Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future
Abstract
:1. Introduction
1.1. A Hospitable Hadean Time Factory of Organic Synthesis
1.2. The Role of Minerals and Mineral Self-Organization in Prebiotic Chemistry
2. Prebiotic Organic Chemistry and Chemical Complexity
2.1. Alternative C-1 Chemical Precursors: The Gas-Chemistry
2.2. The Need for Catalyst Complexity
2.3. The Emergence of a Catalyst-Driven Compartmentalization in HCONH2-Based Geochemical Scenarios
3. Prebiotic Chemistry Meets Geochemistry: How Can the Global Scale/Formamide Model Be Extended and Validated?
4. Other Worlds
Author Contributions
Funding
Conflicts of Interest
References
- Cloud, P. A working model of the primitive Earth. Am. J. Sci. 1972, 272, 537–548. [Google Scholar] [CrossRef]
- Schopf, J.W. Earth’s Earliest Biosphere: Its Origin and Evolution; Princeton University Press: Princeton, NJ, USA, 1983; p. 543. [Google Scholar]
- Nisbet, E.G.; Sleep, N.H. The habitat and nature of early life. Nature 2001, 409, 1083–1091. [Google Scholar] [CrossRef]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef] [PubMed]
- García-Ruiz, J.M.; van Zuilen, M.A.; Bach, W. Mineral self-organization on a lifeless planet. Phys. Life Rev. 2020, 35, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Di Mauro, E.; García-Ruiz, J.M. A Universal Geochemical Scenario for Formamide Condensation and Prebiotic Chemistry. Chem. Eur. J. 2019, 25, 3181–3189. [Google Scholar] [CrossRef]
- McCollom, T.M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl. Acad. Sci. USA 2016, 113, 13965–13970. [Google Scholar] [CrossRef] [Green Version]
- Dzaugis, M.; Spivack, A.J.; D’Hondt, S. Radiolytic H2 production in martian environments. Astrobiology 2018, 18, 1137. [Google Scholar] [CrossRef] [Green Version]
- McCollom, T.M. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim. Cosmochim. Acta 2003, 67, 311–317. [Google Scholar] [CrossRef]
- Mohammadi, E.; Petera, L.; Saeidfirozeh, H.; Knížek, A.; Kubelík, P.; Dudžák, R.; Krůs, M.; Juha, L.; Civiš, S.; Coulon, R.; et al. Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chem. Eur. J. 2020, 26, 12075–12080. [Google Scholar] [CrossRef]
- Shtyrlin, V.G.; Borissenok, V.A.; Serov, N.Y.; Simakov, V.G.; Bragunets, V.A.; Trunin, I.R.; Tereshkina, I.A.; Koshkin, S.A.; Bukharov, M.S.; Gilyazetdinov, E.M.; et al. Prebiotic Syntheses Under Shock in the Water – Formamide – Potassium Bicarbonate – Sodium Hydroxide System. Orig. Life Evol. Biosph. 2019, 49, 1–18. [Google Scholar] [CrossRef]
- Getenet, M.; García-Ruiz, J.M.; Verdugo-Escamilla, C.; Guerra-Tschuschke, I. Mineral vesicles and chemical gardens from carbonate-rich alkaline brines of lake magadi, Kenya. Crystals 2020, 10, 467. [Google Scholar] [CrossRef]
- Hartmut Follmann, H.; Brownson, C. Darwin’s warm little pond revisited: From molecules to the origin of life. Naturwissenschaften 2009, 96, 1265–1292. [Google Scholar] [CrossRef] [PubMed]
- Hazen, R.M.; Sverjensky, D.A. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2010, 2, 002162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erastova, V.; Degiacomi, M.T.; Fraser, D.G.; Greenwell, H.C. Mineral surface chemistry control for origin of prebiotic peptides. Nat. Comm. 2017, 8, 2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellermeier, M.; Glaab, F.; Melero-García, E.; García-Ruiz, J.M. Experimental techniques for the growth and characterization of silica biomorphs and silica gardens. Methods Enzymol. 2013, 532, 225–256. [Google Scholar]
- García-Ruiz, J.M.; Melero-García, E.; Hyde, S.T. Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 2009, 323, 362–365. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; Nakouzi, E.; Kotopoulou, E.; Tamborrino, L.; Steinbock, O. Biomimetic mineral self-organization from silica-rich spring waters. Sci. Adv. 2017, 26, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Kempe, S.; Kazmierczak, J. Modern soda lakes: Model environments for an early alkaline ocean. In Modelling in Natural Sciences; Design, Validation and Case Studies; Springer: Berlin, Germany, 2003; pp. 222–309. [Google Scholar]
- Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem. 2019, 17, 7632–7650. [Google Scholar] [CrossRef]
- Darla, N.; Sharma, D.; Sitha, S. Formation of Formamide from HCN + H2O: A Computational Study on the Roles of a Second H2O as a Catalyst, as a Spectator, and as a Reactant. J. Phys. Chem. A 2020, 124, 165–175. [Google Scholar] [CrossRef]
- Ziegler, E.W.; Kim, H.J.; Benner, S.A. Molybdenum(VI)-catalyzed rearrangement of prebiotic carbohydrates in formamide, a candidate prebiotic solvent. Astrobiology 2018, 18, 1159–1170. [Google Scholar] [CrossRef]
- Saitta, A.M.; Saija, F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA 2014, 111, 13768–13773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, Z.R.; Hongo, Y.; Cleaves, H.J.; Yi, R.; Fahrenbach, A.C.; Yoda, I.; Aono, M. Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci. Rep. 2018, 8, 265. [Google Scholar] [CrossRef] [PubMed]
- Ferus, M.; Michalčíková, R.; Shestivská, V.; Šponer, J.; Šponer, J.E.; Civiš, S. High-energy chemistry of formamide: A simpler way for nucleobase formation. J. Phys. Chem. A 2014, 118, 719–736. [Google Scholar] [CrossRef] [PubMed]
- Signorile, M.; Salvini, C.; Zamirri, L.; Bonino, F.; Martra, G.; Sodupe, M.; Ugliengo, P. Formamide adsorption at the amorphous silica surface: A combined experimental and computational approach. Life 2018, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niether, D.; Afanasenkau, D.; Dhont, J.K.G.; Wiegand, S. Accumulation of Formamide in hydrothermal pores to Form prebiotic nucleobases. Proc. Natl. Acad. Sci. USA 2016, 113, 4272–4277. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Crestini, C.; Busiello, V.; Ciciriello, F.; Costanzo, G.; Di Mauro, E. Origin of informational polymers: Differential stability of 3′-and 5′-phosphoester bonds in deoxy monomers and oligomers. J. Biol. Chem. 2005, 280, 35658–35669. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Crestini, C.; Ciciriello, F.; Di Mauro, E.; Costanzo, G. Origin of informational polymers: Differential stability of phosphoester bonds in ribomonomers and ribooligomers. J. Biol. Chem. 2006, 281, 5790–5796. [Google Scholar] [CrossRef] [Green Version]
- Pietrucci, F.; Saitta, A.M. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. USA 2015, 112, 15030–15035. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Crestini, C.; Costanzo, G.; Dimauro, E. On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules. Top. Curr. Chem. 2005, 259, 34. [Google Scholar]
- Saladino, R.; Botta, G.; Pino, S.; Costanzo, G.; Di Mauro, E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012, 41, 5526–5565. [Google Scholar] [CrossRef]
- Saladino, R.; Crestini, C.; Pino, S.; Costanzo, G.; Di Mauro, E. Formamide and the origin of life. Phys. Life Rev. 2012, 9, 8–104. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Botta, G.; Delfino, M.; Di Mauro, E. Meteorites as catalysts for prebiotic chemistry. Chem. Eur. J. 2013, 19, 16916–16922. [Google Scholar] [CrossRef] [PubMed]
- Ferus, M.; Knížek, A.; Civiš, S. Meteorite-catalyzed synthesis of nucleosides and other prebiotic compounds. Proc. Natl. Acad. Sci. USA 2015, 112, 7109–7110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saladino, R.; Moyano-Cambero, C.E.; Rotelli, L.; Carota, E.; Di Mauro, E.; Trigo-Rodríguez, J.M.; Botta, L. The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci. Rep. 2016, 6, 1–7. [Google Scholar]
- Ferusa, M.; Nesvorný, D.; Šponer, J.; Kubelíka, P.; Micha̘cíková, R.; Shestivská, V.; Šponer, J.E.; Civiš, S. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA 2015, 112, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Bizzarri, B.M.; Botta, L.; Šponer, J.; Šponer, J.E.; Georgelin, T.; Jaber, M.; Rigaud, B.; Kapralov, M.; Timoshenko, G.N.; et al. Proton irradiation: A key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci. Rep. 2017, 7, 14709. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Crestini, C.; Costanzo, G.; Negri, R.; Di Mauro, E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life. Bioorg. Med. Chem. 2001, 9, 1249–1253. [Google Scholar] [CrossRef]
- Saladino, R.; Crestini, C.; Ciambecchini, U.; Ciciriello, F.; Costanzo, G.; Di Mauro, E. Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. ChemBioChem 2004, 5, 1558–1566. [Google Scholar] [CrossRef]
- Saladino, R.; Ciambecchini, U.; Crestini, C.; Costanzo, G.; Negri, R.; Di Mauro, E. One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: Implications for the origin of life. ChemBioChem 2003, 4, 514–521. [Google Scholar] [CrossRef]
- Saladino, R.; Brucato, J.R.; De Sio, A.; Botta, G.; Pace, E.; Gambicorti, L. Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide. Astrobiology 2011, 11, 815–824. [Google Scholar] [CrossRef]
- Senanayake, S.D.; Idriss, H. Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces. Proc. Natl. Acad. Sci. USA 2006, 103, 1194–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barks, H.L.; Buckley, R.; Grieves, G.A.; Di Mauro, E.; Hud, N.V.; Orlando, T.M. Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: Relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem 2010, 11, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Crestini, C.; Neri, V.; Brucato, J.R.; Colangeli, L.; Ciciriello, F.; Di Mauro, E.; Costanzo, G. Synthesis and degradation of nucleic acid components by formamide and cosmic dust analogues. ChemBioChem 2005, 6, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Crestini, C.; Neri, V.; Ciciriello, F.; Costanzo, G.; Di Mauro, E. Origin of informational polymers: The concurrent roles of formamide and phosphates. ChemBioChem 2006, 7, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, G.; Saladino, R.; Crestini, C.; Ciciriello, F.; Di Mauro, E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem. 2007, 282, 16729–16735. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Neri, V.; Crestini, C.; Costanzo, G.; Graciotti, M.; Di Mauro, E. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. J. Am. Chem. Soc. 2008, 130, 15512–15518. [Google Scholar] [CrossRef]
- Saladino, R.; Neri, V.; Crestini, C.; Costanzo, G.; Graciotti, M.; Di Mauro, E. The role of the formamide/zirconia system in the synthesis of nucleobases and biogenic carboxylic acid derivatives. J. Mol. Evol. 2010, 71, 100–110. [Google Scholar] [CrossRef]
- Saladino, R.; Barontini, M.; Cossetti, C.; Di Mauro, E.; Crestini, C. The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide. Orig. Life Evol. Biosph. 2011, 41, 317–330. [Google Scholar] [CrossRef]
- Saladino, R.; Crestini, C.; Cossetti, C.; Di Mauro, E.; Deamer, D. Catalytic effects of Murchison Material: Prebiotic Synthesis and Degradation of RNA Precursors. Orig. Life Evol. Biosph. 2011, 41, 437–451. [Google Scholar] [CrossRef]
- Saladino, R.; Carota, E.; Botta, G.; Kapralov, M.; Timoshenko, G.N.; Rozanov, A.Y.; Krasavin, E.; Di Mauro, E. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA 2015, 112, E2746–E2755. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Carota, E.; Botta, G.; Kapralov, M.; Timoshenko, G.N.; Rozanov, A.; Krasavin, E.; Di Mauro, E. First Evidence on the Role of Heavy Ion Irradiation of Meteorites and Formamide in the Origin of Biomolecules. Orig. Life Evol. Biosph. 2016, 46, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Botta, G.; Bizzarri, B.M.; Di Mauro, E.; Garcia Ruiz, J.M. A Global Scale Scenario for Prebiotic Chemistry: Silica-Based Self-Assembled Mineral Structures and Formamide. Biochemistry 2016, 55, 2806–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botta, L.; Mattia Bizzarri, B.; Piccinino, D.; Fornaro, T.; Robert Brucato, J.; Saladino, R. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions∗. Eur. Phys. J. Plus 2017, 132, 317. [Google Scholar] [CrossRef]
- Bizzarri, B.M.; Botta, L.; Pérez-Valverde, M.I.; Saladino, R.; Di Mauro, E.; García-Ruiz, J.M. Silica Metal Oxide Vesicles Catalyze Comprehensive Prebiotic Chemistry. Chem. Eur. J. 2018, 24, 8126–8132. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Saladino, R.; Bizzarri, B.M.; Cobucci-Ponzano, B.; Iacono, R.; Avino, R.; Caliro, S.; Carandente, A.; Lorenzini, F.; Tortora, A.; et al. Formamide-based prebiotic chemistry in the Phlegrean Fields. Adv. Sp. Res. 2018, 62, 2372–2379. [Google Scholar] [CrossRef]
- Bizzarri, B.M.; Šponer, J.E.; Šponer, J.; Cassone, G.; Kapralov, M.; Timoshenko, G.N.; Krasavin, E.; Fanelli, G.; Timperio, A.M.; Di Mauro, E.; et al. Meteorite-Assisted Phosphorylation of Adenosine Under Proton Irradiation Conditions. ChemSystemsChem 2020, 2, e1900039. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, R.; Kamaluddin. Formamide-based synthesis of nucleobases by Metal(II) octacyanomolybdate(IV): Implication in prebiotic chemistry. Astrobiology 2014, 14, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, M.A.; Sharma, R.; Kamaluddin; Jheeta, S. Synthesis of Nucleic Acid Bases by Metal Ferrite Nanoparticles from a Single Carbon Atom Precursor Molecule: Formamide. Orig. Life Evol. Biosph. 2019, 49, 147–162. [Google Scholar] [CrossRef]
- Oró, J. Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun. 1960, 2, 407–412. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; Zorzano, M.P.; Osuna-Esteban, S. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview. Life 2013, 3, 421–448. [Google Scholar] [CrossRef] [Green Version]
- Lowe, C.U.; Rees, M.W.; Markham, R. Synthesis of complex organic compounds from simple precursors: Formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide. Nature 1963, 199, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, S.; James Cleaves, H.; Miller, S.L. The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig. Life Evol. Biosph. 2002, 32, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L. A production of amino acids under possible primitive earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.L.; Schlesinger, G. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv. Sp. Res. 1983, 3, 47–53. [Google Scholar] [CrossRef]
- Schlesinger, G.; Miller, S.L. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 - I. Amino acids. J. Mol. Evol. 1983, 19, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, S.; Yamanashi, H.; Kobayashi, K.; Cleaves, H.J.; Miller, S.L. Prebiotic synthesis from CO atmospheres: Implications for the origins of life. Proc. Natl. Acad. Sci. USA 2002, 99, 14628–14631. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.P.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Lazcano, A.; Bada, J.L. The Miller volcanic spark discharge experiment. Science 2008, 322, 404. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.T.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Callahan, M.; Aubrey, A.; Lazcano, A.; Bada, J.L. Primordial synthesis of amines and amino acids in a 1958 Miller H 2S-rich spark discharge experiment. Proc. Natl. Acad. Sci. USA 2011, 108, 5526–5531. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.T.; Cleaves, J.H.; Burton, A.S.; Glavin, D.P.; Dworkin, J.P.; Zhou, M.; Bada, J.L.; Fernández, F.M. Conducting miller-urey experiments. J. Vis. Exp. 2014, 83, 51039. [Google Scholar] [CrossRef] [Green Version]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knížek, A.; Kubelík, P.; Ivanek, O.; Shestivska, V.; Civiš, S. Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [Google Scholar] [CrossRef] [Green Version]
- Emerson, J.W.; Green, W.A.; Schloerke, B.; Crowley, J.; Cook, D.; Hofmann, H.; Wickham, H. The generalized pairs plot. J. Comput. Graph. Stat. 2013, 22, 79–91. [Google Scholar] [CrossRef]
- Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Biology; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Glaab, F.; Kellermeier, M.; Kunz, W.; Morallon, E.; García-Ruiz, J.M. Formation and evolution of chemical gradients and potential differences across self-assembling inorganic membranes. Angew. Chem. Int. Ed. 2012, 51, 4317–4321. [Google Scholar] [CrossRef] [PubMed]
- Šponer, J.E.; Šponer, J.; Nováková, O.; Brabec, V.; Šedo, O.; Zdráhal, Z.; Costanzo, G.; Pino, S.; Saladino, R.; Di Mauro, E. Emergence of the First Catalytic Oligonucleotides in a Formamide-Based Origin Scenario. Chem. Eur. J. 2016, 22, 3572–3586. [Google Scholar] [CrossRef] [PubMed]
- Mailloux, R.J.; Bériault, R.; Lemire, J.; Singh, R.; Chénier, D.R.; Hamel, R.D.; Appanna, V.D. The Tricarboxylic Acid Cycle, an Ancient Metabolic Network with a Novel Twist. PLoS ONE 2007, 2, e690. [Google Scholar] [CrossRef] [Green Version]
- Muchowska, K.B.; Varma, S.J.; Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 2019, 569, 104–107. [Google Scholar] [CrossRef]
- Frota Cavalcanti, J.H.; Esteves-Ferreira, A.A.; Quinhones, C.G.S.; Pereira-Lima, I.A.; Nunes-Nesi, A.; Fernie, A.R.; Araújo, L.W. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis. Genom. Biol. Evol. 2014, 6, 2830–2848. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Fiore, M. Investigating Prebiotic Protocells for a Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Buchet, R.; Fiore, M. Symmetry Breaking of Phospholipids. Symmetry 2020, 12, 1488. [Google Scholar]
- Squyres, S.W.; Knoll, A.H. Sedimentary rocks at meridiani planum: Origin, diagenesis, and implications for life on mars. Earth Planet Sci. Lett. 2005, 240, 1–10. [Google Scholar] [CrossRef]
- Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K.E.; Johnson, J.R.; Morris, R.V.; Rice, M.S.; Arvidson, R.E.; Bell, J.F.; Christensen, P.R.; et al. Characteristics, distribution, origin, and significance of opaline silica observed by the spirit rover in Gusev crater, Mars. J. Geophys. Res. 2011, 116, E00F23. [Google Scholar] [CrossRef]
- Holm, N.G.; Oze, C.; Mousis, O.; Waite, J.H.; Guilbert-Lepoutre, A. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets). Astrobiology 2015, 15, 587–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raulin, F.; Brassé, C.; Poch, O.; Coll, P. Prebiotic-like chemistry on titan. Chem. Soc. Rev. 2012, 41, 5380–5393. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.W.; Postberg, F.; Sekine, Y.; Shibuya, T.; Kempf, S.; Horányi, M.; Juhász, A.; Altobelli, N.; Suzuki, K.; Masaki, Y. Ongoing hydrothermal activities within Enceladus. Nature 2015, 519, 207. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.; Hodyss, R.; Johnson, P.V.; Choukroun, M. Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines–Implications for Ceres’ bright spots. Planet. Space Sci. 2017, 141, 73–77. [Google Scholar] [CrossRef]
- McCord, T.B.; Zambon, F. The surface composition of Ceres from the Dawn mission. Icarus 2019, 318, 2–13. [Google Scholar] [CrossRef]
Entry | Mineral(s) | Energy | HCONH2 a | Products | Ref. |
---|---|---|---|---|---|
1 | SiO2, Al2O3, CaCO3 | T | R | Nucleobases | [39] |
2 | Clays | T | R | Nucleobases, heterocycles | [40] |
3 | TiO2 | T | R | Nucleobases, nucleosides | [41] |
4 | TiO2 | UV | R | Carboxylic acids | [42] |
5 | TiO2 | UV | R | Carboxylic acids | [43] |
6 | Pyrophosphate | T, UV | R | Nucleobases | [44] |
7 | Iron magnesium-silicate | T | R | Nucleobases | [45] |
8 | Mineral phosphates | T | R | Nucleobases, amino acids, carboxylic acids | [46] |
9 | Mineral phosphates | T | S | Nucleotides | [47] |
10 | Iron sulfur minerals | T | R | Nucleobases, carboxylic acids | [48] |
11 | Zirconia minerals | T | R | Nucleobases, carboxylic acids | [49] |
12 | Borate minerals | T | R | Nucleobases, amino ac., carboxylic acids | [50] |
13 | Murchison meteorite | T | R | Nucleobases, amino ac., carboxylic acids, sugars | [51] |
14 | Meteorites | T | R | Nucleobases, amino ac., carboxylic acids, sugars | [52] |
15 | Meteorites | PB | R | Nucleosides, nucleobases, amino ac., carboxylic ac., sugars | [53] |
16 | Silica gardens | T | R | Nucleobases, amino ac., carboxylic acids | [54] |
17 | TiO2, ZnO | UV | R | Carboxylic acids | [55] |
18 | Metal oxide vesicles | T | R | Nucleobases, amino ac., carboxylic acids | [56] |
19 | Meteorites, H2O | T | R | Nucleobases, amino ac., carboxylic acids, sugars | [57] |
20 | Meteorites, phosphates | T | S | Nucleotides | [58] |
21 | Molybdates | T | R | Nucleobases | [59] |
22 | Ferrites | T | R | Nucleobases | [60] |
Year | T °C | Atmosphere | Products | Ref. |
---|---|---|---|---|
1983 | 25 | N2, CH4, CO, CO2, NH3 | Amino acids, HCN and HCOH detected | [66] |
1984 | 25 | N2, CH4, CO, CO2, NH3, H2 | Amino acids, HCN and HCOH detected | [67] |
2002 | 25 | CO, CO2, N2 | Amino acids | [68] |
2008 | 70 | CH4, NH3, H2 | Amino acids, carboxylic acids, amines | [69] |
2011 | 25 | H2S, CH4, NH3, CO2 | Amino acids, amines | [70] |
2014 | 25 | NH3, CH4, N2 | Amino acids | [71] |
2017 | 25 | NH3, CO | Amino acids, nucleobases | [72] |
Class | Purines | Pyrimidines | LMWC | HMWC | Amino Acids | Cond. Agents |
---|---|---|---|---|---|---|
Purines | +++ (A) [R+] + (D) b [R+] | +++ (A) [R+] + (D) [R-] | none | +++ (A) [R+] +++ (B) [R+] | +++ (A) [R+] +++ (C) [R+] | |
Pyrimidine | +++ (A) [R+] + (D) [R+] | +++ (A) [R+] ++ (B) [R+] + (C) [R+] | + (A) [R-] ++ (C) [R+] ++ (D) [R+] | +++ (A) [R+] none | +++ (A) [R+] none | |
LMWC | +++ (A) [R+] + (D) [R-] | +++ (A) [R+] ++ (B) [R+] + (C) [R+] | + (A) [R-] ++ (C) [R-] ++ (D) [R+] | +++ (A) [R+] +++ (C) [R+] | +++ (A) [R+] ++ (C) [R+] | |
HMWC | none | + (A) [R-] ++ (C) [R+] ++ (D) [R+] | + (A) [R-] ++ (C) [R-] ++ (D) [R+] | + (A) [R-] +++ (C) [R-] | ++ (C) [R-] | |
Amino acids | +++ (A) [R+] +++ (B) [R+] | +++ (A) [R+] | +++ (A) [R+] +++ (C) [R+] | + (A) [R-] +++ (C) [R-] | +++ (A) [R+] ++ (B) [R+] ++ (C) [R+] +++ (D) [R+] | |
Cond. Agents | +++ (A) [R+] +++ (C) [R+] | +++ (A) [R+] | +++ (A) [R+] ++ (C) [R+] | ++ (Z) [R-] | +++ (A) [R+] ++ (B) [R+] ++ (C) [R+] +++ (D) [R+] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizzarri, B.M.; Saladino, R.; Delfino, I.; García-Ruiz, J.M.; Di Mauro, E. Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future. Int. J. Mol. Sci. 2021, 22, 917. https://doi.org/10.3390/ijms22020917
Bizzarri BM, Saladino R, Delfino I, García-Ruiz JM, Di Mauro E. Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future. International Journal of Molecular Sciences. 2021; 22(2):917. https://doi.org/10.3390/ijms22020917
Chicago/Turabian StyleBizzarri, Bruno Mattia, Raffaele Saladino, Ines Delfino, Juan Manuel García-Ruiz, and Ernesto Di Mauro. 2021. "Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future" International Journal of Molecular Sciences 22, no. 2: 917. https://doi.org/10.3390/ijms22020917
APA StyleBizzarri, B. M., Saladino, R., Delfino, I., García-Ruiz, J. M., & Di Mauro, E. (2021). Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future. International Journal of Molecular Sciences, 22(2), 917. https://doi.org/10.3390/ijms22020917