Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The “Circulating Wound” Model
Abstract
:1. Introduction
2. Platelets in MPNs: Role and Controversies
3. From Platelet Fibrinogen Receptors to Thrombin Generation: The “Circulating Wound” Model
4. Thrombin Generation and Platelet Dysfunctions
5. How to Evaluate Coagulation Parameters: Global Coagulation Assays
6. Current Therapies and Rising Therapeutic Alternatives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falanga, A.; Marchetti, M. Thrombosis in Myeloproliferative Neoplasms. Semin. Thromb. Hemost. 2014, 40, 348–358. [Google Scholar] [CrossRef]
- Galvez, C.; Stein, B.L. Thrombocytosis and Thrombosis: Is There Really a Correlation? Curr. Hematol. Malig. Rep. 2020, 15, 261–267. [Google Scholar] [CrossRef]
- Bucalossi, A.; Marotta, G.; Bigazzi, C.; Galieni, P.; Dispensa, E. Reduction of Antithrombin III, Protein C, and Protein S Levels and Activated Protein C Resistance in Polycythemia Vera and Essential Thrombocythemia Patients with Thrombosis. Am. J. Hematol. 1996, 52, 14–20. [Google Scholar] [CrossRef]
- Campbell, P.J.; MacLean, C.; Beer, P.A.; Buck, G.; Wheatley, K.; Kiladjian, J.-J.; Forsyth, C.; Harrison, C.N.; Green, A.R. Correlation of Blood Counts with Vascular Complications in Essential Thrombocythemia: Analysis of the Prospective PT1 Cohort. Blood 2012, 120, 1409–1411. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, H.C.; Elvers, M.; Schafer, A.I. The Pathobiology of Thrombosis, Microvascular Disease, and Hemorrhage in the Myeloproliferative Neoplasms. Blood 2021, 137, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Michiels, J.; Berneman, Z.; Schroyens, W.; Finazzi, G.; Budde, U.; van Vliet, H. The Paradox of Platelet Activation and Impaired Function: Platelet-von Willebrand Factor Interactions, and the Etiology of Thrombotic and Hemorrhagic Manifestations in Essential Thrombocythemia and Polycythemia Vera. Semin. Thromb. Hemost. 2006, 32, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Marin Oyarzún, C.P.; Heller, P.G. Platelets as Mediators of Thromboinflammation in Chronic Myeloproliferative Neoplasms. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvernberg, J.; Grove, E.L.; Ommen, H.B.; Hvas, A.-M. Platelet Function and Turnover in Essential Thrombocythemia: A Systematic Review. Semin. Thromb. Hemost. 2021, 47, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larrán, A.; Arellano-Rodrigo, E.; Reverter, J.C.; Domingo, A.; Villamor, N.; Colomer, D.; Cervantes, F. Increased Platelet, Leukocyte, and Coagulation Activation in Primary Myelofibrosis. Ann. Hematol. 2008, 87, 269–276. [Google Scholar] [CrossRef]
- Finazzi, G.; Budde, U.; Michiels, J.J. Bleeding Time and Platelet Function in Essential Thrombocythemia and Other Myeloproliferative Syndromes. Leuk. Lymphoma 1996, 22, 71–78. [Google Scholar] [CrossRef]
- Falanga, A.; Marchetti, M.; Schieppati, F. Prevention and Management of Thrombosis in BCR/ABL-Negative Myeloproliferative Neoplasms. Hamostaseologie 2021, 41, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Rondina, M.T.; Weyrich, A.S. Regulation of the Genetic Code in Megakaryocytes and Platelets. J. Thromb. Haemost. 2015, 13, S26–S32. [Google Scholar] [CrossRef] [PubMed]
- Zini, R.; Guglielmelli, P.; Pietra, D.; Rumi, E.; Rossi, C.; Rontauroli, S.; Genovese, E.; Fanelli, T.; Calabresi, L.; Bianchi, E.; et al. CALR Mutational Status Identifies Different Disease Subtypes of Essential Thrombocythemia Showing Distinct Expression Profiles. Blood Cancer J. 2017, 7, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Buduo, C.A.; Giannini, S.; Abbonante, V.; Rosti, V.; Hoffmeister, K.M.; Balduini, A. Increased B4GALT1 Expression Is Associated with Platelet Surface Galactosylation and Thrombopoietin Plasma Levels in MPNs. Blood 2021, 137, 2085–2089. [Google Scholar] [CrossRef]
- Tran, J.Q.D.; Pedersen, O.H.; Larsen, M.L.; Grove, E.L.; Kristensen, S.D.; Hvas, A.-M.; Nissen, P.H. Platelet MicroRNA Expression and Association with Platelet Maturity and Function in Patients with Essential Thrombocythemia. Platelets 2020, 31, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Coucelo, M.; Caetano, G.; Sevivas, T.; Almeida Santos, S.; Fidalgo, T.; Bento, C.; Fortuna, M.; Duarte, M.; Menezes, C.; Ribeiro, M.L. JAK2V617F Allele Burden Is Associated with Thrombotic Mechanisms Activation in Polycythemia Vera and Essential Thrombocythemia Patients. Int. J. Hematol. 2014, 99, 32–40. [Google Scholar] [CrossRef]
- Arellano-Rodrigo, E.; Alvarez-Larrán, A.; Reverter, J.-C.; Colomer, D.; Villamor, N.; Bellosillo, B.; Cervantes, F. Platelet Turnover, Coagulation Factors, and Soluble Markers of Platelet and Endothelial Activation in Essential Thrombocythemia: Relationship with Thrombosis Occurrence and JAK 2 V617F Allele Burden. Am. J. Hematol. 2009, 84, 102–108. [Google Scholar] [CrossRef]
- Maugeri, N.; Giordano, G.; Petrilli, M.P.; Fraticelli, V.; de Gaetano, G.; Cerletti, C.; Storti, S.; Donati, M.B. Inhibition of Tissue Factor Expression by Hydroxyurea in Polymorphonuclear Leukocytes from Patients with Myeloproliferative Disorders: A New Effect for an Old Drug? J. Thromb. Haemost. 2006, 4, 2593–2598. [Google Scholar] [CrossRef]
- Landolfi, R.; di Gennaro, L. Pathophysiology of Thrombosis in Myeloproliferative Neoplasms. Haematologica 2011, 96, 183–186. [Google Scholar] [CrossRef]
- Ley, K.; Rivera-Nieves, J.; Sandborn, W.J.; Shattil, S. Integrin-Based Therapeutics: Biological Basis, Clinical Use and New Drugs. Nat. Rev. Drug Discov. 2016, 15, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet Integrin AIIbβ3: Signal Transduction, Regulation, and Its Therapeutic Targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.K.; De Nully Brown, P.; Lund, B.V.; Nielsen, O.J.; Hasselbalch, H.C. Increased Platelet Activation and Abnormal Membrane Glycoprotein Content and Redistribution in Myeloproliferative Disorders. Br. J. Haematol. 2000, 110, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.F.; Hunter, R.W.; Harper, M.T.; Savage, J.S.; Siddiq, S.; Westbury, S.K.; Poole, A.W.; Mumford, A.D.; Hers, I. Dysfunction of the PI3 Kinase/Rap1/Integrin AIIbβ3 Pathway Underlies Ex Vivo Platelet Hypoactivity in Essential Thrombocythemia. Blood 2013, 121, 1209–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eche, N.; Sie, P.; Caranobe, C.; Nouvel, C.; Pris, J.; Boneu, B. Platelets in Myeloproliferative Disorders. III: Glycoprotein Profile in Relation to Platelet Function and Platelet Density. Scand. J. Haematol. 2009, 26, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Bolin, R.B.; Okumura, T.; Jamieson, G.A. Changes in Distribution of Platelet Membrane Glycoproteins in Patients with Myeloproliferative Disorders. Am. J. Hematol. 1977, 3, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Mazzucato, M.; De Marco, L.; De Angelis, V.; De Roia, D.; Bizzaro, N.; Casonato, A. Platelet Membrane Abnormalities in Myeloproliferative Disorders: Decrease in Glycoproteins Ib and IIb/IIIa Complex Is Associated with Deficient Receptor Function. Br. J. Haematol. 1989, 73, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Mistry, R.; Cahill, M.; Chapman, C.; Wood, J.K.; Barnett, D.B. 125I-Fibrinogen Binding to Platelets in Myeloproliferative Disease. Thromb. Haemost. 1991, 66, 329–333. [Google Scholar] [CrossRef]
- Marín Oyarzún, C.P.; Glembotsky, A.C.; Goette, N.P.; Lev, P.R.; De Luca, G.; Baroni Pietto, M.C.; Moiraghi, B.; Castro Ríos, M.A.; Vicente, A.; Marta, R.F.; et al. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients with Essential Thrombocythemia. Front. Immunol. 2020, 11, 705. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, A.; Carloni, S.; De Matteis, S.; Ghetti, M.; Musuraca, G.; Poggiaspalla, M.; Augello, A.F.; Giordano, G.; Fattori, P.P.; Martinelli, G.; et al. Unexpected Low Expression of Platelet Fibrinogen Receptor in Patients with Chronic Myeloproliferative Neoplasms: How Does It Change with Aspirin? Br. J. Haematol. 2020, 189, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Bjornsson, T.D.; Schneider, D.E.; Berger, H.J. Aspirin Acetylates Fibrinogen and Enhances Fibrinolysis. Fibrinolytic Effect Is Independent of Changes in Plasminogen Activator Levels. J. Pharmacol. Exp. Ther. 1989, 250, 154–161. [Google Scholar]
- Leger, A.J.; Covic, L.; Kuliopulos, A. Protease-Activated Receptors in Cardiovascular Diseases. Circulation 2006, 114, 1070–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuberger, D.M.; Schuepbach, R.A. Protease-Activated Receptors (PARs): Mechanisms of Action and Potential Therapeutic Modulators in PAR-Driven Inflammatory Diseases. Thromb. J. 2019, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelstein, L.C.; Simon, L.M.; Lindsay, C.R.; Kong, X.; Teruel-Montoya, R.; Tourdot, B.E.; Chen, E.S.; Ma, L.; Coughlin, S.; Nieman, M.; et al. Common Variants in the Human Platelet PAR4 Thrombin Receptor Alter Platelet Function and Differ by Race. Blood 2014, 124, 3450–3458. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, M.; Noble, D.N.; Verma, S.; Nieman, M.T. Mapping Human Protease-Activated Receptor 4 (PAR4) Homodimer Interface to Transmembrane Helix. J. Biol. Chem. 2012, 287, 10414–10423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Nieman, M.T.; Kerlin, B.A. Protease-activated Receptors: An Illustrated Review. Res. Pract. Thromb. Haemost. 2021, 5, 17–26. [Google Scholar] [CrossRef]
- Kahn, M.L.; Zheng, Y.-W.; Huang, W.; Bigornia, V.; Zeng, D.; Moff, S.; Farese, R.V.; Tam, C.; Coughlin, S.R. A Dual Thrombin Receptor System for Platelet Activation. Nature 1998, 394, 690–694. [Google Scholar] [CrossRef]
- Voss, B.; McLaughlin, J.N.; Holinstat, M.; Zent, R.; Hamm, H.E. PAR1, but Not PAR4, Activates Human Platelets through a G i/o /Phosphoinositide-3 Kinase Signaling Axis. Mol. Pharmacol. 2007, 71, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, T.; French, S.; Hamilton, J. Differential Signaling by Protease-Activated Receptors: Implications for Therapeutic Targeting. Int. J. Mol. Sci. 2014, 15, 6169–6183. [Google Scholar] [CrossRef] [Green Version]
- Borbiev, T.; Birukova, A.; Liu, F.; Nurmukhambetova, S.; Gerthoffer, W.T.; Garcia, J.G.N.; Verin, A.D. P38 MAP Kinase-Dependent Regulation of Endothelial Cell Permeability. Am. J. Physiol. Cell. Mol. Physiol. 2004, 287, L911–L918. [Google Scholar] [CrossRef]
- Brass, L.F. Thrombin and Platelet Activation. Chest 2003, 124, 18S–25S. [Google Scholar] [CrossRef] [Green Version]
- Faruqi, T.R.; Weiss, E.J.; Shapiro, M.J.; Huang, W.; Coughlin, S.R. Structure-Function Analysis of Protease-Activated Receptor 4 Tethered Ligand Peptides. J. Biol. Chem. 2000, 275, 19728–19734. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, M.J.; Weiss, E.J.; Faruqi, T.R.; Coughlin, S.R. Protease-Activated Receptors 1 and 4 Are Shut Off with Distinct Kinetics after Activation by Thrombin. J. Biol. Chem. 2000, 275, 25216–25221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderboor, C.M.G.; Thibeault, P.E.; Nixon, K.C.J.; Gros, R.; Kramer, J.; Ramachandran, R. Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and β -Arrestin. Mol. Pharmacol. 2020, 97, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, B.A.T.; Bhan, A.; Beswick, A.; Elwood, P.C.; Niiranen, T.J.; Salomaa, V.; Trégouët, D.-A.; Morange, P.-E.; Civelek, M.; Ben-Shlomo, Y.; et al. A Platelet Function Modulator of Thrombin Activation Is Causally Linked to Cardiovascular Disease and Affects PAR4 Receptor Signaling. Am. J. Hum. Genet. 2020, 107, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-F.; Andersen, H.; Whitmore, T.E.; Presnell, S.R.; Yee, D.P.; Ching, A.; Gilbert, T.; Davie, E.W.; Foster, D.C. Cloning and Characterization of Human Protease-Activated Receptor. Proc. Natl. Acad. Sci. USA 1998, 95, 6642–6646. [Google Scholar] [CrossRef] [Green Version]
- Kolpakov, M.A.; Rafiq, K.; Guo, X.; Hooshdaran, B.; Wang, T.; Vlasenko, L.; Bashkirova, Y.V.; Zhang, X.; Chen, X.; Iftikhar, S.; et al. Protease—Activated Receptor 4 Deficiency Offers Cardioprotection after Acute Ischemia Reperfusion Injury. J. Mol. Cell. Cardiol. 2016, 90, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanemaru, M.; Maehara, N.; Iwamura, T.; Chijiiwa, K. Thrombin Stimulates Integrin Β1-Dependent Adhesion of Human Pancreatic Cancer Cells to Vitronectin through Protease-Activated Receptor (PAR). Hepatogastroenterology 2012, 59, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Kothari, A.; Flick, M.J. Coagulation Signaling through PAR1 as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2021, 22, 5138. [Google Scholar] [CrossRef] [PubMed]
- Schweickert, P.G.; Yang, Y.; White, E.E.; Cresswell, G.M.; Elzey, B.D.; Ratliff, T.L.; Arumugam, P.; Antoniak, S.; Mackman, N.; Flick, M.J.; et al. Thrombin-PAR1 Signaling in Pancreatic Cancer Promotes an Immunosuppressive Microenvironment. J. Thromb. Haemost. 2021, 19, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Stang, A.; Schweickert, P.G.; Lanman, N.A.; Paul, E.N.; Monia, B.P.; Revenko, A.S.; Palumbo, J.S.; Mullins, E.S.; Elzey, B.D.; et al. Thrombin Signaling Promotes Pancreatic Adenocarcinoma through PAR-1–Dependent Immune Evasion. Cancer Res. 2019, 79, 3417–3430. [Google Scholar] [CrossRef]
- Queiroz, K.C.S.; Shi, K.; Duitman, J.; Aberson, H.L.; Wilmink, J.W.; van Noesel, C.J.M.; Richel, D.J.; Spek, C.A. Protease-Activated Receptor-1 Drives Pancreatic Cancer Progression and Chemoresistance. Int. J. Cancer 2014, 135, 2294–2304. [Google Scholar] [CrossRef]
- Uzunoglu, F.G.; Kolbe, J.; Wikman, H.; Güngör, C.; Bohn, B.A.; Nentwich, M.F.; Reeh, M.; König, A.M.; Bockhorn, M.; Kutup, A.; et al. VEGFR-2, CXCR-2 and PAR-1 Germline Polymorphisms as Predictors of Survival in Pancreatic Carcinoma. Ann. Oncol. 2013, 24, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Principe, D.R.; DeCant, B.; Mascariñas, E.; Wayne, E.A.; Diaz, A.M.; Akagi, N.; Hwang, R.; Pasche, B.; Dawson, D.W.; Fang, D.; et al. TGFβ Signaling in the Pancreatic Tumor Microenvironment Promotes Fibrosis and Immune Evasion to Facilitate Tumorigenesis. Cancer Res. 2016, 76, 2525–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Morrone, K.; Bartenstein, M.; Zhao, Z.J.; Verma, A.; Goel, S. Bone Marrow Fibrosis in Primary Myelofibrosis: Pathogenic Mechanisms and the Role of TGF-β. Stem Cell Investig. 2016, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Ungefroren, H.; Gieseler, F.; Kaufmann, R.; Settmacher, U.; Lehnert, H.; Rauch, B. Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int. J. Mol. Sci. 2018, 19, 1568. [Google Scholar] [CrossRef] [Green Version]
- Di Nisio, M.; Middeldorp, S.; Büller, H.R. Direct Thrombin Inhibitors. N. Engl. J. Med. 2005, 353, 1028–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, T.L.; Macwan, A.S.; Ramström, S. Protease-Activated Receptor 4 Is More Important than Protease-Activated Receptor 1 for the Thrombin-Induced Procoagulant Effect on Platelets. J. Thromb. Haemost. 2016, 14, 1639–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borissoff, J.I.; Spronk, H.M.H.; Heeneman, S.; ten Cate, H. Is Thrombin a Key Player in the “coagulation-Atherogenesis” Maze? Cardiovasc. Res. 2009, 82, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radziwon, P.; Boczkowska-Radziwon, B.; Schenk, J.F.; Wojtukiewicz, M.Z.; Kłoczko, J.; Giedrojć, J.; Breddin, H.K. Platelet Activation and Its Role in Thrombin Generation in Platelet-Induced Thrombin Generation Time. Thromb. Res. 2000, 100, 419–426. [Google Scholar] [CrossRef]
- Panova-Noeva, M.; Marchetti, M.; Spronk, H.M.; Russo, L.; Diani, E.; Finazzi, G.; Salmoiraghi, S.; Rambaldi, A.; Barbui, T.; Ten Cate, H.; et al. Platelet-Induced Thrombin Generation by the Calibrated Automated Thrombogram Assay Is Increased in Patients with Essential Thrombocythemia and Polycythemia Vera. Am. J. Hematol. 2011, 86, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M.; Vignoli, A.; Balducci, D.; Russo, L.; Guerini, V.; Barbui, T. V617F JAK-2 Mutation in Patients with Essential Thrombocythemia: Relation to Platelet, Granulocyte, and Plasma Hemostatic and Inflammatory Molecules. Exp. Hematol. 2007, 35, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, S.; Thompson, C.R.; Belghasem, M.E.; Bekendam, R.H.; Piasecki, A.; Leiva, O.; Ray, A.; Italiano, J.; Yang, M.; Merill-Skoloff, G.; et al. Platelet Dysfunction and Thrombosis in JAK2 V617F -Mutated Primary Myelofibrotic Mice. Arterioscler. Thromb. Vasc. Biol. 2020, 40, e262–e272. [Google Scholar] [CrossRef] [PubMed]
- Palova, M.; Slavik, L.; Hlusi, A.; Szotkowski, T.; Ulehlova, J.; Divoka, M.; Navratilova, J.; Papajik, T. Thrombin Generation Testing in Patients with Myelofibrosis. Clin. Lab. 2018, 64. [Google Scholar] [CrossRef]
- Falanga, A.; Marchetti, M. Thrombotic Disease in the Myeloproliferative Neoplasms. Hematol. Am. Soc. Hematol. Educ. Progr. 2012, 2012, 571–581. [Google Scholar] [CrossRef]
- Trappenburg, M.C.; van Schilfgaarde, M.; Marchetti, M.; Spronk, H.M.; Cate, H.T.; Leyte, A.; Terpstra, W.E.; Falanga, A. Elevated Procoagulant Microparticles Expressing Endothelial and Platelet Markers in Essential Thrombocythemia. Haematologica 2009, 94, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.; Castoldi, E.; Spronk, H.M.H.; van Oerle, R.; Balducci, D.; Barbui, T.; Rosing, J.; ten Cate, H.; Falanga, A. Thrombin Generation and Activated Protein C Resistance in Patients with Essential Thrombocythemia and Polycythemia Vera. Blood 2008, 112, 4061–4068. [Google Scholar] [CrossRef] [Green Version]
- Mihaila, R.-G. Thrombin Generation—A Potentially Useful Biomarker of Thrombotic Risk in Philadelphia-Negative Myeloproliferative Neoplasms. Biomed. Pap. 2017, 161, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Carrim, N.; Arthur, J.F.; Hamilton, J.R.; Gardiner, E.E.; Andrews, R.K.; Moran, N.; Berndt, M.C.; Metharom, P. Thrombin-Induced Reactive Oxygen Species Generation in Platelets: A Novel Role for Protease-Activated Receptor 4 and GPIbα. Redox Biol. 2015, 6, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Moisa, C.; Gaman, M.A.; Diaconu, C.C.; Gaman, A.M. Oxidative Stress Levels, JAK2V617F Mutational Status and Thrombotic Complications in Patients with Essential Thrombocythemia. Rev. Chim. 2019, 70, 2822–2825. [Google Scholar] [CrossRef]
- Tripodi, A.; Chantarangkul, V.; Mannucci, P.M. Acquired Coagulation Disorders: Revisited Using Global Coagulation/Anticoagulation Testing. Br. J. Haematol. 2009, 147, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Chantarangkul, V.; Gianniello, F.; Clerici, M.; Lemma, L.; Padovan, L.; Gatti, L.; Mannucci, P.M.; Peyvandi, F. Global Coagulation in Myeloproliferative Neoplasms. Ann. Hematol. 2013, 92, 1633–1639. [Google Scholar] [CrossRef]
- Giaccherini, C.; Verzeroli, C.; Marchetti, M.; Gamba, S.; Piras, F.; Russo, L.; Tessarolo, S.; Vignoli, A.; Finazzi, G.; Rambaldi, A.; et al. PO-26—Whole Blood Rotational Thromboelastometry (ROTEM) to Detect Hypercoagulability in Patients with Myeloproliferative Neoplasms (MPN). Thromb. Res. 2016, 140, S185–S186. [Google Scholar] [CrossRef]
- Lim, H.Y.; Ng, C.; Rigano, J.; Tacey, M.; Donnan, G.; Nandurkar, H.; Ho, P. An Evaluation of Global Coagulation Assays in Myeloproliferative Neoplasm. Blood Coagul. Fibrinolysis 2018, 29, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Duchemin, J.; Ugo, V.; Ianotto, J.-C.; Lecucq, L.; Mercier, B.; Abgrall, J.-F. Increased Circulating Procoagulant Activity and Thrombin Generation in Patients with Myeloproliferative Neoplasms. Thromb. Res. 2010, 126, 238–242. [Google Scholar] [CrossRef]
- Şahin, D.G.; Akay, O.M.; Uskudar, T.H.; Andıc, N.; Gunduz, E. Use of Rotational Thromboelastometry for a Global Screening of Coagulation Profile in Patients of Myeloproliferative Neoplasms. Platelets 2021, 32, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Palandri, F.; Catani, L.; Testoni, N.; Ottaviani, E.; Polverelli, N.; Fiacchini, M.; De Vivo, A.; Salmi, F.; Lucchesi, A.; Baccarani, M.; et al. Long-Term Follow-up of 386 Consecutive Patients with Essential Thrombocythemia: Safety of Cytoreductive Therapy. Am. J. Hematol. 2009, 84, 215–220. [Google Scholar] [CrossRef]
- Hamulyák, E.N.; Daams, J.G.; Leebeek, F.W.G.; Biemond, B.J.; te Boekhorst, P.A.W.; Middeldorp, S.; Lauw, M.N. A Systematic Review of Antithrombotic Treatment of Venous Thromboembolism in Patients with Myeloproliferative Neoplasms. Blood Adv. 2021, 5, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larrán, A.; Besses, C. Antiplatelet Therapy in the Management of Myeloproliferative Neoplasms. Curr. Hematol. Malig. Rep. 2014, 9, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larran, A.; Pereira, A.; Guglielmelli, P.; Hernandez-Boluda, J.C.; Arellano-Rodrigo, E.; Ferrer-Marin, F.; Samah, A.; Griesshammer, M.; Kerguelen, A.; Andreasson, B.; et al. Antiplatelet Therapy versus Observation in Low-Risk Essential Thrombocythemia with a CALR Mutation. Haematologica 2016, 101, 926–931. [Google Scholar] [CrossRef]
- Landolfi, R.; Marchioli, R.; Kutti, J.; Gisslinger, H.; Tognoni, G.; Patrono, C.; Barbui, T. Efficacy and Safety of Low-Dose Aspirin in Polycythemia Vera. N. Engl. J. Med. 2004, 350, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Falanga, A.; Marchetti, M.; Vignoli, A.; Balducci, D.; Barbui, T. Leukocyte-Platelet Interaction in Patients with Essential Thrombocythemia and Polycythemia Vera. Exp. Hematol. 2005, 33, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A. Overcoming “Aspirin Resistance” in MPN. Blood 2012, 119, 3377–3378. [Google Scholar] [CrossRef] [Green Version]
- Pascale, S.; Petrucci, G.; Dragani, A.; Habib, A.; Zaccardi, F.; Pagliaccia, F.; Pocaterra, D.; Ragazzoni, E.; Rolandi, G.; Rocca, B.; et al. Aspirin-Insensitive Thromboxane Biosynthesis in Essential Thrombocythemia Is Explained by Accelerated Renewal of the Drug Target. Blood 2012, 119, 3595–3603. [Google Scholar] [CrossRef] [Green Version]
- Perrier-Cornet, A.; Ianotto, J.-C.; Mingant, F.; Perrot, M.; Lippert, E.; Galinat, H. Decreased Turnover Aspirin Resistance by Bidaily Aspirin Intake and Efficient Cytoreduction in Myeloproliferative Neoplasms. Platelets 2018, 29, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, A.L.; Mihăilă, R.-G.; Mihalache, M. Evaluation of Thrombin Generation in Classical Philadelphianegative Myeloproliferative Neoplasms / Evaluarea Generării Trombinei În Neoplasmele Mieloproliferative Philadelphia- Negative. Rev. Rom. Med. Lab. 2016, 24, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Larrán, A.; Pérez-Encinas, M.; Ferrer-Marín, F.; Hernández-Boluda, J.C.; Ramírez, M.J.; Martínez-López, J.; Magro, E.; Cruz, Y.; Mata, M.I.; Aragües, P.; et al. Risk of Thrombosis According to Need of Phlebotomies in Patients with Polycythemia Vera Treated with Hydroxyurea. Haematologica 2017, 102, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Parra-Izquierdo, I.; Melrose, A.R.; Pang, J.; Lakshmanan, H.H.S.; Reitsma, S.E.; Vavilapalli, S.H.; Larson, M.K.; Shatzel, J.J.; McCarty, O.J.T.; Aslan, J.E. Janus Kinase Inhibitors Ruxolitinib and Baricitinib Impair Glycoprotein-VI Mediated Platelet Function. Platelets 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yokono, Y.; Hanada, K.; Narita, M.; Tatara, Y.; Kawamura, Y.; Miura, N.; Kitayama, K.; Nakata, M.; Nozaka, M.; Kato, T.; et al. Blockade of PAR-1 Signaling Attenuates Cardiac Hypertrophy and Fibrosis in Renin-Overexpressing Hypertensive Mice. J. Am. Heart Assoc. 2020, 9, e015616. [Google Scholar] [CrossRef]
- Fiorucci, S.; Antonelli, E.; Distrutti, E.; Severino, B.; Fiorentina, R.; Baldoni, M.; Caliendo, G.; Santagada, V.; Morelli, A.; Cirino, G. PAR1 Antagonism Protects against Experimental Liver Fibrosis. Role of Proteinase Receptors in Stellate Cell Activation. Hepatology 2004, 39, 365–375. [Google Scholar] [CrossRef]
- Lin, C.; von der Thüsen, J.; Daalhuisen, J.; ten Brink, M.; Crestani, B.; van der Poll, T.; Borensztajn, K.; Spek, C.A. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis. Mol. Med. 2015, 21, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Lok, S.W.Y.; Yiu, W.H.; Li, H.; Xue, R.; Zou, Y.; Li, B.; Chan, K.W.; Chan, L.Y.Y.; Leung, J.C.K.; Lai, K.N.; et al. The PAR-1 Antagonist Vorapaxar Ameliorates Kidney Injury and Tubulointerstitial Fibrosis. Clin. Sci. 2020, 134, 2873–2891. [Google Scholar] [CrossRef] [PubMed]
- Friebel, J.; Weithauser, A.; Witkowski, M.; Rauch, B.H.; Savvatis, K.; Dörner, A.; Tabaraie, T.; Kasner, M.; Moos, V.; Bösel, D.; et al. Protease-Activated Receptor 2 Deficiency Mediates Cardiac Fibrosis and Diastolic Dysfunction. Eur. Heart J. 2019, 40, 3318–3332. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; von der Thüsen, J.; Daalhuisen, J.; ten Brink, M.; Crestani, B.; van der Poll, T.; Borensztajn, K.; Spek, C.A. Protease-Activated Receptor (PAR)-2 Is Required for PAR-1 Signalling in Pulmonary Fibrosis. J. Cell. Mol. Med. 2015, 19, 1346–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wygrecka, M.; Didiasova, M.; Berscheid, S.; Piskulak, K.; Taborski, B.; Zakrzewicz, D.; Kwapiszewska, G.; Preissner, K.; Markart, P. Protease-Activated Receptors (PAR)-1 and -3 Drive Epithelial-Mesenchymal Transition of Alveolar Epithelial Cells–Potential Role in Lung Fibrosis. Thromb. Haemost. 2013, 110, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, R.C.; Laurent, G.J. Coagulation Cascade Proteases and Tissue Fibrosis. Biochem. Soc. Trans. 2002, 30, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Tricoci, P.; Huang, Z.; Held, C.; Moliterno, D.J.; Armstrong, P.W.; Van de Werf, F.; White, H.D.; Aylward, P.E.; Wallentin, L.; Chen, E.; et al. Thrombin-Receptor Antagonist Vorapaxar in Acute Coronary Syndromes. N. Engl. J. Med. 2012, 366, 20–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, D.A.; Braunwald, E.; Bonaca, M.P.; Ameriso, S.F.; Dalby, A.J.; Fish, M.P.; Fox, K.A.A.; Lipka, L.J.; Liu, X.; Nicolau, J.C.; et al. Vorapaxar in the Secondary Prevention of Atherothrombotic Events. N. Engl. J. Med. 2012, 366, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tarlac, V.; Hamilton, J.R. Using PAR4 Inhibition as an Anti-Thrombotic Approach: Why, How, and When? Int. J. Mol. Sci. 2019, 20, 5629. [Google Scholar] [CrossRef] [Green Version]
- Rwibasira Rudinga, G.; Khan, G.; Kong, Y. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy. Int. J. Mol. Sci. 2018, 19, 573. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, S.; Yuan, D.; Wang, E.; Xie, R.; Zhang, W.; Kong, Y.; Zhu, X. Protease Activated Receptor 4 (PAR4) Antagonists: Research Progress on Small Molecules in the Field of Antiplatelet Agents. Eur. J. Med. Chem. 2021, 209, 112893. [Google Scholar] [CrossRef]
- Moschonas, I.C.; Kellici, T.F.; Mavromoustakos, T.; Stathopoulos, P.; Tsikaris, V.; Magafa, V.; Tzakos, A.G.; Tselepis, A.D. Molecular Requirements Involving the Human Platelet Protease-Activated Receptor-4 Mechanism of Activation by Peptide Analogues of Its Tethered-Ligand. Platelets 2017, 28, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Noorbakhsh, F.; DeFea, K.; Hollenberg, M.D. Targeting Proteinase-Activated Receptors: Therapeutic Potential and Challenges. Nat. Rev. Drug Discov. 2012, 11, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Oi, K.; Shimizu, M.; Natori, T.; Tsuda, K.; Yoshida, M.; Kamada, A.; Ishigaku, Y.; Narumi, S.; Oura, K.; Maeda, T.; et al. Influence of PAR-1 in Patients with Non-Valvular Atrial Fibrillation: The Antiplatelet Effect of Dabigatran. Thromb. Res. 2021, 201, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Soto, A.G.; Coronel, L.J.; Goss, A.; van Ryn, J.; Trejo, J. Characterization of Thrombin-Bound Dabigatran Effects on Protease-Activated Receptor-1 Expression and Signaling In Vitro. Mol. Pharmacol. 2015, 88, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Barbui, T.; De Stefano, V.; Carobbio, A.; Iurlo, A.; Alvarez-Larran, A.; Cuevas, B.; Ferrer Marín, F.; Vannucchi, A.M.; Palandri, F.; Harrison, C.; et al. Direct Oral Anticoagulants for Myeloproliferative Neoplasms: Results from an International Study on 442 Patients. Leukemia 2021, 35, 2989–2993. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Damhofer, H.; Daalhuisen, J.; ten Brink, M.; Richel, D.J.; Spek, C.A. Dabigatran Potentiates Gemcitabine-Induced Growth Inhibition of Pancreatic Cancer in Mice. Mol. Med. 2017, 23, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultcrantz, M.; Björkholm, M.; Dickman, P.W.; Landgren, O.; Derolf, Å.R.; Kristinsson, S.Y.; Andersson, T.M.L. Risk for Arterial and Venous Thrombosis in Patients with Myeloproliferative Neoplasms. Ann. Intern. Med. 2018, 168, 317. [Google Scholar] [CrossRef]
- Găman, M.-A.; Cozma, M.-A.; Dobrică, E.-C.; Crețoiu, S.M.; Găman, A.M.; Diaconu, C.C. Liquid Biopsy and Potential Liquid Biopsy-Based Biomarkers in Philadelphia-Negative Classical Myeloproliferative Neoplasms: A Systematic Review. Life 2021, 11, 677. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, A.; Napolitano, R.; Bochicchio, M.T.; Giordano, G.; Napolitano, M. Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The “Circulating Wound” Model. Int. J. Mol. Sci. 2021, 22, 11343. https://doi.org/10.3390/ijms222111343
Lucchesi A, Napolitano R, Bochicchio MT, Giordano G, Napolitano M. Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The “Circulating Wound” Model. International Journal of Molecular Sciences. 2021; 22(21):11343. https://doi.org/10.3390/ijms222111343
Chicago/Turabian StyleLucchesi, Alessandro, Roberta Napolitano, Maria Teresa Bochicchio, Giulio Giordano, and Mariasanta Napolitano. 2021. "Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The “Circulating Wound” Model" International Journal of Molecular Sciences 22, no. 21: 11343. https://doi.org/10.3390/ijms222111343
APA StyleLucchesi, A., Napolitano, R., Bochicchio, M. T., Giordano, G., & Napolitano, M. (2021). Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The “Circulating Wound” Model. International Journal of Molecular Sciences, 22(21), 11343. https://doi.org/10.3390/ijms222111343