Next Article in Journal
The Role of BMP Signaling in Female Reproductive System Development and Function
Previous Article in Journal
RETRACTED: Jiang et al. Formation of Proto-Kranz in C3 Rice Induced by Spike-Stalk Injection Method. Int. J. Mol. Sci. 2021, 22, 4305
Previous Article in Special Issue
Properties of Non-Aminoglycoside Compounds Used to Stimulate Translational Readthrough of PTC Mutations in Primary Ciliary Dyskinesia
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Molecular Approaches Fighting Nonsense

Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, V.le delle Scienze Ed. 17, 90128 Palermo, Italy
Int. J. Mol. Sci. 2021, 22(21), 11933; https://doi.org/10.3390/ijms222111933
Submission received: 18 October 2021 / Revised: 25 October 2021 / Accepted: 29 October 2021 / Published: 3 November 2021
(This article belongs to the Special Issue Molecular Approaches Fighting Nonsense)
Nonsense mutations are the result of single nucleotide substitutions in the DNA that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of the mRNA. The severity of nonsense is due to the interruption of protein translation by the production of truncated polypeptides not expressing their function. PTC-containing mRNA can be reduced by a surveillance pathway called nonsense-mediated mRNA decay (NMD). The lack of a functional protein due to a nonsense mutation can result in a number of different genetic disorders, e.g., cystic fibrosis, Duchenne muscular dystrophy, retinitis pigmentosa, congenital blindness, dystonia, spinal muscular atrophy, neurofibromatosis, lysosomal storage disease, Usher’s syndrome, hemophilia, Tay–Sachs disease, Schwackman Diamond syndrome, and several forms of cancer.
Recent research is facing the challenge of targeting the genetic defect itself within the framework of a personalized medicine approach. Most clinical trials have been performed with small molecules that have been developed to target the translation phase and to promote the bypass of PTC, allowing the synthesis of a full-length functional protein, a strategy known as PTC “readthrough” by translational readthrough promoters (TRIDs). In this context, while aminoglicosyde antibiotics are considered outdated for use as readthrough promoters due to their chronic toxicity at higher dosages, Ataluren, a small heterocyclic drug, has been approved as a TRID for Duchenne muscular dystrophy under the trade name Translarna, and ELX02 is a new molecule that is currently in clinical trials for cystic fibrosis caused by nonsense mutations. On the other hand, the correction of the genetic defects at the DNA level has been attempted through modern genome editing strategies such as CRISPR/Cas9.
In this Special Issue, which aims to collect interesting research on this hot topic, both conventional strategies as well as new technologies are discussed [1]. Through the interpretation of experimental and mechanistic findings that were mainly obtained in lysosomal and coagulation disorders, a scenario with potential readthrough-favorable features is proposed to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy [2]. The efficacy of combining readthrough agents and NMD inhibitors has been explored as a potential therapeutic option for treating nonsense mutations [3]. New translational readthrough-inducing drugs (TRIDs) showing high readthrough activity and low toxicity have been explored for the rescue of functional ion channel CFTR, the absence of which is responsible for cystic fibrosis [4]. In the same context, RNA editing approaches such as the CRISPR/dCas13b-based molecular tool “REPAIRv2” could be a good alternative to restore the full-length CFTR protein [5]. Inherited retinal diseases (IRDs) are due to nonsense mutations in approximately 12% of all cases. The role of different mutations on ocular channelopathies, the disease mechanism, and the potential pharmacological and therapeutic approaches have been reviewed [6]. In particular, a promising pharmacological approach with TRIDs such ataluren is discussed [7]. Additionally, for primary ciliary dyskinesia (PCD) caused by nonsense mutations, non-aminoglycosides readthrough therapies are an attractive option. A group of chemical compounds with known PTC-readthrough potential (ataluren, azithromycin, tylosin, amlexanox, and the experimental compound TC007) have been investigated, and the tested compounds stimulated PTC-readthrough with lower efficiency than aminoglycosides but had a minimal negative impact on cell viability and function [8]. Importantly, the treatment of inherited bone marrow failure syndromes (IBMFS) due to nonsense mutations in the respective IBMFS-related gene caused by the new generation of nonsense suppressor molecules and their mechanistic roles have been reviewed, with strengths and limitations emerging from preclinical and clinical studies [9].
Although molecular approaches fighting nonsense can be considered as a personalized medicine approach and may, in principle, appear to be a “niche research” topic as they concern “rare” genetic diseases, they can also be exploited for different pathologies. As such, they constitute a general approach to a basic genetic defect, widening the applicative scope and making the exploration of their mechanisms appealing.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Morais, P.; Adachi, H.; Yu, Y.-T. Suppression of Nonsense Mutations by New Emerging Technologies. Int. J. Mol. Sci. 2020, 21, 4394. [Google Scholar] [CrossRef] [PubMed]
  2. Lombardi, S.; Testa, M.F.; Pinotti, M.; Branchini, A. Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Int. J. Mol. Sci. 2020, 21, 9449. [Google Scholar] [CrossRef] [PubMed]
  3. McHugh, D.R.; Cotton, C.U.; Hodges, C.A. Synergy between Readthrough and Nonsense Mediated Decay Inhibition in a Murine Model of Cystic Fibrosis Nonsense Mutations. Int. J. Mol. Sci. 2021, 22, 344. [Google Scholar] [CrossRef] [PubMed]
  4. Pibiri, I.; Melfi, R.; Tutone, M.; Di Leonardo, A.; Pace, A.; Lentini, L. Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems. Int. J. Mol. Sci. 2020, 21, 6420. [Google Scholar] [CrossRef] [PubMed]
  5. Melfi, R.; Cancemi, P.; Chiavetta, R.; Barra, V.; Lentini, L.; Di Leonardo, A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int. J. Mol. Sci. 2020, 21, 4781. [Google Scholar] [CrossRef] [PubMed]
  6. Kabra, M.; Pattnaik, B.R. Sensing through Non-Sensing Ocular Ion Channels. Int. J. Mol. Sci. 2020, 21, 6925. [Google Scholar] [CrossRef] [PubMed]
  7. Samanta, A.; Stingl, K.; Kohl, S.; Ries, J.; Linnert, J.; Nagel-Wolfrum, K. Ataluren for the Treatment of Usher Syndrome 2A Caused by Nonsense Mutations. Int. J. Mol. Sci. 2019, 20, 6274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Dabrowski, M.; Bukowy-Bieryllo, Z.; Jackson, C.L.; Zietkiewicz, E. Properties of Non-Aminoglycoside Compounds Used to Stimulate Translational Readthrough of PTC Mutations in Primary Ciliary Dyskinesia. Int. J. Mol. Sci. 2021, 22, 4923. [Google Scholar] [CrossRef] [PubMed]
  9. Bezzerri, V.; Api, M.; Allegri, M.; Fabrizzi, B.; Corey, S.J.; Cipolli, M. Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int. J. Mol. Sci. 2020, 21, 4672. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Pibiri, I. Molecular Approaches Fighting Nonsense. Int. J. Mol. Sci. 2021, 22, 11933. https://doi.org/10.3390/ijms222111933

AMA Style

Pibiri I. Molecular Approaches Fighting Nonsense. International Journal of Molecular Sciences. 2021; 22(21):11933. https://doi.org/10.3390/ijms222111933

Chicago/Turabian Style

Pibiri, Ivana. 2021. "Molecular Approaches Fighting Nonsense" International Journal of Molecular Sciences 22, no. 21: 11933. https://doi.org/10.3390/ijms222111933

APA Style

Pibiri, I. (2021). Molecular Approaches Fighting Nonsense. International Journal of Molecular Sciences, 22(21), 11933. https://doi.org/10.3390/ijms222111933

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop