Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease
Abstract
:1. Introduction
2. Neutrophil Gelatinase-Associated Lipocalin
3. Kidney Injury Molecule 1
4. Lipoxygenases
5. Copeptin
6. Matrix Metalloproteinases
7. Fibroblast Growth Factor-23
8. Klotho
9. Cubilin
10. Non-Coding RNAs
11. Conclusions
Author Contributions
Conflicts of Interest
References
- Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The Global Epidemiology of Diabetes and Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 121–132. [Google Scholar] [CrossRef]
- Wen, C.P.; Chang, C.H.; Tsai, M.K.; Lee, J.H.; Lu, P.J.; Tsai, S.P.; Wen, C.; Chen, C.H.; Kao, C.W.; Tsao, C.K.; et al. Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int. 2017, 92, 388–396. [Google Scholar] [CrossRef]
- Tonelli, M.; Muntner, P.; Lloyd, A.; Manns, B.J.; Klarenbach, S.; Pannu, N.; James, M.T.; Hemmelgarn, B.R. Alberta Kidney Disease Network. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: A population-level cohort study. Lancet 2012, 380, 807–814. [Google Scholar] [CrossRef]
- Cai, L.; Rubin, J.; Han, W.; Venge, P.; Xu, S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin. J. Am. Soc. Nephrol. 2010, 5, 2229–2235. [Google Scholar] [CrossRef] [Green Version]
- Quang, T.H.; Nguyet, M.P.; Thao, D.P.; Thi, M.H.; Phuong Thi Dam, L.; Thi, H.H.; Van, A.P.; Luong, T.C.; Tuyet, M.N.T.; Duy, Q.D.; et al. Evaluation of Urinary Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 as Diagnostic Markers for Early Nephropathy in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2020, 13, 2199–2207. [Google Scholar]
- Sisman, P.; Gul, O.O.; Dirican, M.; Bal, A.S.; Cander, S.; Erturk, E. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Marker of Diabetic Nephropathy in Type 1 Diabetic Patients. Clin. Lab. 2020, 66, 419. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Moosaie, F.; Khaloo, P.; Dehghani Firouzabadi, F.; Fatemi Abhari, S.M.; Atainia, B.; Ardeshir, M.; Nakhjavani, M.; Esteghamati, A. Neutrophil Gelatinase-Associated Lipocalin and Retinol-Binding Protein-4 as Biomarkers for Diabetic Kidney Disease. Kidney Blood Press. Res. 2020, 45, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; Joy, S.S.; George, T.P.; Mujammami, M.; Alfadda, A.A. Potential Role and Excretion Level of Urinary Transferrin, KIM-1, RBP, MCP-1 and NGAL Markers in Diabetic Nephropathy. Diabetes Metab. Syndr. Obes. 2020, 13, 5103–5111. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.A.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Moretto, M.B.; Duarte, T.; Duarte, M.M.; Londero, S.W.; Premaor, M.O.; Comim, F.V.; et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin. Biochem. 2016, 49, 232–236. [Google Scholar] [CrossRef]
- Najafi, L.; KeshtkarRajabi, S.; Pirsaheb, S.; Keyvani, H.; Khajavi, A.; Shati, M.; Hadavand, F.; Amouzegar, A. Assessment of Serum and Urine Neurophil Gelatinase-Associated Lipocalin (s-NGAL and u-NGAL) Level as a Predictive Factor of Disease Progression in Diabetic Nephropathy in Type 2 DM. Iran J. Kidney Dis. 2021, 15, 270–278. [Google Scholar]
- Lee, J.H.; Yang, F.J.; Tsai, W.Y.; Lee, C.T.; Liu, S.Y.; Yang, W.S.; Tung, Y.C. Serum neutrophil gelatinase-associated lipocalin as a potential biomarker of diabetic kidney disease in patients with childhood-onset type 1 diabetes. J. Formos. Med. Assoc. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Chen, G.; Shan, X.; Wang, H. Significant association of urinary alpha-1-microglobulin compared to urinary neutrophil gelatinase-associated lipocalin with renal insufficiency in patients with type 2 diabetes. Nephrol. Carlton. 2021, 26, 400–407. [Google Scholar] [CrossRef]
- Satirapoj, B.; Pooluea, P.; Nata, N.; Supasyndh, O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: A prospective cohort study. J. Diabetes Complicat. 2019, 33, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Phanish, M.K.; Chapman, A.N.; Yates, S.; Price, R.; Hendry, B.M.; Roderick, P.J.; Dockrell, M.E.C. Evaluation of Urinary Biomarkers of Proximal Tubular Injury, Inflammation, and Fibrosis in Patients with Albuminuric and Nonalbuminuric Diabetic Kidney Disease. Kidney Int. Rep. 2021, 6, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Żyłka, A.; Dumnicka, P.; Kuśnierz-Cabala, B.; Gala-Błądzińska, A.; Ceranowicz, P.; Kucharz, J.; Ząbek-Adamska, A.; Maziarz, B.; Drożdż, R.; Kuźniewski, M. Markers of Glomerular and Tubular Damage in the Early Stage of Kidney Disease in Type 2 Diabetic Patients. Mediat. Inflamm. 2018, 2018, 7659243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Ding, Y.; Zhu, C.; Shao, X.; Xie, X.; Lu, K.; Wang, R. Urinary TNF-α and NGAL are correlated with the progression of nephropathy in patients with type 2 diabetes. Exp. Ther. Med. 2013, 6, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Tonkonogi, A.; Carlsson, A.C.; Helmersson-Karlqvist, J.; Larsson, A.; Ärnlöv, J. Associations between urinary kidney injury biomarkers and cardiovascular mortality risk in elderly men with diabetes. Upsala J. Med. Sci. 2016, 121, 174–178. [Google Scholar] [CrossRef]
- Rotbain, C.V.; Hansen, T.W.; Eickhoff, M.K.; von Scholten, B.J.; Reinhard, H.; Jacobsen, P.K.; Persson, F.; Parving, H.H.; Rossing, P. Urinary tubular biomarkers as predictors of kidney function decline, cardiovascular events and mortality in microalbuminuric type 2 diabetic patients. Acta Diabetol. 2018, 55, 1143–1150. [Google Scholar] [CrossRef]
- Vaduganathan, M.; White, W.B.; Charytan, D.M.; Morrow, D.A.; Liu, Y.; Zannad, F.; Cannon, C.P.; Bakris, G.L. EXAMINE Investigators. Relation of Serum and Urine Renal Biomarkers to Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus and Recent Acute Coronary Syndromes (From the EXAMINE Trial). Am. J. Cardiol. 2019, 123, 382–391. [Google Scholar] [CrossRef]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, I.M.; Srivastava, A.; Sabbisetti, V.; McMahon, G.M.; He, J.; Chen, J.; Kusek, J.; Taliercio, J.; Ricardo, A.C.; Hsu, C.Y.; et al. Chronic Kidney Disease Biomarkers Consortium and the CRIC Study Investigators. Plasma Kidney Injury Molecule 1 in CKD: Findings from the Boston Kidney Biopsy Cohort and CRIC Studies. Am. J. Kidney Dis. 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Khan, F.A.; Fatima, S.S.; Khan, G.M.; Shahid, S. Evaluation of kidney injury molecule-1 as a disease progression biomarker in diabetic nephropathy. Pak. J. Med. Sci. 2019, 35, 992–996. [Google Scholar] [PubMed] [Green Version]
- Kapoula, G.V.; Kontou, P.I.; Bagos, P.G. Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diagnostics 2020, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, S.; Ahmed, N.; Zahran, F.E.; Mohammed, G.; Ibrahim, E.S.I. Diagnostic performance of kidney injury molecule-1 for detection of abnormal urinary albumin-to-creatinine ratio in type 2 diabetes mellitus. J. Immunoass. Immunochem. 2021, 1954947. [Google Scholar] [CrossRef]
- Siddiqui, K.; Joy, S.S.; Al-Rubeaan, K. Association of urinary monocyte chemoattractant protein-1 (MCP-1) and kidney injury molecule-1 (KIM-1) with risk factors of diabetic kidney disease in type 2 diabetes patients. Int. Urol. Nephrol. 2019, 51, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Gohda, T.; Kamei, N.; Koshida, T.; Kubota, M.; Tanaka, K.; Yamashita, Y.; Adachi, E.; Ichikawa, S.; Murakoshi, M.; Ueda, S.; et al. Circulating kidney injury molecule-1 as a biomarker of renal parameters in diabetic kidney disease. J. Diabetes Investig. 2020, 11, 435–440. [Google Scholar] [CrossRef]
- Yamashita, S.; Shinozaki, T.; Murata, H.; Matsuyama, Y.; Babazono, T. Panel of novel urine biomarkers for incident microalbuminuria in people with type 2 diabetes mellitus. Diabet. Med. 2020, 37, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Valo, E.; McGurnaghan, S.J.; Sandholm, N.; Blackbourn, L.A.K.; Dalton, R.N.; Dunger, D.; Groop, P.H.; McKeigue, P.M.; Forsblom, C.; et al. FinnDiane Study Group and the Scottish Diabetes Research Network (SDRN) Type 1 Bioresource Collaboration. Biomarker panels associated with progression of renal disease in type 1 diabetes. Diabetologia 2019, 62, 1616–1627. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; McGurnaghan, S.J.; Blackbourn, L.A.K.; Dalton, R.N.; Dunger, D.; Bell, S.; Petrie, J.R.; Green, F.; MacRury, S.; McKnight, J.A.; et al. Scottish Diabetes Research Network (SDRN) Type 1 Bioresource Investigators. Comparison of serum and urinary biomarker panels with albumin/creatinine ratio in the prediction of renal function decline in type 1 diabetes. Diabetologia 2020, 63, 788–798. [Google Scholar] [CrossRef] [Green Version]
- Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.T.; Fried, L.F.; Parikh, C.R. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, A.C.; Nowak, C.; Lind, L.; Östgren, C.J.; Nyström, F.H.; Sundström, J.; Carrero, J.J.; Riserus, U.; Ingelsson, E.; Fall, T.; et al. Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: A proteomics approach. Upsala J. Med. Sci. 2020, 125, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrian, A.D.; Lieb, D.C.; Cole, B.K.; Taylor-Fishwick, D.A.; Chakrabarti, S.K.; Nadler, J.L. Functional and pathological roles of the 12-and 15-lipoxygenases. Prog. Lipid Res. 2011, 50, 115–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Gu, J.; Chakrabarti, S.K.; Aylor, K.; Marshall, J.; Takahashi, Y.; Yoshimoto, T.; Nadler, J.L. The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology 2007, 148, 1313–1322. [Google Scholar] [CrossRef]
- Nejatian, N.; Häfner, A.K.; Shoghi, F.; Badenhoop, K.; Penna-Martinez, M. 5-Lipoxygenase (ALOX5): Genetic susceptibility to type 2 diabetes and vitamin D effects on monocytes. J. Steroid Biochem. Mol. Biol. 2019, 187, 52–57. [Google Scholar] [CrossRef]
- Lieb, D.C.; Brotman, J.J.; Hatcher, M.A.; Aye, M.S.; Cole, B.K.; Haynes, B.A.; Wohlgemuth, S.D.; Fontana, M.A.; Beydoun, H.; Nadler, J.L.; et al. Adipose tissue 12/15 lipoxygenase pathway in human obesity and diabetes. J. Clin. Endocrinol. Metab. 2014, 99, E1713–E1720. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Wang, W.N.; Su, S.S.; Chen, B.; Sun, W.X.; Wu, H.; Cheng, Y.L.; Xu, Z.G. Roles of 12-Lipoxygenase and Its Interaction with Angiotensin II on p21 and p27 Expression in Diabetic Nephropathy. Nephron 2019, 142, 61–70. [Google Scholar] [CrossRef]
- Dong, C.; Liu, S.; Cui, Y.; Guo, Q. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy. Eur. J. Pharmacol. 2020, 879, 173122. [Google Scholar] [CrossRef]
- Xu, H.Z.; Cheng, Y.L.; Wang, W.N.; Wu, H.; Zhang, Y.Y.; Zang, C.S.; Xu, Z.G. 12-Lipoxygenase Inhibition on Microalbuminuria in Type-1 and Type-2 Diabetes Is Associated with Changes of Glomerular Angiotensin II Type 1 Receptor Related to Insulin Resistance. Int. J. Mol. Sci. 2016, 17, 684. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Sun, B.; Liu, Y.; Huang, J.; Chen, G.; Zhang, X.; Chen, C.; Wang, D.; Wang, G. Increased lipoxygenase and decreased cytochrome P450s metabolites correlated with the incidence of diabetic nephropathy: Potential role of eicosanoids from metabolomics in type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol. 2021, 48, 679–685. [Google Scholar] [CrossRef]
- Antonipillai, I.; Nadler, J.; Vu, E.J.; Bughi, S.; Natarajan, R.; Horton, R. A 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid, is increased in diabetics with incipient and early renal disease. J. Clin. Endocrinol. Metab. 1996, 81, 1940–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilenšek, I.; Šeruga, M.; Makuc, J.; Završnik, M.; Petrovič, D. The ALOXA5AP gene (rs38022789) is associated with diabetic nephropathy in Slovenian patients with type 2 diabetes mellitus. Gene 2020, 741, 144551. [Google Scholar] [CrossRef]
- Liu, Y.; Freedman, B.I.; Burdon, K.P.; Langefeld, C.D.; Howard, T.; Herrington, D.; Goff, D.C., Jr.; Bowden, D.W.; Wagenknecht, L.E.; Hedrick, C.C.; et al. Association of arachidonate 12-lipoxygenase genotype variation and glycemic control with albuminuria in type 2 diabetes. Am. J. Kidney Dis. 2008, 52, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, A.K.; Roumeliotis, S.K.; Panagoutsos, S.A.; Tsetsos, F.; Georgitsi, M.; Manolopoulos, V.; Paschou, P.; Passadakis, P.S. Association of ALOX12 gene polymorphism with all-cause and cardiovascular mortality in diabetic nephropathy. Int. Urol. Nephrol. 2018, 50, 321–329. [Google Scholar] [CrossRef]
- Burdon, K.P.; Rudock, M.E.; Lehtinen, A.B.; Langefeld, C.D.; Bowden, D.W.; Register, T.C.; Liu, Y.; Freedman, B.I.; Carr, J.J.; Hedrick, C.C.; et al. Human lipoxygenase pathway gene variation and association with markers of subclinical atherosclerosis in the diabetes heart study. Mediat. Inflamm. 2010, 2010, 170153. [Google Scholar] [CrossRef] [Green Version]
- El Boustany, R. Vasopressin and Diabetic Kidney Disease. Ann. Nutr. Metab. 2018, 72 (Suppl. S2), 17–20. [Google Scholar] [CrossRef]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Zerbe, R.L.; Vinicor, F.; Robertson, G.L. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes 1979, 28, 503–508. [Google Scholar] [CrossRef]
- Zhu, F.X.; Wu, H.L.; Tu, K.S.; Chen, J.X.; Zhang, M.; Shi, C. Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J. Diabetes Complicat. 2016, 30, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Zerbe, R.L.; Vinicor, F.; Robertson, G.L. Regulation of plasma vasopressin in insulin-dependent diabetes mellitus. Am. J. Physiol. 1985, 249, E317–E325. [Google Scholar] [CrossRef] [PubMed]
- Bardoux, P.; Martin, H.; Ahloulay, M.; Schmitt, F.; Bouby, N.; Trinh-Trang-Tan, M.M.; Bankir, L. Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: Study in vasopressin-deficient Brattleboro rats. Proc. Natl. Acad. Sci. USA 1999, 96, 10397–10402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardoux, P.; Bruneval, P.; Heudes, D.; Bouby, N.; Bankir, L. Diabetes-induced albuminuria: Role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. Nephrol. Dial. Transplant. 2003, 18, 1755–1763. [Google Scholar] [CrossRef] [Green Version]
- El Boustany, R.; Taveau, C.; Chollet, C.; Velho, G.; Bankir, L.; Alhenc-Gelas, F.; Roussel, R.; Bouby, N. Antagonism of vasopressin V2 receptor improves albuminuria at the early stage of diabetic nephropathy in a mouse model of type 2 diabetes. J. Diabetes Complicat. 2017, 31, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Piani, F.; Reinicke, T.; Lytvyn, Y.; Melena, I.; Lovblom, L.E.; Lai, V.; Tse, J.; Cham, L.; Orszag, A.; Perkins, B.A.; et al. Vasopressin associated with renal vascular resistance in adults with longstanding type 1 diabetes with and without diabetic kidney disease. J. Diabetes Complicat. 2021, 35, 107807. [Google Scholar] [CrossRef] [PubMed]
- Boertien, W.E.; Riphagen, I.J.; Drion, I.; Alkhalaf, A.; Bakker, S.J.; Groenier, K.H.; Struck, J.; de Jong, P.E.; Bilo, H.J.; Kleefstra, N.; et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33). Diabetologia 2013, 56, 1680–1688. [Google Scholar] [CrossRef] [Green Version]
- Bjornstad, P.; Johnson, R.J.; Snell-Bergeon, J.K.; Pyle, L.; Davis, A.; Foster, N.; Cherney, D.Z.; Maahs, D.M. Albuminuria is associated with greater copeptin concentrations in men with type 1 diabetes: A brief report from the T1D exchange Biobank. J. Diabetes Complicat. 2017, 31, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Noor, T.; Hanif, F.; Kiran, Z.; Rehman, R.; Khan, M.T.; Haque, Z.; Nankani, K. Relation of Copeptin with Diabetic and Renal Function Markers Among Patients with Diabetes Mellitus Progressing Towards Diabetic Nephropathy. Arch. Med. Res. 2020, 51, 548–555. [Google Scholar] [CrossRef]
- Bjornstad, P.; Maahs, D.M.; Jensen, T.; Lanaspa, M.A.; Johnson, R.J.; Rewers, M.; Snell-Bergeon, J.K. Elevated copeptin is associated with atherosclerosis and diabetic kidney disease in adults with type 1 diabetes. J. Diabetes Complicat. 2017, 30, 1093–1096. [Google Scholar] [CrossRef] [Green Version]
- Velho, G.; Bouby, N.; Hadjadj, S.; Matallah, N.; Mohammedi, K.; Fumeron, F.; Potier, L.; Bellili-Munoz, N.; Taveau, C.; Alhenc-Gelas, F.; et al. Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care 2013, 36, 3639–3645. [Google Scholar] [CrossRef] [Green Version]
- Pikkemaat, M.; Melander, O.; Bengtsson Boström, K. Association between copeptin and declining glomerular filtration rate in people with newly diagnosed diabetes. The Skaraborg Diabetes Register. J. Diabetes Complicat. 2015, 29, 1062–1065. [Google Scholar] [CrossRef]
- Wiromrat, P.; Bjornstad, P.; Vinovskis, C.; Chung, L.T.; Roncal, C.; Pyle, L.; Lanaspa, M.A.; Johnson, R.J.; Cherney, D.Z.; Reznick-Lipina, T.K.; et al. Elevated copeptin, arterial stiffness, and elevated albumin excretion in adolescents with type 1 diabetes. Pediatr. Diabetes 2019, 20, 1110–1117. [Google Scholar] [CrossRef]
- Velho, G.; Ragot, S.; El Boustany, R.; Saulnier, P.J.; Fraty, M.; Mohammedi, K.; Fumeron, F.; Potier, L.; Marre, M.; Hadjadj, S.; et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 2018, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Riphagen, I.J.; Boertien, W.E.; Alkhalaf, A.; Kleefstra, N.; Gansevoort, R.T.; Groenier, K.H.; van Hateren, K.J.; Struck, J.; Navis, G.; Bilo, H.J.; et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care 2013, 36, 3201–3207. [Google Scholar] [CrossRef] [Green Version]
- Maier, C.; Clodi, M.; Neuhold, S.; Resl, M.; Elhenicky, M.; Prager, R.; Moertl, D.; Strunk, G.; Luger, A.; Struck, J.; et al. Endothelial markers may link kidney function to cardiovascular events in type 2 diabetes. Diabetes Care 2009, 32, 1890–1895. [Google Scholar] [CrossRef] [Green Version]
- Velho, G.; El Boustany, R.; Lefèvre, G.; Mohammedi, K.; Fumeron, F.; Potier, L.; Bankir, L.; Bouby, N.; Hadjadj, S.; Marre, M.; et al. Plasma Copeptin, Kidney Outcomes, Ischemic Heart Disease, and All-Cause Mortality in People with Long-standing Type 1 Diabetes. Diabetes Care 2016, 39, 2288–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, J.; Floege, J.; Ostendorf, T.; Ludwig, A. Key metalloproteinase-mediated pathways in the kidney. Nat. Rev. Nephrol. 2021, 17, 513–527. [Google Scholar] [CrossRef] [PubMed]
- García-Tejeda, A.U.; Sampieri, C.L.; Suárez-Torres, I.; Morales-Romero, J.; Demeneghi-Marini, V.; Hernández-Hernández, M.E.; Rodríguez-Hernández, A. Association of urinary activity of MMP-9 with renal impairment in Mexican patients with type 2 diabetes mellitus. PeerJ 2018, 6, e6067. [Google Scholar] [CrossRef] [Green Version]
- Aghadavod, E.; Soleimani, A.; Amirani, E.; Gholriz Khatami, P.; Akasheh, N.; SharafatiChaleshtori, R.; Shafabakhsh, R.; Banikazemi, Z.; Asemi, Z. Comparison Between Biomarkers of Kidney Injury, Inflammation, and Oxidative Stress in Patients with Diabetic Nephropathy and Type 2 Diabetes Mellitus. Iran. J. Kidney Dis. 2020, 14, 31–35. [Google Scholar] [PubMed]
- Mora-Gutiérrez, J.M.; Rodríguez, J.A.; Fernández-Seara, M.A.; Orbe, J.; Escalada, F.J.; Soler, M.J.; SlonRoblero, M.F.; Riera, M.; Páramo, J.A.; Garcia-Fernandez, N. MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. Sci. Rep. 2020, 10, 26. [Google Scholar] [CrossRef]
- Van der Zijl, N.J.; Hanemaaijer, R.; Tushuizen, M.E.; Schindhelm, R.K.; Boerop, J.; Rustemeijer, C.; Bilo, H.J.; Verheijen, J.H.; Diamant, M. Urinary matrix metalloproteinase-8 and -9 activities in type 2 diabetic subjects: A marker of incipient diabetic nephropathy? Clin. Biochem. 2010, 43, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.A.; Engelen, L.; Buijs, J.; Chaturvedi, N.; Fuller, J.H.; Schalkwijk, C.G.; Stehouwer, C.D. EURODIAB Prospective Complications Study Group. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The EURODIAB Prospective Complications Study. Cardiovasc. Diabetol. 2015, 14, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihara, K.; Skupien, J.; Kobayashi, H.; Md Dom, Z.I.; Wilson, J.M.; O’Neil, K.; Badger, H.S.; Bowsman, L.M.; Satake, E.; Breyer, M.D.; et al. Profibrotic Circulating Proteins and Risk of Early Progressive Renal Decline in Patients with Type 2 Diabetes With and Without Albuminuria. Diabetes Care 2020, 43, 2760–2767. [Google Scholar] [CrossRef] [PubMed]
- Ban, C.R.; Twigg, S.M.; Franjic, B.; Brooks, B.A.; Celermajer, D.; Yue, D.K.; McLennan, S.V. Serum MMP-7 is increased in diabetic renal disease and diabetic diastolic dysfunction. Diabetes Res. Clin. Pract. 2010, 87, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.A.; Engelen, L.; Buijs, J.; Chaturvedi, N.; Fuller, J.H.; Jorsal, A.; Parving, H.H.; Tarnow, L.; Theilade, S.; Rossing, P.; et al. Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes: Pooled analysis of three cohort studies. Cardiovasc. Diabetol. 2017, 16, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncalves, I.; Bengtsson, E.; Colhoun, H.M.; Shore, A.C.; Palombo, C.; Natali, A.; Edsfeldt, A.; Dunér, P.; Fredrikson, G.N.; Björkbacka, H.; et al. SUMMIT Consortium. Elevated Plasma Levels of MMP-12 Are Associated with Atherosclerotic Burden and Symptomatic Cardiovascular Disease in Subjects With Type 2 Diabetes. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1723–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buraczynska, M.; Dragan, M.; Buraczynska, K.; Orlowska-Kowalik, G.; Ksiazek, A. Matrix metalloproteinase-2 (MMP-2) gene polymorphism and cardiovascular comorbidity in type 2 diabetes patients. J. Diabetes Complicat. 2015, 29, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef] [Green Version]
- van den Berkhof, Y.S.; Gant, C.M.; Maatman, R.; De Graaf, A.; Navis, G.J.; Bakker, S.J.L.; Laverman, G.D. Correlations between plasma strontium concentration, components of calcium and phosphate metabolism and renal function in type 2 diabetes mellitus. Eur. J. Clin. Investig. 2018, 48, e12987. [Google Scholar] [CrossRef]
- El-Saeed, A.M.; El-Mohasseb, G.F. Circulating Fibroblast Growth Factors 21 and 23 as Biomarkers of Progression in Diabetic Nephropathy in Type 2 Diabetes with Normoalbuminuria. Egypt. J. Immunol. 2017, 24, 93–99. [Google Scholar]
- Silva, A.P.; Mendes, F.; Fragoso, A.; Jeronimo, T.; Pimentel, A.; Gundlach, K.; Büchel, J.; Santos, N.; Neves, P.L. Altered serum levels of FGF-23 and magnesium are independent risk factors for an increased albumin-to-creatinine ratio in type 2 diabetics with chronic kidney disease. J. Diabetes Complicat. 2016, 30, 275–280. [Google Scholar] [CrossRef]
- Titan, S.M.; Zatz, R.; Graciolli, F.G.; dosReis, L.M.; Barros, R.T.; Jorgetti, V.; Moysés, R.M. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin. J. Am. Soc. Nephrol. 2011, 6, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Dogan, B.; Arikan, I.H.; Guler, D.; Keles, N.; Isbilen, B.; Isman, F.; Oguz, A. Fibroblast growth factor-23 but not sKlotho levels are related to diastolic dysfunction in type 1 diabetic patients with early diabetic nephropathy. Int. Urol. Nephrol. 2016, 48, 399–407. [Google Scholar] [CrossRef]
- Sørensen, M.H.; Bojer, A.S.; Jørgensen, N.R.; Broadbent, D.A.; Plein, S.; Madsen, P.L.; Gæde, P. Fibroblast growth factor-23 is associated with imaging markers of diabetic cardiomyopathy and anti-diabetic therapeutics. Cardiovasc. Diabetol. 2020, 19, 158. [Google Scholar] [CrossRef]
- Freedman, B.I.; Divers, J.; Russell, G.B.; Palmer, N.D.; Bowden, D.W.; Carr, J.J.; Wagenknecht, L.E.; Hightower, R.C.; Xu, J.; Smith, S.C.; et al. Plasma FGF23 and Calcified Atherosclerotic Plaque in African Americans with Type 2 Diabetes Mellitus. Am. J. Nephrol. 2015, 42, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, C.; Carlsson, A.C.; Östgren, C.J.; Nyström, F.H.; Alam, M.; Feldreich, T.; Sundström, J.; Carrero, J.J.; Leppert, J.; Hedberg, P.; et al. Multiplex proteomics for prediction of major cardiovascular events in type 2 diabetes. Diabetologia 2018, 61, 1748–1757. [Google Scholar] [CrossRef] [Green Version]
- Yeung, S.M.H.; Binnenmars, S.H.; Gant, C.M.; Navis, G.; Gansevoort, R.T.; Bakker, S.J.L.; de Borst, M.H.; Laverman, G.D. Fibroblast Growth Factor 23 and Mortality in Patients with Type 2 Diabetes and Normal or Mildly Impaired Kidney Function. Diabetes Care 2019, 42, 2151–2153. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Gohda, T.; Walker, W.H.; Skupien, J.; Smiles, A.M.; Holak, R.R.; Jeong, J.; McDonnell, K.P.; Krolewski, A.S.; Niewczas, M.A. Risk of ESRD and all cause mortality in type 2 diabetes according to circulating levels of FGF-23 and TNFR1. PLoS ONE 2013, 8, e58007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.P.; Mendes, F.; Carias, E.; Gonçalves, R.B.; Fragoso, A.; Dias, C.; Tavares, N.; Café, H.M.; Santos, N.; Rato, F.; et al. Plasmatic Klotho and FGF23 Levels as Biomarkers of CKD-Associated Cardiac Disease in Type 2 Diabetic Patients. Int. J. Mol. Sci. 2019, 20, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuro, O.M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2019, 15, 27–44. [Google Scholar] [CrossRef]
- Nie, F.; Wu, D.; Du, H.; Yang, X.; Yang, M.; Pang, X.; Xu, Y. Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. J. Diabetes. Complicat. 2017, 31, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, T. Clinical implication of alterations in serum Klotho levels in patients with type 2 diabetes mellitus and its associated complications. J. Diabetes Complicat. 2018, 32, 922–930. [Google Scholar] [CrossRef]
- Inci, A.; Sari, F.; Coban, M.; Olmaz, R.; Dolu, S.; Sarıkaya, M.; Yılmaz, N. Soluble Klotho and fibroblast growth factor 23 levels in diabetic nephropathy with different stages of albuminuria. J. Investig. Med. 2016, 64, 1128–1133. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Lv, C.; Qin, N.; Lei, S.; Yuan, Q.; Wang, G. The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin. Diabetes Res. Clin. Pract. 2014, 106, 343–350. [Google Scholar] [CrossRef]
- Silva, A.P.; Mendes, F.; Pereira, L.; Fragoso, A.; Gonçalves, R.B.; Santos, N.; Rato, F.; Neves, P.L. Klotho levels: Association with insulin resistance and albumin-to-creatinine ratio in type 2 diabetic patients. Int. Urol. Nephrol. 2017, 49, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Bob, F.; Schiller, A.; Timar, R.; Lighezan, D.; Schiller, O.; Timar, B.; Bujor, C.G.; Munteanu, M.; Gadalean, F.; Mihaescu, A.; et al. Rapid decline of kidney function in diabetic kidney disease is associated with high soluble Klotho levels. Nefrologia 2019, 39, 250–257. [Google Scholar] [CrossRef]
- Fountoulakis, N.; Maltese, G.; Gnudi, L.; Karalliedde, J. Reduced Levels of Anti-Ageing Hormone Klotho Predict Renal Function Decline in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 2026–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, R.; Christensen, E.I.; Birn, H. Megalin and cubilin in proximal tubule protein reabsorption: From experimental models to human disease. Kidney Int. 2016, 89, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Thrailkill, K.M.; Nimmo, T.; Bunn, R.C.; Cockrell, G.E.; Moreau, C.S.; Mackintosh, S.; Edmondson, R.D.; Fowlkes, J.L. Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin. Diabetes Care 2009, 32, 1266–1268. [Google Scholar] [CrossRef] [Green Version]
- Teumer, A.; Tin, A.; Sorice, R.; Gorski, M.; Yeo, N.C.; Chu, A.Y.; Li, M.; Li, Y.; Mijatovic, V.; Ko, Y.A.; et al. Genome-wide Association Studies Identify Genetic Loci Associated with Albuminuria in Diabetes. Diabetes 2016, 65, 803–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.; Kube, J.; Albert, A.; Schanze, D.; Zenker, M.; Mertens, P.R. Cubilin Single Nucleotide Polymorphism Variants are Associated with Macroangiopathy While a Matrix Metalloproteinase-9 Single Nucleotide Polymorphism Flip-Flop may Indicate Susceptibility of Diabetic Nephropathy in Type-2 Diabetic Patients. Nephron 2019, 141, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Sun, X.; Shan, P.F. MicroRNAs and Cardiovascular Disease in Diabetes Mellitus. Biomed. Res. Int. 2017, 2017, 4080364. [Google Scholar] [CrossRef] [Green Version]
- Al-Kafaji, G.; Al-Mahroos, G.; Abdulla Al-Muhtaresh, H.; Sabry, M.A.; Abdul Razzak, R.; Salem, A.H. Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers 2017, 22, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Abdullah, N.; Abdul Murad, N.A.; Jamal, R.; Sulaiman, S.A. Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics 2021, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Millis, M.P.; Bowen, D.; Kingsley, C.; Watanabe, R.M.; Wolford, J.K. Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes 2007, 56, 3027–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, F.; Wang, T.; Zeng, L.; Zhu, S.; Cao, W.; Wu, W.; Wu, H.; Zou, T. Diagnostic potential of circulating LncRNAs in human cardiovascular disease: A meta-analysis. Biosci. Rep. 2018, 38, BSR20181610. [Google Scholar] [CrossRef] [PubMed]
- Zaiou, M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells 2020, 9, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wang, X.; Wang, Z.Y.; Li, L. Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. J. Cell. Physiol. 2020, 235, 4520–4529. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Xuan, L.; Pan, Z.; Li, K.; Liu, S.; Huang, Y.; Zhao, X.; Huang, L.; Wang, Z.; et al. Reciprocal Changes of Circulating Long Non-Coding RNAs ZFAS1 and CDR1AS Predict Acute Myocardial Infarction. Sci. Rep. 2016, 6, 22384. [Google Scholar] [CrossRef]
Biomarker | Correlates with Glomerular Filtration Rate | Correlates with Urinary Albumin Excretion | Predicts Decline in Glomerular Filtration Rate |
---|---|---|---|
Neutrophil gelatinase-associated lipocalin | Yes | Yes | Yes |
Kidney injury molecule-1 | Yes | Yes | Yes |
Lipoxygenases | Yes | Yes | Unknown |
Copeptin | Yes | Yes | Yes |
Matrix metalloproteinases | Yes | Yes | Yes |
Fibroblast growth factor-23 | Yes | Yes | Yes |
Klotho | Yes | Yes | Yes |
Cubilin | Yes | Yes | Yes |
Biomarker | Predicts Myocardial Infarction | Predicts Ischemic Stroke | Predicts Cardiovascular Mortality |
---|---|---|---|
Neutrophil gelatinase-associated lipocalin | Yes | Yes | Conflicting results |
Kidney injury molecule-1 | Conflicting results | Conflicting results | Conflicting results |
Lipoxygenases | Yes | Yes | Yes |
Copeptin | Conflicting results | Conflicting results | Conflicting results |
Matrix metalloproteinases | Yes | Yes | Unknown |
Fibroblast growth factor-23 | Yes | Yes | Yes |
Klotho | Yes | Yes | Yes |
Cubilin | Unknown | Unknown | Unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourtidou, C.; Stangou, M.; Marinaki, S.; Tziomalos, K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 11196. https://doi.org/10.3390/ijms222011196
Kourtidou C, Stangou M, Marinaki S, Tziomalos K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. International Journal of Molecular Sciences. 2021; 22(20):11196. https://doi.org/10.3390/ijms222011196
Chicago/Turabian StyleKourtidou, Christodoula, Maria Stangou, Smaragdi Marinaki, and Konstantinos Tziomalos. 2021. "Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease" International Journal of Molecular Sciences 22, no. 20: 11196. https://doi.org/10.3390/ijms222011196
APA StyleKourtidou, C., Stangou, M., Marinaki, S., & Tziomalos, K. (2021). Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. International Journal of Molecular Sciences, 22(20), 11196. https://doi.org/10.3390/ijms222011196