction with peers during adolescence (both sexes). Depressive-like behavior in the FST in adulthood (both sexes). | WIN on P35–37 (0.5 mg/kg, i.p.) Increased active coping in the FST (both sexes). WIN on P35–37 (2 mg/kg, i.p.) Reduced social investigation and locomotor activity (both sexes). | WIN on P35–37 (2 mg/kg, i.p.) Reduced locomotor activity (both sexes). |
[114] | Wistar rats (male) | MD on P9 Increased impulsivity and locomotor response to novelty in the intolerance-to-delay test (male). | URB on P31–43 (0.1 or 0.5 mg/kg, i.p.) No effects reported. | URB on P31–43 (0.1 mg/kg, i.p.) Decreased impulsivity (male). Increased NAA and creatine levels in the hippocampus (male). URB on P31–43 (0.5 mg/kg, i.p.) Downregulated glutamate levels. |
[118] | SD rats (both sexes) | LPS on P14 Decreased social behavior during adolescence (both sexes). Decreased CB1R binding (both sexes). Increased AEA levels and FAAH activity in the amygdala (both sexes). | PF-04457845 on P40 (1 mg/kg, orally) No effects reported. | PF-04457845 on P40 (1 mg/kg, orally) Restored social behavior (both sexes). PF-04457845 on P40 (10 ng, intra-BLA) Restored social behavior (females). |
[115] | Long–Evans rats (both sexes) | MS on P1–14 Hypersensitivity to the reward effect of morphine in the place preference paradigm (both sexes). | Dronabinol on P35–49 (5 and 10 mg/kg, i.p.) Hypersensitivity to the reward effect of morphine in the place preference paradigm (both sexes). | Dronabinol on P35–49 (5 and 10 mg/kg, i.p.) Suppressed sensitivity to morphine conditioning (both sexes). |
[119] | SD rats (both sexes) | MD on P9 Aggressive behavior (females). Increased NMDAr density and decreased D2r density in the caudate–putamen complex (females). | THC on P37–47) (2.5, 5, and 10 mg/kg, i.p.) Impaired performance in the social recognition test (females). Increased immobility in the FST (females). | THC on P37–47 (2.5, 5 and 10 mg/kg, i.p.) Reversed aggressive behavior (females). Counteracted the increase in NMDAr density and the reduction in D2r density in the caudate-putamen (females). Increased immobility in the FST (males). Downregulation and desensitization of CB1R (both sexes). |
[120] | Wistar rats (both sexes) | MD on P9 Anxiogenic-like effect in the hole board and EPM (males). Reduced levels of plasma leptin (both sexes). | CP on P28–42 (0.4 mg/kg, i.p.) Disrupted PPI (females). Increased adrenocortical responsiveness to PPI (males). Reduced plasma leptin levels (males). | CP on P28–42 (0.4 mg/kg, i.p.) No effects reported. |
[100] | Wistar rats (both sexes) | MD on P9 Decreased CB1R density in the dentate gyrus and CA1 (males). Increased GFAP+ cells in the dentate gyrus (males). | CP on P28–42 (0.4 mg/kg, i.p.) Decreased CB1R density in the dentate gyrus and CA1 (males). Increased GFAP+ cells in the dentate gyrus (males). Reduced BDNF expression in the CA1 and CA3 (females). | CP on P28–42 (0.4 mg/kg, i.p.) Reversed the decrease in CB1R density in the dentate gyrus and CA1 and the increase in the GFAP+ cells (males). Increased BDNF expression in the dentate gyrus (females). |
[43] | SD rats (male) | LB on P7–14 Impaired spatial recognition and social recognition memory (male). | WIN on P30–45 (1.2 mg/kg, i.p.) No effects reported. | WIN on P30–45 (1.2 mg/kg, i.p.) Impaired spatial recognition and social recognition memory (male). Less anxiety-like behavior in the open field test (male). |
[122] | SD rats (both sexes) | LB on P7–14 Impaired social preference and social recognition (both sexes). Increased immobility in the FST (both sexes). Anxiety-like behavior in the open field test (both sexes). Downregulation of CB1R in the PFC and CA1, and GRs in the PFC and BLA (males). Downregulation of GRs in the CA1 and BLA, and CB1R in the BLA (females). | URB (0.4 mg/kg, i.p.) on P30–45 Impaired social preference and social recognition (both sexes). Increased immobility in the FST (both sexes). Downregulated CB1r in the PFC and CA1, and GRs in the PFC and BLA (males). Downregulation of GRs in the CA1, and CB1R in the BLA (females). | URB (0.4 mg/kg, i.p.) on P30–45 No effects reported. |
Reference | Animals | ELS Effects | Cannabinoid Effects | Interaction Effects |
---|---|---|---|---|
[43] | SD rats (both sexes) | LB on P7–14 Impaired short-term memory, spatial location, and social recognition (both sexes). Impaired novel object recognition (males). Upregulation in PFC-GRs and downregulation in BLA-CB1R (males). Upregulation in PFC-GRs and CA1-CB1R (females). | WIN on P45–60 (1.2 mg/kg, i.p.) No effects reported. | WIN on P45–60 (1.2 mg/kg, i.p.) Prevented the ELS-induced behavioral deficits and reduced anxiety levels (both sexes). Normalized the ELS-induced upregulation in PFC-GR and downregulation in BLA-CB1R (males). Normalized the ELS-induced upregulation in PFC-GRs and CA1-CB1R (females). |
[123] | SD rats (both sexes) | LB on P7–14 Impaired social preference and social recognition (both sexes). Increased immobility in the FST (both sexes). Reduced activity of the enzyme MAGL in the ventral subiculum and reduced LTP in the ventral subiculum–nucleus accumbens pathway (both sexes). Reduced BDNF expression in the nucleus accumbens and ventral subiculum (males). Increased BDNF expression in the ventral subiculum, reduced MAGL activity in the nucleus accumbens (females). | URB on P45–60 (0.4 mg/kg, i.p.) and JZL on P45–60 (2 mg/kg, i.p.) No effects reported. | URB on P45–60 (0.4 mg/kg, i.p.) and JZL on P45–60 (2 mg/kg, i.p.) Improved social preference and social recognition, reduced passive coping in the FST (both sexes). URB on P45–60 (0.4 mg/kg, i.p.) Normalized BDNF expression in the ventral subiculum (both sexes). JZL on P45–60 (2 mg/kg, i.p.) Normalized BDNF expression in the ventral subiculum (males). Normalized MAGL activity in the nucleus accumbens (females). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portugalov, A.; Akirav, I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. Int. J. Mol. Sci. 2021, 22, 730. https://doi.org/10.3390/ijms22020730
Portugalov A, Akirav I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. International Journal of Molecular Sciences. 2021; 22(2):730. https://doi.org/10.3390/ijms22020730
Chicago/Turabian StylePortugalov, Anna, and Irit Akirav. 2021. "Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models" International Journal of Molecular Sciences 22, no. 2: 730. https://doi.org/10.3390/ijms22020730
APA StylePortugalov, A., & Akirav, I. (2021). Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. International Journal of Molecular Sciences, 22(2), 730. https://doi.org/10.3390/ijms22020730