Molecular Aspects of Pruritus Pathogenesis in Psoriasis
Abstract
:1. Introduction
2. Data Sources and Study Selection
3. Results
3.1. Histamine and Mast Cells
3.2. Substance P and Other Neuropeptides
3.3. Nerve Growth Factor and Innervation
3.4. Interleukins
3.5. Vessel-Derived Molecules
3.6. Endogenous Opioids
3.7. Lipocalin-2
3.8. Future Directions to Identify New Itch Mediators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szepietowski, J.C.; Reich, A. Pruritus in psoriasis: An update. Eur. J. Pain 2016, 20, 41–46. [Google Scholar] [CrossRef]
- Sanchez, D.P.; Sonthalia, S. Koebner phenomenon. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, January 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553108/ (accessed on 1 December 2020).
- Damiani, G.; Cazzaniga, S.; Conic, R.R.; Naldi, L. Psocare Registry Network. Pruritus characteristics in a large Italian cohort of psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1316–1324. [Google Scholar] [CrossRef]
- Henry, A.L.; Kyle, S.D.; Chisholm, A.; Griffiths, C.E.M.; Bundy, C. A cross-sectional survey of the nature and correlates of sleep disturbance in people with psoriasis. Br. J. Dermatol. 2017, 177, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Damiani, G.; Bragazzi, N.L.; Garbarino, S.; Chattu, V.K.; Shapiro, C.M.; Pacifico, A.; Malagoli, P.; Pigatto, P.D.M.; Conic, R.R.Z.; Tiodorovic, D.; et al. Psoriatic and psoriatic arthritis patients with and without jet-lag: Does it matter for disease severity scores? Insights and implications from a pilot, prospective study. Chrono. Int. 2019, 36, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Ayasse, M.T.; Buddenkotte, J.; Alam, M.; Steinhoff, M. Role of neuroimmune circuits and pruritus in psoriasis. Exp. Dermatol. 2020, 29, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Toyoda, M.; Morohashi, M. Pruritogenic mediators in psoriasis vulgaris: Comparative evaluation of itch-associated cutaneous factors. Br. J. Dermatol. 2003, 149, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Wisnicka, B.; Szepietowski, J.C.; Reich, A.; Orda, A. Histamine, substance P and calcitonin gene-related peptide plasma concentration and pruritus in patients suffering from psoriasis. Dermatol. Psychosom. 2004, 5, 73–78. [Google Scholar] [CrossRef]
- Chang, S.-E.; Han, S.-S.; Jung, H.-J.; Choi, J.-H. Neuropeptides and their receptors in psoriatic skin in relation to pruritus. Br. J. Dermatol. 2007, 156, 1272–1277. [Google Scholar] [CrossRef]
- Reich, A.; Orda, A.; Wiśnicka, B.; Szepietowski, J.C. Plasma Neuropeptides and Perception of Pruritus in Psoriasis. Acta Derm. Venereol. 2007, 87, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Remröd, C.; Lonne-Rahm, S.; Nordlind, K. Study of substance P and its receptor neurokinin-1 in psoriasis and their relation to chronic stress and pruritus. Arch. Dermatol. Res. 2007, 299, 85–91. [Google Scholar] [CrossRef]
- Amatya, B.; Nordlind, K.; Wahlgren, C.-F. Responses to Intradermal Injections of Substance P in Psoriasis Patients with Pruritus. Skin Pharmacol. Physiol. 2010, 23, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Amatya, B.; El-Nour, H.; Holst, M.; Theodorsson, E.; Nordlind, K. Expression of tachykinins and their receptors in plaque psoriasis with pruritus. Br. J. Dermatol. 2011, 164, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Taneda, K.; Tominaga, M.; Negi, O.; Tengara, S.; Kamo, A.; Ogawa, H.; Takamori, K. Evaluation of epidermal nerve density and opioid receptor levels in psoriatic itch. Br. J. Dermatol. 2011, 165, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Kupczyk, P.; Reich, A.; Hołysz, M.; Gajda, M.; Wysokińska, E.; Kobuszewska, A.; Nevozhay, D.; Nowakowska, B.; Strzadała, L.; Jagodziński, P.P.; et al. Opioid Receptors in Psoriatic Skin: Relationship with Itch. Acta Derm. Venereol. 2017, 97, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Peres, L.P.; De Oliveira, F.B.; Cartell, A.D.S.; Mazzotti, N.G.; Cestari, T.F. Density of mast cells and intensity of pruritus in psoriasis vulgaris: A cross sectional study. An. Bras. Dermatol. 2018, 93, 368–372. [Google Scholar]
- Nattkemper, L.; Tey, H.L.; Valdes-Rodriguez, R.; Lee, H.; Mollanazar, N.K.; Albornoz, C.; Sanders, K.M.; Yosipovitch, G. The Genetics of Chronic Itch: Gene Expression in the Skin of Patients with Atopic Dermatitis and Psoriasis with Severe Itch. J. Investig. Dermatol. 2018, 138, 1311–1317. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, N.; Ishiuji, Y.; Tominaga, M.; Sakata, S.; Takahashi, N.; Yanaba, K.; Umezawa, Y.; Asahina, A.; Kimura, U.; Suga, Y.; et al. Relationship between the Degrees of Itch and Serum Lipocalin-2 Levels in Patients with Psoriasis. J. Immunol. Res. 2019, 2019, 8171373. [Google Scholar] [CrossRef]
- Bodoor, K.; Al-Qarqaz, F.; Al Heis, L.; Alfaqih, M.A.; Oweis, A.O.; Almomani, R.; Obeidat, M.A. IL-33/13 axis and IL-4/31 axis play distinct roles in inflammatory process and itch in psoriasis and atopic dermatitis. Clin. Cosm. Investig. Dermatol. 2020, 13, 419–424. [Google Scholar] [CrossRef]
- Harvima, I.; Nilsson, G.; Suttle, M.-M.; Naukkarinen, A. Is there a role for mast cells in psoriasis? Arch. Dermatol. Res. 2008, 300, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Schubert, C.; Christophers, E. Mast cells and macrophages in early relapsing psoriasis. Arch. Dermatol. Res. 1985, 277, 352–358. [Google Scholar] [CrossRef]
- Petersen, L.I.; Hansen, U.; Kristensen, J.K.; Nielsen, H.; Skov, P.S.; Nielsen, H.J. Studies on mast cells and histamine release in psoriasis: Effect of ranitidine. Acta Derm. Venereol. 1998, 78, 190–193. [Google Scholar] [PubMed]
- Prignano, F.; Ricceri, F.; Pescitelli, L.; Lotti, T. Itch in psoriasis: Epidemiology, clinical aspects and treatment options. Clin. Cosmet. Investig. Dermatol. 2009, 2, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortonne, J.P.; Wennersten, G.; Nordlind, K. Patients’ perspective of pruritus in chronic plaque psoriasis: A questionnaire-based study. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 822–826. [Google Scholar]
- Gil Yosipovitch, I.K.; Goon, A.; Wee, J.; Chan, Y.; Goh, C. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. Br. J. Dermatol. 2000, 143, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Domagała, A.; Szepietowski, J.; Reich, A. Antihistamines in the treatment of pruritus in psoriasis. Adv. Dermatol. Allergol. 2017, 5, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.M.; Navarini, A.A.; Goldust, M.; Brandt, O.; Griffiths, C.; Kleyn, C. The short-term effect of levocetirizine on quality of life, stress, and depression in itchy psoriasis patients. Dermatol. Ther. 2019, 33, e13179. [Google Scholar] [CrossRef]
- Mommert, S.; Gschwandtner, M.; Koether, B.; Gutzmer, R.; Werfel, T. Human Memory Th17 Cells Express a Functional Histamine H4 Receptor. Am. J. Pathol. 2012, 180, 177–185. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Mommert, S.; Köther, B.; Werfel, T.; Gutzmer, R. The Histamine H4 Receptor Is Highly Expressed on Plasmacytoid Dendritic Cells in Psoriasis and Histamine Regulates Their Cytokine Production and Migration. J. Investig. Dermatol. 2011, 131, 1668–1676. [Google Scholar] [CrossRef] [Green Version]
- Rossbach, K.; Wahle, K.; Bruer, G.; Brehm, R.; Langeheine, M.; Rode, K.; Bäumer, W. Histamine 2 receptor agonism and histamine 4 receptor antagonism ameliorate inflammation in a model of psoriasis. Acta Derm. Venereol. 2020, 100, adv00342. [Google Scholar] [CrossRef]
- Raychaudhuri, S.P.; Farber, E.M. Neuroimmunologic aspects of psoriasis. Cutis 2000, 66, 357–362. [Google Scholar]
- Scholzen, T.; Armstrong, C.A.; Bunnett, N.W.; Luger, T.A.; Olerud, J.E.; Ansel, J.C. Neuropeptides in the skin: Interactions between the neuroendocrine and the skin immune systems. Exp. Dermatol. 1998, 7, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Andoh, T.; Kuraishi, Y. Substance P and itch. In Itch: Basic Mechanism and Therapy; Yosipovitch, G., Greaves, M.W., Fleischer, A.B., Jr., McGlone, F., Eds.; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2004; pp. 87–95. [Google Scholar]
- Thomsen, J.; Sonne, M.; Benfeldt, E.; Jensen, S.; Serup, J.; Menne, T. Experimental itch in sodium lauryl sulphate-inflamed and normal skin in humans: A randomized, double-blind, placebo-controlled study of histamine and other inducers of itch. Br. J. Dermatol. 2002, 146, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Ständer, S.; Kerby, M.B.; Larrick, J.W.; Perlman, A.J.; Schnipper, E.F.; Zhang, X.; Tang, J.Y.; Luger, T.; Steinhoff, M. Serlopitant for the treatment of chronic pruritus: Results of a randomized, multicenter, placebo-controlled phase 2 clinical trial. J. Am. Acad. Dermatol. 2018, 78, 882–891.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pojawa-Gołąb, M.; Jaworecka, K.; Reich, A. NK-1 Receptor Antagonists and Pruritus: Review of Current Literature. Dermatol. Ther. 2019, 9, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Pariser, D.M.; Bagel, J.; Lebwohl, M.; Yosipovitch, G.; Chien, E.; Spellman, M.C. Serlopitant for psoriatic pruritus: A phase 2 randomized, double-blind, placebo-controlled clinical trial. J. Am. Acad. Dermatol. 2020, 82, 1314–1320. [Google Scholar] [CrossRef]
- Damiani, G.; Kridin, K.; Pacifico, A.; Malagoli, P.; Pigatto, P.D.; Finelli, R.; Fiore, M. Antihistamines-refractory chronic pruritus in psoriatic patients undergoing biologics: Aprepitant vs antihistamine double dosage, a real-world data. J. Dermatolog. Treat 2020, 28, 1–4. [Google Scholar] [CrossRef]
- Wilson, S.R.; Nelson, A.M.; Batia, L.; Morita, T.; Estandian, D.; Owens, D.M.; Bautista, D.M. The ion channel TRPA1 is required for chronic itch. J. Neurosci. 2013, 33, 9283–9294. [Google Scholar] [CrossRef] [Green Version]
- Kodji, X.; Arkless, K.L.; Kee, Z.; Cleary, S.J.; Aubdool, A.A.; Evans, E.; Caton, P.; Pitchford, S.C.; Brain, S.D. Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis. FASEB J. 2018, 33, 1578–1594. [Google Scholar] [CrossRef] [Green Version]
- Acton, D.; Ren, X.; Di Costanzo, S.; Dalet, A.; Bourane, S.; Bertocchi, I.; Eva, C.; Goulding, M.D. Spinal Neuropeptide Y1 Receptor-Expressing Neurons Form an Essential Excitatory Pathway for Mechanical Itch. Cell Rep. 2019, 28, 625–639.e6. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, J.; Aihara, M.; Kobayashi, Y.; Kambara, T.; Ikezawa, Z. Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J. Dermatol. Sci. 2009, 53, 48–54. [Google Scholar] [CrossRef]
- Rocco, M.L.; Soligo, M.; Manni, L.; Aloe, L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr. Neuropharmacol. 2018, 16, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Bibel, M.; Barde, Y.A. Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000, 14, 2919–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komiya, E.; Tominaga, M.; Kamata, Y.; Suga, Y.; Takamori, K. Molecular and Cellular Mechanisms of Itch in Psoriasis. Int. J. Mol. Sci. 2020, 21, 8406. [Google Scholar] [CrossRef] [PubMed]
- Bilsborough, J.; Leung, D.Y.; Maurer, M.; Howell, M.; Boguniewcz, M.; Yao, L.; Gross, J.A. IL-31is associated with cutaneous lymphocyte antigen-positive skinhoming T cells in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2006, 117, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Narbutt, J.; Olejniczak, I.; Sobolewska-Sztychny, D.; Sysa-Jedrzejowska, A.; Słowik-Kwiatkowska, I.; Hawro, T.; Lesiak, A. Narrow band ultraviolet B irradiations cause alteration in interleukin-31 serum level in psoriatic patients. Arch. Dermatol. Res. 2013, 305, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Samotij, D.; Nedoszytko, B.; Bartosińska, J.; Batycka-Baran, A.; Czajkowski, R.; Dobrucki, I.T.; Reich, A. Pathogenesis of psoriasis in the “omic” era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Post Dermatol. Alergol. 2020, 37, 135–153. [Google Scholar] [CrossRef]
- Wong, L.S.; Otsuka, A.; Yamamoto, Y.; Nonomura, Y.; Nakashima, C.; Honda, T.; Kabashima, K. Vascular endothelial growth factor partially induces pruritus via epidermal hyperinnervation in imiquimod-induced psoriasiform dermatitis in mice. J. Dermatol. Sci. 2016, 83, 148–151. [Google Scholar] [CrossRef]
- Madej, A.; Reich, A.; Orda, A.; Szepietowski, J.C. Vascular adhesion protein-1 (VAP-1) is overexpressed in psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 72–78. [Google Scholar] [CrossRef]
- Bigliardi, P.L.; Tobin, D.J.; Gaveriaux-Ruff, C.; Bigliardi-Qi, M. Opioids and the skin—Where do we stand? Exp. Dermatol. 2009, 18, 424–430. [Google Scholar] [CrossRef]
- Wikström, B.; Gellert, R.; Ladefoged, S.D.; Danda, Y.; Akai, M.; Ide, K.; Ueno, Y. Kappa-opioid system in uremic pruritus: Multicenter, randomized, double-blind, placebo-controlled clinical studies. J. Am. Soc. Nephrol. 2005, 16, 3742–3747. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.-C. Neuraxial opioid-induced itch and its pharmacological antagonism. Handb. Exp. Pharmacol. 2015, 226, 315–335. [Google Scholar] [PubMed] [Green Version]
- Takahashi, N.; Tominaga, M.; Kosaka, R. Involvement of µ-opioid receptors and κ-opioid receptors in itch-related scratching behaviour of imiquimod-induced psoriasis-like dermatitis in mice. Acta Derm. Venereol. 2017, 97, 928–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjeldsen, L.; Bainton, D.F.; Sengelov, H.; Borregaard, N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 1994, 83, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, S.; Cao, T.; Jin, L.; Li, B.; Fang, H.; Zhang, J.; Wang, G. Increased lipocalin-2 contributes to the pathogenesis of psoriasis by modulating neutrophil chemotaxis and cytokine secretion. J. Investig. Dermatol. 2016, 136, 1418–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, G.; Fang, J.; Tong, S.; Qu, L.; Jiang, H.; Ding, Q.; Liu, J. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer. Prostate 2015, 75, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.M.; Zhao, W.; Gilliland, K.L.; Zaenglein, A.L.; Liu, W.; Thiboutot, D.M. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J. Clin. Investig. 2008, 118, 1468–1478. [Google Scholar] [CrossRef] [Green Version]
Study | Number of Included Patients | What Was Evaluated? | Major Findings |
---|---|---|---|
Nakamura M et al., 2003 [7] | Psoriasis: n = 38 (23 with pruritus and 15 without pruritus) | Number of mast cells, Langerhans cells, macrophages, as well as expression of PGP 9.5, SP, CGRP, VIP, SOM, NPY, NGF, NGF-receptor (Trk A), BDNF, NT-3, NEP, angiotensin-converting enzyme, INF-ɣ, TNF-α, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, PMN, PECAM-1, ICAM-1, ELAM-1, VCAM-1 in pruritic vs. non-pruritic psoriatic skin | ↑ mast cells in the dermis of pruritic vs. non-pruritic psoriatic skin ↑ NGF-immunoreactive keratynocytes, ↑ expression of Trk A in the epidermis and dermal nerve fibres, ↑ PGP 9.5-immunoreactive nerve fibers in the epidermis and in the upper dermal areas, ↑ SP-containing nerves in the perivascular areas of pruritic in comparison to non-pruritic psoriatic skin ↑ IL-2-immunoreactive cells in pruritic vs. non-pruritic psoriatic skin ↑ ELAM-1-positive venules in pruritic compared to non-pruritic psoriatic skin ↓ expression of NEP in the epidermal basal layer and in the endotelia of blood vessels in pruritic vs. non-pruritic samples ↔ expression of CGRP, SOM ↔ INF-ɣ, TNF-α, IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12 expression in the epidermis and infiltrating mononuclear cells ↔ ICAM-1 and VCAM-1-immunoreactive vessels in the upper dermis and ICAM-1-positive vessels in the epidermis of pruritic and non-pruritic psoriatic skin |
Wisnicka B et al., 2004 [8] | Psoriasis: n = 59 (43 with pruritus and 16 without pruritus) Healthy controls: n = 32 | Plasma level of histamine, SP, CGRP | ↑ CGRP plasma levels in pruritic psoriatic patients vs. healthy controls ↔ histamine and SP plasma concentration in all the group No correlations between CGRP, histamine or SP levels and pruritus intensity |
Chang SE et al., 2007 [9] | Psoriasis: n = 20 (10 with pruritus and 10 without pruritus) Healthy controls: n = 10 | Expression of NGF, TrkA, p75NTR, NT4, CGRP, CGRP receptor, SP, NK-1R, VIP, PACAP, VPACR, NEP, PGP 9.5, collagen VII in lesional pruritic psoriatic skin vs. non-pruritic psoriatic skin, non-lesional psoriatic pruritic skin and healthy skin | ↑ expression of SP receptors, TrkA and CGRP receptors in keratynocytes and number of dermal nerves in pruritic compared with non-pruritic lesional psoriatic skin ↔ expression of assessed neuropeptides and NEP between the pruritus and non-pruritus groups |
Reich A et al., 2007 [10] | Psoriasis: n = 59 (43 with pruritus, 16 without pruritus) Healthy controls: n = 32 | Plasma concentration of SP, CGRP, VIP and NPY | ↓ NPY plasma levels in patients with pruritus vs. without pruritus ↔ SP, CGRP and VIP plasma concentration in pruritic and non-pruritic psoriatic patients Negative correlation between pruritus intensity and SP or VIP plasma levels No correlation between pruritus intensity and CGRP or NPY plasma levels |
Remröd C et al., 2007 [11] | Psoriasis: n = 13 | Expression of SP and the NK-1R in involved and noninvolved psoriatic skin | No correlation between SP-positive nerve fibers nor SP-positive cells and the level of pruritus |
Amatya B et al., 2010 [12] | Psoriasis: n=15 (with pruritus) Healthy controls: n = 15 | Pruritus, flare and wheal after injection of SP, saline and histamine | SP induced pruritus, flare and wheal in both psoriasis patients and healthy controls (no significant differences between studied groups) |
Amatya B et al., 2011 [13] | Psoriasis: n = 28 Healthy controls: n = 10 | Expression of SP, NKA, NK-1R and NK-2R in lesional, non-lesional and healthy skin | Positive correlation between the pruritus intensity and the number of SP-positive nerve fibers and number of NK-2R-immunoreactive cells in the lesional skin |
Taneda K et al., 2011. [14] | Psoriasis: n = 24 Healthy controls: n = 5 | Number of epidermal nerve fibers, the levels of Sema3A and the expression patterns of µ- and κ-opioid systems in pruritic and non-pruritic psoriatic skin and healthy skin | ↔ expression of µ-opioid receptor and expression levels of β-endorphin in the epidermis of all analyzed groups ↓ expression of κ -opioid receptor in psoriatic pruritic skin compared to healthy skin ↓ dynorphin-A levels in the epidermis of pruritic psoriatic patients compared with healthy controls |
Kupczyk P et al., 2017. [15] | Psoriasis: n = 20 Healthy controls: n = 20 | Opioid receptor genes (OPRM1, OPRK1) and protein (MOR, KOR) expression in lesional and non-lesional psoriatic skin and healthy control | ↓ expression of KOR in lesional psoriatic skin with itch in comparison with lesional skin without itch ↔ OPRK1 expression in groups with and without pruritus ↔ expression of OPRM1/MOR system in groups with or without pruritusNegative correlation between OPRK1/KOR pathway and intensity of pruritus. No correlation between the OPRM1/MOR expression and severity of pruritus |
Peres LP et al., 2018 [16] | Psoriasis: n = 29 | Number of mast cells in the dermis of lesional-skin | No correlation between the intensity of pruritus and mast cell count |
Nattkemper LA et al., 2018 [17] | Psoriasis: n = 25 Atopic dermatitis: n = 25 Healthy controls: n = 39 | Genetic expression profiles | ↑ expression of genes for IL-17A, IL-23A, and IL-31, phospholipase A2 IVD, SP, voltage-gated sodium channel 1.7, TRPV1, TRPM8, TRPV3, phospholipase C, IL-36α/γ in pruritic psoriatic skin vs. healthy controls Overexpression of phospholipase A2 IVD, SP, voltage-gated sodium channel 1.7 and TRPV1 genes in itchy skin were positively correlated with pruritus intensity |
Aizawa n et al., 2019 [18] | Psoriasis: n = 59 Atopic dermatitis: n = 47 Healthy controls: n = 47 | LCN2 serum concentrations | ↑ LCN2 plasma concentration correlated positively with itch intensity in psoriatic patients |
Bodoor K et al., 2020. [19] | Psoriasis: n = 59 Atopic dermatitis: n = 56 Healthy controls: n = 49 | Serum levels of IL-4, IL-13, IL-31, IL-33 | The levels of measured interleukins in psoriasis did not correlate with itch severity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworecka, K.; Muda-Urban, J.; Rzepko, M.; Reich, A. Molecular Aspects of Pruritus Pathogenesis in Psoriasis. Int. J. Mol. Sci. 2021, 22, 858. https://doi.org/10.3390/ijms22020858
Jaworecka K, Muda-Urban J, Rzepko M, Reich A. Molecular Aspects of Pruritus Pathogenesis in Psoriasis. International Journal of Molecular Sciences. 2021; 22(2):858. https://doi.org/10.3390/ijms22020858
Chicago/Turabian StyleJaworecka, Kamila, Joanna Muda-Urban, Marian Rzepko, and Adam Reich. 2021. "Molecular Aspects of Pruritus Pathogenesis in Psoriasis" International Journal of Molecular Sciences 22, no. 2: 858. https://doi.org/10.3390/ijms22020858
APA StyleJaworecka, K., Muda-Urban, J., Rzepko, M., & Reich, A. (2021). Molecular Aspects of Pruritus Pathogenesis in Psoriasis. International Journal of Molecular Sciences, 22(2), 858. https://doi.org/10.3390/ijms22020858