Proteome Analysis of Whole-Body Responses in Medaka Experimentally Exposed to Fish-Killing Dinoflagellate Karenia mikimotoi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Progression of Symptoms and Mortality in Medaka upon Exposure to K. mikimotoi
2.2. Two-Dimensional Electrophoresis Analysis of Total Proteins in Medaka
2.2.1. Early Stage of Intoxication
2.2.2. Intermediate and Late Stages of Intoxication
2.3. Implications of Changes in Expression Levels of Individual Proteins in Intoxication Mechanisms
Spot | pI 1 | MW (kDa) 1 | Protein Name | Accession No. | MASCOT Score 2 | Sequence Coverage (%) | Fold Change 3 | ||
---|---|---|---|---|---|---|---|---|---|
LT25 | LT50 | LT90 | |||||||
A1 | 9.06 | 26 | kininogen-1 | gi|327358359 | 95 | 36 | +3.8 | −1.1 | / |
A2 | 9.06 | 26 | kininogen-1 | gi|327358359 | 69 | 36 | +5.1 | +1.3 | +1.3 |
A3 | 9.06 | 26 | kininogen-1 | gi|327358359 | 114 | 36 | +5.7 | +1.4 | +1.3 |
A4 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 101 | 41 | −2.2 | −8.4 | −4.6 |
A5 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 129 | 46 | −3.1 | −1.3 | −1.2 |
A6 | 5.15 | 58 | keratin, type II cytoskeletal 8 | gi|432864501 | 109 | 33 | −3.5 | +1.1 | / |
A7 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 85 | 39 | −3.7 | / | −1.1 |
A8 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 110 | 40 | −8.6 | −2.2 | −1.5 |
A9 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 115 | 37 | −9.8 | −2.6 | −1.4 |
A10 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 79 | 33 | −10.4 | −1.4 | −1.2 |
A11 | 6.17 | 47 | beta-enolase | gi|432957740 | 129 | 52 | −2.8 | / | / |
A12 | 6.17 | 47 | beta-enolase | gi|432957740 | 160 | 58 | −3.5 | / | / |
A13 | 6.17 | 47 | beta-enolase | gi|432957740 | 119 | 46 | −3.2 | / | / |
A14 | 6.32 | 42 | creatine kinase M-type | gi|765137894 | 92 | 31 | −5.2 | / | −1.6 |
A15 | 6.32 | 42 | creatine kinase M-type | gi|765137894 | 97 | 31 | −9.6 | / | −1.6 |
A16 | 6.32 | 42 | creatine kinase M-type | gi|765137894 | 99 | 29 | −6.3 | / | −1.1 |
A17 | 6.32 | 42 | creatine kinase M-type | gi|765137894 | 88 | 35 | −3.1 | +1.1 | / |
A18 | 5.23 | 42 | muscle actin OlMA1 | gi|1552222 | 141 | 41 | +3.6 | +3.6 | +1.3 |
A19 | 4.66 | 27 | 14-3-3 protein beta/alpha-1 | gi|432959056 | 73 | 39 | −3.0 | −3.0 | −1.5 |
A20 | 4.64 | 20 | myosin light chain 1, skeletal muscle isoform | gi|432932023 | 71 | 50 | −2.0 | +1.1 | / |
A21 | 5.66 | 30 | apolipoprotein A-I | gi|327358583 | 117 | 52 | −9.2 | −9.2 | −1.1 |
A22 | 5.66 | 30 | apolipoprotein A-I | gi|327358583 | 85 | 42 | +2.2 | +2.2 | −1.6 |
A23 | 5.97 | 23 | beta-crystallin A1-1 | gi|432890713 | 83 | 47 | −2.1 | +1.2 | +1.1 |
A24 | 6.30 | 22 | peroxiredoxin 1 | gi|327358437 | 114 | 63 | +3.6 | +3.6 | −1.3 |
A25 | 6.59 | 27 | beta-crystallin B1 | gi|432884641 | 92 | 52 | −3.8 | −1.4 | −1.2 |
A26 | 6.09 | 23 | beta-crystallin A2 | gi|432964694 | 99 | 55 | −3.5 | / | −1.3 |
A27 | 7.66 | 21 | adenylate kinase isoenzyme 1 | gi|432885856 | 124 | 67 | −2.1 | +1.3 | +1.1 |
A28 | 6.59 | 27 | beta-crystallin B1 | gi|432884641 | 134 | 64 | −2.0 | +1.1 | / |
A29 | 6.90 | 26 | triosephosphate isomerase | gi|432908784 | 79 | 39 | −2.1 | +1.5 | +1.4 |
Spot 1 | pI | MW (kDa) | Protein Name | Accession No. | MASCOT Score 2 | Sequence Coverage (%) | Fold Change 3 | |
---|---|---|---|---|---|---|---|---|
LT50 | LT90 | |||||||
B1 | 6.15 | 30 | beta-crystallin B3 | gi|765130975 | 131 | 50 | +2.0 | +3.8 |
B2 | 5.76 | 26 | glutathione S-transferase Mu 3 | gi|432864846 | 84 | 48 | +2.5 | −2.0 |
C1 | 6.09 | 23 | beta-crystallin A2 | gi|432964694 | 140 | 70 | / | −4.8 |
C2 | 6.38 | 24 | beta-crystallin B2 | gi|432874963 | 59 | 36 | / | +3.7 |
C3 | 6.16 | 22 | gamma-crystallin N | gi|432926542 | 141 | 61 | / | +3.5 |
C4 | 6.10 | 25 | beta-crystallin A1 | gi|432878260 | 125 | 65 | / | +9.8 |
Biological Function | Molecular Function | Protein Name 1 | Spot(s) |
---|---|---|---|
blood coagulation | inhibition of thiol protease | kininogen-1 [↑] | A1, A2, A3 |
muscle contraction | structural protein | muscle actin OlMA1 [↓] | A4, A5, A7, A8, A9, A10, A18 |
motor protein | myosin light chain 1, skeletal muscle isoform [↓] | A20 | |
sarcomere organization | structural protein | keratin, type II cytoskeletal 8 [↓] | A6 |
energy metabolism | catalytic activity | beta-enolase [↓] | A11, A12, A13 |
creatine kinase M-type [↓] | A14, A15, A16, A17 | ||
adenylate kinase isoenzyme 1 [↓] | A27 | ||
triosephosphate isomerase [↓] | A29 | ||
signal transduction | protein binding | 14-3-3 protein beta/alpha-1 [↓] | A19 |
lipid metabolism | lipid binding | apolipoprotein A-I [↓] | A21, A22 |
eye lens formation | structural protein | beta-crystallin A1-1 [↓] | A23 |
beta-crystallin B1 [↓] | A25, A28 | ||
beta-crystallin B3 [↑] | B1 | ||
beta-crystallin A2 [↓] | A26, C1 | ||
beta-crystallin B2 [↑] | C2 | ||
gamma-crystallin N [↑] | C3 | ||
beta-crystallin A1 [↑] | C4 | ||
protection against oxidative stress | catalytic activity | peroxiredoxin 1 [↑] | A24 |
detoxification | glutathione S-transferase Mu 3 [↑] | B2 |
2.3.1. Acute Tissue Injury Mediated by Oxidase Stress
2.3.2. Muscle and Eyes as Targets for Tissue Damage
3. Materials and Methods
3.1. Sources of Materials
3.2. Maintenance of Algal Culture and Medaka Fish
3.3. Acute Ichthyotoxicity Test
3.4. Collection of Fish at Different Stages of Intoxication
3.5. Proteomic Analysis
3.5.1. Protein Extraction
3.5.2. Two-Dimensional Gel Electrophoresis and Image Analysis
3.5.3. In-Gel Digestion and Protein Identification Using Mass Spectrometry
3.6. Statistical Analysis and Visualization of Proteomic Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 2003, 30, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Deng, W.J.; Qin, X.; Xu, X. Occurrence of four species of algae in the marine water of Hong Kong. Mar. Pollut. Bull. 2017, 124, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Bruno, D.W.; Dear, G.; Seaton, D.D. Mortality associated with phytoplankton blooms among farmed Atlantic salmon, Salmo salar L. in Scotland. Aquaculture 1989, 78, 217–222. [Google Scholar] [CrossRef]
- Vogelbein, W.K.; Lovko, V.J.; Shields, J.D.; Reece, K.S.; Mason, P.L.; Haas, L.W.; Walker, C.C. Pfiesteria shumwayae kills fish by micropredation not exotoxin secretion. Nature 2002, 418, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Heil, C.A.; Steidinger, K.A. Monitoring, management, and mitigation of Karenia blooms in the eastern Gulf of Mexico. Harmful Algae 2009, 8, 611–617. [Google Scholar] [CrossRef]
- Braarud, T.; Heimdal, B.R. Brown water on the Norwegian coast in autumn 1966. Nytt. Mag. Bot. 1970, 91–97. [Google Scholar]
- Brand, L.E.; Campbell, L.; Bresnan, E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 2012, 14, 156–178. [Google Scholar] [CrossRef]
- Davidson, K.; Miller, P.; Wilding, T.; Shutler, J.; Bresnan, E.; Kennington, K.; Swan, S. A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 2009, 8, 349–361. [Google Scholar] [CrossRef]
- Gentien, P.; Lunven, M.; Lazure, P.; Youenou, A.; Crassous, M.P. Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1937–1946. [Google Scholar] [CrossRef] [Green Version]
- Haywood, A.J.; Steidinger, K.A.; Truby, E.W.; Bergquist, P.R.; Bergquist, P.L.; Adamson, J.; Mackenzie, L. Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J. Phycol. 2004, 40, 165–179. [Google Scholar] [CrossRef]
- Vandersea, M.; Tester, P.; Holderied, K.; Hondolero, D.; Kibler, S.; Powell, K.; Baird, S.; Doroff, A.; Dugan, D.; Meredith, A.; et al. An extraordinary Karenia mikimotoi “beer tide” in Kachemak Bay Alaska. Harmful Algae 2020, 92, 101706. [Google Scholar] [CrossRef]
- Lee, C.; Lim, W. Variation of harmful algal blooms in Masan-Chinhae Bay. Sci. Asia 2006, 32, 51–56. [Google Scholar] [CrossRef]
- Kakumu, A.; Koya, M.; Shimada, H.; Yamaguchi, A.; Imai, I. First detection of the noxious red tide dinoflagellate Karenia mikimotoi and bloom dynamics in 2015 and 2016 in Hakodate Bay, Hokkaido, northern Japan. Bull. Plankton Soc. Jpn. 2018, 65, 1–11. [Google Scholar]
- Jordan, C.; Cusack, C.; Tomlinson, M.; Meredith, A.; McGeady, R.; Salas, R.; Gregory, C.; Croot, P. Using The red band difference algorithm to detect and monitor a Karenia spp. bloom off the south coast of Ireland, June 2019. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Roberts, S.; Stobart, B.; Doubell, M.; van Ruth, P. Fish Kill Investigation: Coffin Bay Harmful Algal Bloom February 2014; Aquatic Animal Health Unit, PIRSA Fisheries and Aquaculture Division: Adelaide, Australia, 2014.
- Chen, Y.; Yan, T.; Yu, R.; Zhou, M. Toxic effects of Karenia mikimotoi extracts on mammalian cells. Chin. J. Oceanol. Limnol. 2011, 29, 860–868. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, R.; Song, J.; Yan, T.; Wang, Y.; Zhou, M. Will harmful dinoflagellate Karenia mikimotoi grow phagotrophically? Chin. J. Oceanol. Limnol. 2011, 29, 849–859. [Google Scholar] [CrossRef]
- Li, X.; Yan, T.; Lin, J.; Yu, R.; Zhou, M. Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae 2017, 61, 1–12. [Google Scholar] [CrossRef]
- Ou, L.; Zhang, Y.Y.; Li, Y.; Wang, H.J.; Xie, X.D.; Rong, Z.M.; Lü, S.H.; Qi, Y. The outbreak of Cochlodinium geminatum bloom in Zhuhai, Guangdong. J. Trop. Oceanogr. 2010, 29, 57–61. [Google Scholar]
- Satake, M.; Tanaka, Y.; Ishikura, Y.; Oshima, Y.; Naoki, H.; Yasumoto, T. Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimotoi. Tetrahedron Lett. 2005, 46, 3537–3540. [Google Scholar] [CrossRef]
- Seki, T.; Satake, M.; Mackenzie, L.; Kaspar, H.F.; Yasumoto, T. Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 1995, 36, 7093–7096. [Google Scholar] [CrossRef]
- López, J.L. Two-dimensional electrophoresis in proteome expression analysis. J. Chromatogr. B 2007, 849, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Rabilloud, T.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: A tutorial. J. Proteom. 2011, 74, 1829–1841. [Google Scholar] [CrossRef] [PubMed]
- Monteoliva, L.; Albar, J. Differential proteomics: An overview of gel and non-gel based approaches. Brief. Funct. Genom. Proteom. 2004, 3, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Gygi, S.P.; Corthals, G.L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 2000, 97, 9390–9395. [Google Scholar] [CrossRef] [Green Version]
- Lilley, K.S.; Razzaq, A.; Dupree, P. Two-dimensional gel electrophoresis: Recent advances in sample preparation, detection and quantitation. Curr. Opin. Chem. Biol. 2002, 6, 46–50. [Google Scholar] [CrossRef]
- Horie, Y.; Takahashi, C. Influence of salinity on physiological development and zinc toxicity in the marine medaka Oryzias melastigma. Ecotoxicology 2021, 30, 1138–1149. [Google Scholar] [CrossRef]
- Mezhoud, K.; Bauchet, A.L.; Château-Joubert, S.; Praseuth, D.; Marie, A.; François, J.C.; Fontaine, J.J.; Jaeg, J.P.; Cravedi, J.P.; Puiseux-Dao, S.; et al. Proteomic and phosphoproteomic analysis of cellular responses in medaka fish (Oryzias latipes) following oral gavage with microcystin-LR. Toxicon 2008, 51, 1431–1439. [Google Scholar] [CrossRef]
- Inoue, K.; Takei, Y. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp. Biochem. Physiol. B 2003, 136, 635–645. [Google Scholar] [CrossRef]
- Kinoshita, M.; Murata, K.; Naruse, K.; Tanaka, M. Medaka: Biology, Management, and Experimental Protocols, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 297–317. [Google Scholar]
- Nassef, M.; Matsumoto, S.; Seki, M.; Khalil, F.; Kang, I.J.; Shimasaki, Y.; Oshima, Y.; Honjo, T. Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 2010, 80, 1095–1100. [Google Scholar] [CrossRef]
- Henzel, W.J.; Watanabe, C.; Stults, J.T. Protein identification: The origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 2003, 14, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.W.; Ho, K.C.; Lo, S.C. Rapid identification of dinoflagellates using protein profiling with matrix-assisted laser desorption/ionization mass spectrometry. Harmful Algae 2008, 7, 551–559. [Google Scholar] [CrossRef]
- Badia-Villanueva, M.; Carulla, P.; Carrascal, M.; Abián, J.; Llobera, M.; Casanovas, A.; Dolores López-Tejero, M. Lipoprotein lipase isoelectric point isoforms in humans. Biochem. Biophys. Res. Commun. 2014, 445, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Zhao, J.; Lubman, D.M.; Miller, F.R.; Barder, T.J. Protein pI shifts due to posttranslational modifications in the separation and characterization of proteins. Anal. Chem. 2005, 77, 2745–2755. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, S.; Ohkubo, I.; Ishiguro, H.; Kunimatsu, M.; Sawaki, K.; Sasaki, M. Human high molecular weight kininogen as a thiol proteinase inhibitor: Presence of the entire inhibition capacity in the native form of heavy chain. Biochemistry 1986, 25, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology 2000, 7, 153–163. [Google Scholar] [CrossRef]
- Du, J.; Feng, W.; Sun, J.; Kang, C.; Amizuka, N.; Li, M. Ovariectomy upregulated the expression of Peroxiredoxin 1 & 5 in osteoblasts of mice. Sci. Rep. 2016, 6, 35995. [Google Scholar]
- Ishii, T.; Yanagawa, T. Stress-induced peroxiredoxins. Subcell. Biochem. 2007, 44, 375–384. [Google Scholar]
- Kumar, S.; Trivedi, P.K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 2018, 9, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiers, B.; Kampkötter, A.; Grevelding, C.G.; Link, C.D.; Johnson, T.E.; Henkle-Dührsen, K. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic. Biol. Med. 2003, 34, 1405–1415. [Google Scholar] [CrossRef]
- Lin, J.H.; Tu, S.H.; Chen, L.C.; Huang, C.C.; Chang, H.L.; Cheng, T.C.; Chang, H.W.; Wu, C.H.; Wu, H.C.; Ho, Y.S. Oestrogen receptor-regulated glutathione S-transferase mu 3 expression attenuates hydrogen peroxide-induced cytotoxicity, which confers tamoxifen resistance on breast cancer cells. Breast Cancer Res. Treat. 2018, 172, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, J.Z.; Singhal, S.S.; Saini, M.; Pandya, U.; Awasthi, S.; Awasthi, Y.C. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J. Biol. Chem. 2001, 276, 19220–19230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Ivanov, V.N.; Habelhah, H.; Tew, K.; Ronai, Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 2000, 60, 4053–4057. [Google Scholar] [PubMed]
- Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal. 2004, 6, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Hoenemann, C.; Ambold, J.; Hohe, A. Gene expression of a putative glutathione S-transferase is responsive to abiotic stress in embryogenic cell cultures of Cyclamen persicum. Electron. J. Biotechnol. 2012, 15, 6. [Google Scholar]
- Pennington, K.L.; Chan, T.Y.; Torres, M.P.; Andersen, J.L. The dynamic and stress-adaptive signaling hub of 14-3-3: Emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene 2018, 37, 5587–5604. [Google Scholar] [CrossRef] [Green Version]
- Xing, H.; Zhang, S.; Weinheimer, C.; Kovacs, A.; Muslin, A.J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J. 2000, 19, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Nagata, A. Oxidative susceptibility of apolipoprotein AI in serum. Clin. Chim. Acta. 2005, 362, 119–124. [Google Scholar] [CrossRef]
- Roberts, R.; Bullock, A.; Turners, M.; Jones, K.; Tett, P. Mortalities of Salmo gairdneri exposed to cultures of Gyrodinium aureolum. J. Mar. Biol. Assoc. UK 1983, 63, 741–743. [Google Scholar] [CrossRef]
- Mitchell, S.; Rodger, H. Pathology of wild and cultured fish affected by a Karenia mikimotoi bloom in Ireland. Bull. Eur. Assoc. Fish Pathol. 2007, 27, 39. [Google Scholar]
- Niu, X.; Xu, S.; Yang, Q.; Xu, X.; Zheng, M.; Li, X.; Guan, W. Toxic effects of the dinoflagellate Karenia mikimotoi on zebrafish (Danio rerio) larval behavior. Harmful Algae 2021, 103, 101996. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, R.; Kusakabe, T.; Suzuki, N. In vivo analysis of two striated muscle actin promoters reveals combinations of multiple regulatory modules required for skeletal and cardiac muscle-specific gene expression. Int. J. Dev. Biol. 1999, 43, 541–554. [Google Scholar] [PubMed]
- Henderson, C.A.; Gomez, C.G.; Novak, S.M.; Mi-Mi, L.; Gregorio, C.C. Overview of the muscle cytoskeleton. Compr. Physiol. 2017, 7, 891–944. [Google Scholar]
- Ursitti, J.A.; Lee, P.C.; Resneck, W.G.; McNally, M.M.; Bowman, A.L.; O’Neill, A.; Stone, M.R.; Bloch, R.J. Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J. Biol. Chem. 2004, 279, 41830–41838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welte, E. Keratins in skeletal muscle: Effects of altering expression of type I/type II keratin pairs. Master’s Thesis, University of Maryland, Baltimore, MD, USA, 2014. [Google Scholar]
- Sandri, M. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 2013, 45, 2121–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Kang, M.; Wu, X.; Ye, T. Development of a promising fish model (Oryzias melastigma) for assessing multiple responses to stresses in the marine environment. Biomed. Res. Int. 2014, 2014, 563131. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, Y.; Wang, J.; Lin, L.; Hong, H.; Wang, D. Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury. Aquat. Toxicol. 2011, 103, 129–139. [Google Scholar] [CrossRef]
- Glaser, V.; Leipnitz, G.; Straliotto, M.R.; Oliveira, J.; dos Santos, V.V.; Wannmacher, C.M.; de Bem, A.F.; Rocha, J.B.; Farina, M.; Latini, A. Oxidative stress-mediated inhibition of brain creatine kinase activity by methylmercury. Neurotoxicology 2010, 31, 454–460. [Google Scholar] [CrossRef]
- Venkataraman, P.; Krishnamoorthy, G.; Selvakumar, K.; Arunakaran, J. Oxidative stress alters creatine kinase system in serum and brain regions of polychlorinated biphenyl (Aroclor 1254)-exposed rats: Protective role of melatonin. Basic Clin. Pharmacol. Toxicol. 2009, 105, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Weadick, C.J.; Chang, B.S. Molecular evolution of the betagamma lens crystallin superfamily: Evidence for a retained ancestral function in gamma N crystallins? Mol. Biol. Evol. 2009, 26, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Greiling, T.M.S.; Clark, J.I. Chapter one—New insights into the mechanism of lens development using zebra fish. In International Review of Cell and Molecular Biology; Jeon, K.W., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 296, pp. 1–61. [Google Scholar]
- Iwasaki, N.; David, L.L.; Shearer, T.R. Crystallin degradation and insolubilization in regions of young rat lens with calcium ionophore cataract. Investig. Ophthalmol. Vis. Sci. 1995, 36, 502–509. [Google Scholar]
- Giurgola, L.; Gatto, C.; D’Amato Tothova, J. Extraction of crystalline proteins from porcine eye lens and evaluation of their stability and relation with oxidative stress. Investig. Ophthalmol. Visl. Sci. 2020, 61, 5008. [Google Scholar]
- Wang, K.; Spector, A. Alpha-crystallin can act as a chaperone under conditions of oxidative stress. Investig. Ophthalmol. Vis. Sci. 1995, 36, 311–321. [Google Scholar]
- Zhou, J.; Wu, J.; Zheng, S.; Chen, X.; Zhou, D.; Shentu, X. Integrated transcriptomic and proteomic analysis reveals up-regulation of apoptosis and small heat shock proteins in lens of rats under low temperature. Front. Physiol. 2021, 12, 683056. [Google Scholar] [CrossRef]
- Dyrlund, T.F.; Poulsen, E.T.; Scavenius, C.; Nikolajsen, C.L.; Thøgersen, I.B.; Vorum, H.; Enghild, J.J. Human cornea proteome: Identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J. Proteome Res. 2012, 11, 4231–4239. [Google Scholar] [CrossRef]
- Sun, T.T.; Vidrich, A. Keratin filaments of corneal epithelial cells. Vision Res. 1981, 21, 55–63. [Google Scholar] [CrossRef]
- García, D.M.; Bauer, H.; Dietz, T.; Schubert, T.; Markl, J.; Schaffeld, M. Identification of keratins and analysis of their expression in carp and goldfish: Comparison with the zebrafish and trout keratin catalog. Cell Tissue Res. 2005, 322, 245–256. [Google Scholar] [CrossRef]
- Kwok, C.; Wai, W.; Chan, K.; Xu, S.; Lee, F.; Ho, K. Karenia mikimotoi, a rare species in Hong Kong waters, associated with a recent massive fish kill. Harmful Algal News 2016, 53, 4. [Google Scholar]
- Bentivegna, C.S.; Piatkowski, T. Effects of tributyltin on medaka (Oryzias latipes) embryos at different stages of development. Aquat. Toxicol. 1998, 44, 117–128. [Google Scholar] [CrossRef]
- Ishibashi, H.; Matsumura, N.; Hirano, M.; Matsuoka, M.; Shiratsuchi, H.; Ishibashi, Y.; Takao, Y.; Arizono, K. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 2004, 67, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Iwamatsu, T. Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 2004, 121, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Xu, J.; Chan, A.K.Y.; Au, D.W.T. Susceptibility of fish to Chattonella marina is determined by its tolerance to hypoxia. Mar. Pollut. Bull. 2011, 63, 189–194. [Google Scholar] [CrossRef]
- OECD. Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 1992. [Google Scholar]
- Hong Kong Red Tide Database, Agriculture, Fisheries and Conservation Department, the Government of the HKSAR. Available online: https://redtide.afcd.gov.hk/urtin (accessed on 22 January 2019).
- Kwok, C.S.; Lai, K.K.; Lam, S.W.; Chan, K.K.; Xu, S.J.; Lee, F.W. Production of high-quality two-dimensional gel electrophoresis profile for marine medaka samples by using Trizol-based protein extraction approaches. Proteome Sci. 2020, 18, 5. [Google Scholar] [CrossRef]
- Lee, F.W.; Lo, S.C. The use of Trizol reagent (phenol/guanidine isothiocyanate) for producing high quality two-dimensional gel electrophoretograms (2-DE) of dinoflagellates. J. Microbiol. Methods 2008, 73, 26–32. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lohnes, K.; Quebbemann, N.; Liu, K.; Kobzeff, F.; Loo, J.; Loo, R. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics. Methods 2016, 104, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Nolte, H.; MacVicar, T.; Tellkamp, F.; Krüger, M. Instant Clue: A software suite for interactive data visualization and analysis. Sci. Rep. 2018, 8, 12648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.; Morris, J.; Bork, P.; et al. STRING V11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Cheng, J.; Chen, X.; Cheng, S.H.; Mak, Y.L.; Lam, P.K.; Chan, L.L.; Wang, M. Early developmental toxicity of saxitoxin on medaka (Oryzias melastigma) embryos. Toxicon 2014, 77, 16–25. [Google Scholar] [CrossRef]
- Hong, Y.; Winkler, C.; Schartl, M. Production of medakafish chimeras from a stable embryonic stem cell line. Proc. Natl. Acad. Sci. USA 1998, 95, 3679. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.E.; Dayeh, V.R.; Schirmer, K.; Bols, N.C. Applications and potential uses of fish gill cell lines: Examples with RTgill-W1. Vitr. Cell. Dev. Biol. Anim. 2009, 45, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, Q.; Guo, H.; Zhang, S. Evaluation of cytotoxicity, genotoxicity and teratogenicity of marine sediments from Qingdao coastal areas using in vitro fish cell assay, comet assay and zebrafish embryo test. Toxicol. Vitr. 2010, 24, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwok, C.S.-N.; Lai, K.K.-Y.; Lam, W.; Xu, S.J.-L.; Lam, S.-W.; Lee, F.W.-F. Proteome Analysis of Whole-Body Responses in Medaka Experimentally Exposed to Fish-Killing Dinoflagellate Karenia mikimotoi. Int. J. Mol. Sci. 2021, 22, 11625. https://doi.org/10.3390/ijms222111625
Kwok CS-N, Lai KK-Y, Lam W, Xu SJ-L, Lam S-W, Lee FW-F. Proteome Analysis of Whole-Body Responses in Medaka Experimentally Exposed to Fish-Killing Dinoflagellate Karenia mikimotoi. International Journal of Molecular Sciences. 2021; 22(21):11625. https://doi.org/10.3390/ijms222111625
Chicago/Turabian StyleKwok, Celia Sze-Nga, Kaze King-Yip Lai, Winnie Lam, Steven Jing-Liang Xu, Sai-Wo Lam, and Fred Wang-Fat Lee. 2021. "Proteome Analysis of Whole-Body Responses in Medaka Experimentally Exposed to Fish-Killing Dinoflagellate Karenia mikimotoi" International Journal of Molecular Sciences 22, no. 21: 11625. https://doi.org/10.3390/ijms222111625
APA StyleKwok, C. S. -N., Lai, K. K. -Y., Lam, W., Xu, S. J. -L., Lam, S. -W., & Lee, F. W. -F. (2021). Proteome Analysis of Whole-Body Responses in Medaka Experimentally Exposed to Fish-Killing Dinoflagellate Karenia mikimotoi. International Journal of Molecular Sciences, 22(21), 11625. https://doi.org/10.3390/ijms222111625