A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19
Abstract
:1. Introduction
2. Methods
3. Description of Monoclonal Antibodies
3.1. Vaccination of Animals
3.2. Recovering Patients
3.3. Screening of the Antibody Library
3.4. Mass Production
3.5. MAb Modification
3.6. Mechanism of Action
3.7. MAb Pharmacokinetics
3.8. Adverse Effects of MAbs
3.9. Prospects for MAbs as Preferred Therapeutic Agents in the Future
4. Patent Search
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus-2 |
MAbs | Monoclonal antibodies |
MERS-CoV | Middle East Respiratory Syndrome Coronavirus |
RT-PCR | Reverse transcriptase polymerase chain reaction |
RNA | Ribonucleic acid |
ACE-2 | Angiotensin converting enzyme-2 |
S protein | Spike protein |
S1 and S2 | Subunits of Spike protein |
CPro | Chymotrypsin-like protease |
CLPro | 3C-like protease |
PLPro | Papain-like protease |
DNA | Deoxy ribonucleic acid |
WIPO | World Intellectual Property Organization |
FDA | Food and drug administration |
CD-3 | Cluster of differentiation-3 |
GP | Glycoprotein |
RSV | Respiratory syncytial virus |
TNF | Tumor necrosis factor |
EGFR | Epidermal growth factor receptor |
IL | Interleukins |
PCSK9 | Pro-protein convertase subtilisin /kexin type-9 |
Fab | Fragment antigen binding |
SCFv | Single chain variable fragment |
SdAb | Single domain antibody |
Fc | Fragment crystallisable |
RBD | Receptor binding domain |
FGF-23 | Fibroblast growth factor-23 |
SNM protein | Spike, nucleocapsid, membrane protein |
BALB/c | Bagg Albino strain |
ELISA | Enzyme linked immunosorbent assay |
HR-1/HR-2 | Heptapeptide repeat sequence-1/2 |
H2L2 transgenic mice | Two heavy chain and two light chain transgenic mice |
IgG | Immunoglobulin G |
References
- Rothan, H.; Byrareddy, S. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Sanders, J.; Monogue, M.; Jodlowski, T.; Cutrell, J. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19). JAMA 2020, 18, 1824–1837. [Google Scholar] [CrossRef] [PubMed]
- Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry 2020, 66, 317–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alharbi, M.M.; Rabbani, S.I.; Asdaq, S.M.B.; Alamri, A.S.; Alsanie, W.F. Infection Spread, Recovery, and Fatality from Coronavirus in Different Provinces of Saudi Arabia. Healthcare 2021, 9, 931. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Forman, M.; Valsamakis, A. Optimization and evaluation of a novel real-time RT-PCR test for detection of parechovirus in cerebrospinal fluid. J. Virol. Meth. 2019, 272, 1136–1190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Reguera, J. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog. 2012, 8, e1002859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kebede, T.; Kumar, D.; Sharma, P.K. Potential drug options for treatment of COVID-19: A review. Coronaviruses 2020, 1, 42–48. [Google Scholar] [CrossRef]
- Rella, S.A.; Kulikova, Y.A.; Dermitzakis, E.T. Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Sci. Rep. 2021, 11, 15729. [Google Scholar] [CrossRef]
- Chan, C.E.; Chan, A.H.; Lim, A.P.; Hanson, B.J. Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays. J. Immunol. Method. 2011, 373, 79–88. [Google Scholar] [CrossRef]
- Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. mAbs 2015, 7, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Dis. 2010, 9, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Torrente-López, A.; Hermosilla, J.; Navas, N.; Cuadros-Rodríguez, L.; Cabeza, J.; Salmerón-García, A. The Relevance of Monoclonal Antibodies in the Treatment of COVID-19. Vaccines 2021, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Jomah, S.; Asdaq, S.M.B.; Alyamani, M.J. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J. Infect. Public Health 2020, 13, 1187–1195. [Google Scholar] [CrossRef]
- Asdaq, S.M.B.; Rabbani, S.I.; Imran, M.; Alanazi, A.A.; Alnusir, G.Y.; Al-Shammari, A.A.; Alsubaie, F.H.; Alsalman, A.J. A Review on Potential Antimutagenic Plants of Saudi Arabia. Appl. Sci. 2021, 11, 8494. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Sliwkowski, M.X.; Mellman, I. Antibody therapeutics in cancer. Science 2013, 341, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Kunert, R.; Reinhart, D. Advances in recombinant antibody manufacturing. Appl. Microbiol. Biotechnol. 2016, 100, 3451. [Google Scholar] [CrossRef] [Green Version]
- Flego, M.; Ascione, A.; Cianfriglia, M.; Vella, S. Clinical development of monoclonal antibody-based drugsin HIV and HCV diseases. BMC Med. 2013, 11, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Baskar, S.; Suschak, J.M.; Samija, I.; Srinivasan, R.; Childs, R.W.; Pavletic, S.Z. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display. Blood 2009, 114, 4494–4502. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.L.; Pereira, D.S.; Zhu, Z. Monoclonal antibody therapeutics and apoptosis. Oncogene 2003, 22, 9097–9104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 2012, 119, 5640–5645. [Google Scholar] [CrossRef]
- Catapano, A.L.; Papadopoulos, N. The safety of therapeutic monoclonal antibodies: Implications forcardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis 2013, 228, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Glassy, M.C.; Gupta, R. Technical and ethical limitations in making human monoclonal antibodies (an overview). Methods Mol. Biol. 2014, 1060, 9–16. [Google Scholar]
- Mahase, E. COVID-19: FDA authorises neutralising antibody bamlanivimab for non-admitted patients. BMJ 2020, 371, m4362. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Liu, I.J.; Lu, R.M.; Wu, H.C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci. 2016, 23, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, A.; Tohidkia, M.R.; Siegel, D.L. Phage antibody display libraries: A powerful antibodydiscovery platform for immunotherapy. Crit. Rev. Biotechnol. 2016, 36, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M.; Dewitz, M.C. Anti-infective monoclonal antibodies: Perils and promise of development. Nat. Rev. Drug Discov. 2009, 5, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1–30. [Google Scholar] [CrossRef]
- Alt, F.W.; Keith Blackwell, T.; Yancopoulos, G.D. Immunoglobulin genes in transgenic mice. Trends Genet. 1985, 1, 231–236. [Google Scholar] [CrossRef]
- Newsome, B.W.; Ernstoff, M.S. The clinical pharmacology of therapeutic monoclonal antibodies in the treatment of malignancy; have the magic bullets arrived? Br. J. Clin. Pharmacol. 2008, 66, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, M.E.; Djavadi-Ohaniance, L. Methods for measurement of antibody/antigen affinity based onELISA and RIA. Curr. Opin. Immunol. 1993, 5, 278–284. [Google Scholar] [CrossRef]
- Choi, D.K.; Bae, J.; Shin, S.M. A general strategy for generating intact, full-length IgG antibodiesthat penetrate into the cytosol of living cells. mAbs 2014, 6, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhtiar, R. Antibody drug conjugates. Biotechnol. Lett. 2016, 38, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Pasman, Y.; Soliman, C.; Ramsland, P.A.; Kaushik, A.K. Exceptionally long CDR3H of bovine scFvantigenized with BoHV-1 B-epitope generates specific immune response against the targetedepitope. Mol. Immunol. 2016, 77, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, P.; Lledo-Garcia, R.; Watanabe, S. The FcRn inhibitor rozanolixizumab reduces humanserum IgG concentration: A randomized phase 1 study. Sci. Transl. Med. 2017, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Kiessling, A.; Lledo-Garcia, R. Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on thereduction of plasma IgG concentration. mAbs 2018, 10, 1111–1119. [Google Scholar] [CrossRef]
- Wan, J.; Xing, S.; Ding, L.; Wang, Y.; Gu, C.; Wu, Y. Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection. Cell Rep. 2020, 32, 107918. [Google Scholar] [CrossRef]
- Tabrizi, M.A.; Tseng, C.M.; Roskos, L.K. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov. Today 2006, 11, 81–86. [Google Scholar] [CrossRef]
- Barnett, C.; Tabasinejad, R.; Bril, V. Current pharmacotherapeutic options for myasthenia gravis. Expert Opin. Pharmacother. 2019, 20, 2295–2299. [Google Scholar] [CrossRef] [PubMed]
- Marston, H.D.; Paules, C.I.; Fauci, A.S. Monoclonal Antibodies for Emerging Infectious Diseases -Borrowing from History. N. Engl. J. Med. 2018, 378, 1469–1472. [Google Scholar] [CrossRef]
- Gao, S.H.; Huang, K.; Tu, H.; Adler, A.S. Monoclonal antibody humanness score and its applications. BMC Biotechnol. 2013, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Harding, F.A.; Stickler, M.M.; Razo, J.; DuBridge, R.B. The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions. mAbs 2010, 2, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Burmester, G.R.; Panaccione, R.; Gordon, K.B.; McIlraith, M.J.; Lacerda, A.P. Adalimumab: Long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann. Rheum. Dis. 2013, 72, 517–524. [Google Scholar] [CrossRef]
- Tepper, S.; Ashina, M.; Reuter, U.; Brandes, J.L.; Dolezil, D.; Silberstein, S. Safety and efficacy of erenumab for preventive treatment of chronic migraine: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017, 16, 425–434. [Google Scholar] [CrossRef]
- Dimitrov, D.S.; Marks, J.D. Therapeutic antibodies: Current state and future trends--is a paradigm change coming soon? Methods Mol. Biol. 2009, 525, 1–27. [Google Scholar] [PubMed]
- Lim, C.C.; Woo, P.C.Y.; Lim, T.S. Development of a Phage Display Panning Strategy Utilizing Crude Antigens: Isolation of MERS-CoV Nucleoprotein human antibodies. Sci. Rep. 2019, 9, 6088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnet, C.; Jorieux, S.; Souyris, N.; Zaki, O.; Jacquet, A.; Fournier, N. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody. mAbs 2014, 6, 422–436. [Google Scholar] [CrossRef] [Green Version]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Foster, R.H.; Wiseman, L.R. Abciximab. An updated review of its use in ischaemic heart disease. Drugs 1998, 56, 629–665. [Google Scholar] [CrossRef]
- Tsurushita, N.; Hinton, P.R.; Kumar, S. Design of humanized antibodies: From anti-Tac to Zenapax. Methods 2005, 36, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, W.; Lakkis, F.G.; Chalasani, G. B Cells, Antibodies, and More. Clin. J. Am. Soc. Nephrol. 2016, 11, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Norms and Standards of WIPO (World Intellectual Property Organization. 2021. Available online: https://www.wipo.int/edocs/pubdocs/en/wipo_pub_489.pdf (accessed on 22 October 2021).
- Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent. Sci. 2020, 6, 315−331. [Google Scholar] [CrossRef] [PubMed]
- Monoclonal Antibodies Patent Applications against COVID-19 Filed in World Property Intellectual Organization. 2021. Available online: https://www.wipo.int/tools/en/gsearch.html#monoclonal%20antibodies%20COVID-19 (accessed on 18 July 2021).
- Coronavirus Research Patents. 2020. Available online: https://www.elsevier.com/__data/assets/pdf_file/0009/998550/EV_coronavirus-research.pdf (accessed on 10 September 2021).
- Roque, A.C.A.; Lowe, C.R.; Taipa, M.A. Antibodies and genetically engineered related molecules: Production and purification. Biotechnol. Prog. 2004, 20, 639–654. [Google Scholar] [CrossRef]
- Waldmann, T.A. Immunotherapy: Past, present and future. Nat. Med. 2003, 9, 269–277. [Google Scholar] [CrossRef]
- Ganguly, S.; Wakchaure, R. Hybridoma technology: A brief review on its diagnostic and clinical significant. Pharm. Biol. Eval. 2016, 3, 554–558. [Google Scholar]
- Tabll, A.; Abbas, A.T.; El-KTafrawy, S.; Wahid, A. Monoclonal antibodies: Principles and applications of immmunodiagnosis and immunotherapy for hepatitis C virus. World J. Hepatol. 2015, 7, 2369–2383. [Google Scholar] [CrossRef]
- Shivan, H.; Pandey, S. Hybredoma technology for production of monoclonal antibodies. Int. J. Pharm. Sci. Rev. Res. 2010, 1, 112–120. [Google Scholar]
- Owji, H.; Negahdaripour, M.; Hajighahramani, N. Immunotherapeutic approaches to curtail COVID-19. Int. Immunopharmacol. 2020, 88, 106924. [Google Scholar] [CrossRef]
- Jahanshahlu, L.; Rezaei, N. Monoclonal antibody as a potential anti-COVID-19. Biomed. Pharmacother. 2020, 129, 110337. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Shen, C.; Peng, W.; Li, D.; Zhao, C.; Li, Z.; Li, S.; Bi, Y.; Yang, Y.; et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 2020, 368, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Soin, A.S.; Kumar, K.; Choudhary, N.S.; Sharma, P.; Mehta, Y.; Kataria, S.; Govil, D.; Deswal, V.; Chaudhry, D.; Singh, P.K.; et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): An open-label, multicenter, randomised, controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 511–521. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Campochiaro, C.; Cavalli, G.; De Luca, G.; Napolitano, A.; La Marca, S.; Boffini, N.; Da Prat, V.; Di Terlizzi, G.; Lanzillotta, M.; et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study. Ann. Rheum. Dis. 2020, 79, 1277–1285. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 2020, 9, 382–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, M.; Wu, N.C.; Zhu, X.; Lee, C.-C.D.; So, R.T.Y.; Lv, H.; Mok, C.K.P.; Wilson, I.A. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020, 368, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Ucciferri, C.; Vecchiet, J.; Falasca, K. Role of monoclonal antibody drugs in the treatment of COVID-19. World J. Clin. Cases 2020, 8, 4280–4285. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef]
- Ebbinghaus, C.; Ronca, R.; Kaspar, M.; Grabulovski, D.; Berndt, A.; Kosmehl, H.; Zardi, L.; Neri, D. Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int. J. Cancer 2020, 116, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol. 2020, 38, 10–18. [Google Scholar] [PubMed]
- Pecetta, S.; Finco, O.; Seubert, A. Quantum leap of monoclonal antibody (mAb) discovery and development in the COVID-19 era. Semin. Immunol. 2020, 50, 101427. [Google Scholar] [CrossRef]
- Chen, X. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell. Mol. Immunol. 2020, 17, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef]
- Regeneron Factsheet on Monoclonal Antibodies for COVID-19. 2021. Available online: https://www.regeneron.com/downloads/treatment-covid19-eua-fact-sheet-for-hcp.pdf (accessed on 18 July 2021).
- Lloyd, E.C.; Gandhi, T.N.; Petty, L.A. Monoclonal Antibodies for COVID-19. JAMA 2021, 325, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. Lancet 2020, 395, 497−506. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Shin, J.S.; Shie, J.J.; Ku, K.B.; Kim, C.; Go, Y.Y.; Huang, K.F.; Kim, M.; Liang, P.H. Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CLPro inhibitors. Antivir. Res. 2017, 141, 101−106. [Google Scholar] [CrossRef]
- Bisht, H.; Roberts, A.; Vogel, L.; Subbarao, K.; Moss, B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 2005, 334, 160−165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Brink, E.N.; Ter Meulen, J.; Cox, F. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J. Virol. 2005, 79, 1635–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Jung, Y.S.; Liang, P.H. Anti-SARS coronavirus agents: A patent review (2008–present). Expert Opin. Ther. Pat. 2013, 23, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; He, Y. Neutralizing Monoclonal Antibodies against Severe Acute Respiratory Syndrome-Associated. Coronavirus. Patent No. CN101522208, 2 September 2009. [Google Scholar]
- Coughlin, M.; Lou, G.; Martinez, O. Generation and characterization of human onoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology 2007, 361, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, T.; Ebert, G.; Calleja, D.J.; Allison, C.C.; Richardson, L.W. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020, 15, e106275. [Google Scholar]
Sl No. | Class | Target/Mechanism | Examples |
---|---|---|---|
1 | Protease inhibitors | 3C and 3C-Like protease (3CPro, 3CLPro), Popain-like protease (PLPro) | N-butyl-benzimidazolylamino-toluene derivatives, Phytochemicals, such as scutellarin, quercetagetin, myricetin and robinetin. |
2 | Non-structural proteins inhibitors | Helicase | Aryl diketoacids |
3 | Peptides | Non-antigenic polymers to enhance immunity | Thymosin α1 peptide |
4 | RNA products | Down-regulates host ACE2 receptor level | Soluble ACE2 in DNA encoding form |
SARS-mRNA | Robozyme (an antisense RNA) | ||
SARS M protein expression | siRNA-M1 (Double stranded RNA) | ||
5 | Vaccines | S protein | Vector-based and attenuated vaccines by intra-nasal route |
6 | Inhibitors of unknown target | Disruption of viral protein-cellular interaction | Amiodarone, Dronedarone, mono-desethyl-amiodarone |
Sl No. | Technique | Technical Design | Examples | Target | Approved Year |
---|---|---|---|---|---|
1 | Hybridoma | Murine | Muromonab | CD3 | 1986 |
Chimeric | Abciximab | GP IIb/IIIa | 1994 | ||
Humanized | Palivizumab | RSV | 1998 | ||
2 | Phage display | Human | Adalimumab | TNF-α | 2002 |
Murine | Moxetumomab | CD22 | 2018 | ||
3 | Transgenic mice | Human (XenoMouse) | Panitumumab | EGFR | 2006 |
Human (HuMabMouse) | Ustekinumab | IL-12 | 2009 | ||
Human (Veloclmmune Mouse) | Alirocumab | PCSK9 | 2015 |
Sl No. | Patent Number | Description | Target Antigen | Organization |
---|---|---|---|---|
1 | WO2009128963 | Method of preparation and use of human monoclonal antibodies for neutralizing the action of SARS-CoV. | Spike protein | Institute for Research in Biomedicine |
2 | WO2007044695 | Information about monoclonal antibodies used for diagnosis and treatment of SARS-coronavirus-associated disease and evaluating the efficacy of vaccine or anti-SARS agent. | Spike protein | Dana-Farber Cancer Institute |
3 | CN1911963 | Technique of production and use of a monoclonal antibody against severe acute respiratory syndrome coronavirus. | RBD of S protein | Chinese Academy of Sciences |
4 | WO2006095180 | Human monoclonal antibodies to treat the infection in patients caused by SARS-associated coronavirus. | S2 protein | Ultra Biotech Ltd.; University of California |
5 | WO2006086561 | Production and therapeutic application of neutralizing monoclonal antibodies against severe acute respiratory syndrome-associated coronavirus. | Spike protein | New York Blood Center, Inc. |
6 | WO2005007671 | Production of monoclonal antibodies against the peptides derived from SARS virus E2, N-terminal-alpha helix or C-terminal-alpha helix of virus. | Spike protein | Epitomics, Inc |
7 | CN1673231 | Synthesis of a monoclonal antibody targeted against N proteins of SARS coronavirus and testing its clinical use in the treatment of SARS infections. | Spike protein | Chinese Academy of Sciences |
8 | US20060240551 | Production and clinical evaluation of monoclonal antibodies that neutralize the pathogenesis of severe acute respiratory syndrome-associated Coronavirus. | Spike protein | New York Blood Center, Inc. |
9 | WO2005054469 | Production of anti-SARS-coronavirus monoclonal antibodies for diagnosis and treatment and for testing its use in vaccine preparation. | Spike protein | Health Canada |
10 | US20050069869 | New human monoclonal antibodies against spike (S) proteins of SARS and testing their diagnostic and therapeutic application. | Spike protein | University of Massachusetts |
11 | CN1566155 | Library-driven production of human monoclonal antibodies against SARS virus caused infection. | S, N, and M Proteins | Igcon Therapeutics Co., Ltd.; Genetastix |
12 | CN1660912 | Production and testing the use of a new class of monoclonal antibodies against human interleukin. | Il-8 | Ye Qingwei |
Patent Number | Patent Information | Target Antigen | Principle Investigators |
---|---|---|---|
WO 2021158521 A1 20210812 | Neutralizing monoclonal antibody variants targeting SARS CoV-2 for use in diagnosis, prophylaxis, and treatment of SARS CoV-2 infection. | Spike protein and/or its receptor binding domain | Davide C, Katja F, Martina B, et al. |
CN 113004395 A 20210622 | Production of monoclonal antibody against SARS-CoV-2 and application thereof in immunoassay of SARS CoV-2. | NP protein | Li Z, Xingsu G, Binyang Z, et al. |
CN 112940110 A 20210611 | Production of anti-SARS-CoV-2 N protein monoclonal antibodies for diagnosis and treatment of COVID-19. | N protein | Yaoqing C, Bing H, Shuning L, et al. |
CN 112794899 A 20210514 | Human anti-SARS-CoV-2 neutralizing monoclonal antibodies for diagnosis, prevention, and treatment of COVID-19. | Viral receptor binding domain (RBD) | Lei C, Tengsen G, Min D, et al. |
CN 112724248 A 20210430 | Humanized anti-SARS-CoV-2 spike protein nanobodies for diagnosis, prevention, and treatment of COVID-19. | Receptor binding domain | Xilin W, Zhiwei W. |
CN 112661841 A 20210416 | Anti-SARS-CoV-2 S2 protein human monoclonal antibody 17-2 for combination therapy with S1-RBD/S1-NTD epitope-neutralizing antibody and for prevention and treatment of COVID-19. | Epitope S1-RBD and S1-NTD | Lei Y, Yingfen W, Wenjing G, et al. |
CN 112625136 A 20210409 | Bi-specific antibody having neutralizing activity against two epitopes of SARS-CoV-2 spike protein for diagnosis, prevention, and treatment of COVID-19. | Two epitopes of SARS-CoV-2 spike protein | Guojun L, Chanjuan L, Junbin S, et al. |
CN 112574300 A 20210330 | Human anti-SARS-CoV-2 S protein monoclonal antibody for diagnosis, prevention, and treatment of SAR-COV-2 infection. | Spike protein | Xiaochun W, and Junxin L. |
CN 112521496 A 20210319 | Anti-SARS-CoV-2 spike protein RBD domain monoclonal antibodies for diagnosis and treatment of COVID-19. | Spike protein RBD domain | Ke D, Zhaowei G, Xi W, et al. |
CN 112409488 A 20210226 | Preparation of monoclonal anti-human ACE2 antibody for ACE2 detection, prevention, or treatment of various coronavirus-related disease. | Human ACE2 | Chunhe W, Yuning C, Yili C, et al. |
CN 112225806 A 20210115 | Preparation of human antibodies specific to SARS-CoV-2 spike RBD protein for diagnosis and therapy of SARS-CoV-2 infection, SARS, COVID-19 or related disease. | Spike RBD protein | Yafeng L. |
CN 112210004 A 20210112 | Preparation of monoclonal anti-SARS-CoV-2 spike protein antibodies for diagnosis and treatment of COVID-19. | Spike protein | Yang W, Xuefeng N, Chunlin W, et al. |
CN 112175073 A 20210105 | Preparation of broad spectrum neutralizing anti-SARS-CoV-2 spike protein antibodies for diagnosis, prevention, and treatment of COVID-19. | Spike protein | Jinghe H, Fan W, Mei L, et al. |
CN 112175071 A 20210105 | Preparation of novel anti-SARS-CoV-2 spike protein monoclonal antibodies for treatment of COVID-19. | Spike protein | Jingui Y, Lei Z, Lianjun M, et al. |
CN 112159469 A 20210101 | anti-SARS-CoV-2 S1-RBD antibodies derived from in vitro monoclonal B cells and high throughput screening for treatment and/or prevention of COVID-19. | Spike S1-RBD | Jinghe H, Fan W, Mei L, et al. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asdaq, S.M.B.; Rabbani, S.I.; Alkahtani, M.; Aldohyan, M.M.; Alabdulsalam, A.M.; Alshammari, M.S.; Alajlan, S.A.; Binrokan, A.; Mohzari, Y.; Alrashed, A.; et al. A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19. Int. J. Mol. Sci. 2021, 22, 11953. https://doi.org/10.3390/ijms222111953
Asdaq SMB, Rabbani SI, Alkahtani M, Aldohyan MM, Alabdulsalam AM, Alshammari MS, Alajlan SA, Binrokan A, Mohzari Y, Alrashed A, et al. A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19. International Journal of Molecular Sciences. 2021; 22(21):11953. https://doi.org/10.3390/ijms222111953
Chicago/Turabian StyleAsdaq, Syed Mohammed Basheeruddin, Syed Imam Rabbani, Meshary Alkahtani, Meshal Meshary Aldohyan, Abdullah Mohammad Alabdulsalam, Majed Sadun Alshammari, Saleh Ahmad Alajlan, Aljawharah Binrokan, Yahya Mohzari, Ahmed Alrashed, and et al. 2021. "A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19" International Journal of Molecular Sciences 22, no. 21: 11953. https://doi.org/10.3390/ijms222111953
APA StyleAsdaq, S. M. B., Rabbani, S. I., Alkahtani, M., Aldohyan, M. M., Alabdulsalam, A. M., Alshammari, M. S., Alajlan, S. A., Binrokan, A., Mohzari, Y., Alrashed, A., Alshammari, M. K., Imran, M., & Nayeem, N. (2021). A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19. International Journal of Molecular Sciences, 22(21), 11953. https://doi.org/10.3390/ijms222111953