Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model
Abstract
:1. Introduction
2. Results
2.1. Tear Secretion and Tear Break-Up Time
2.2. Slit-Lamp Examination
2.3. Conjunctival Cytology
2.4. Quantitative PCR
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Animals
4.3. Artificial Tears
4.4. Tear Secretion and Tear Break-Up Time
4.5. Slit-Lamp Examination
4.6. Conjunctival Cytology
4.7. Quantitative PCR
4.8. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Downie, L.E.; Korb, D.; Benitez-Del-Castillo, J.M.; Dana, R.; Deng, S.X.; Dong, P.N.; Geerling, G.; Hida, R.Y.; Liu, Y.; et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017, 15, 575–628. [Google Scholar] [CrossRef]
- Carracedo, G.; Crooke, A.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Martin-Gil, A.; Pintor, J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog. Retin. Eye Res. 2016, 55, 182–205. [Google Scholar] [CrossRef] [PubMed]
- Habermacher, C.; Dunning, K.; Chataigneau, T.; Grutter, T. Molecular structure and function of P2X receptors. Neuropharmacology 2016, 104, 18–30. [Google Scholar] [CrossRef]
- Von Kugelgen, I.; Harden, T.K. Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv. Pharmacol. 2011, 61, 373–415. [Google Scholar] [CrossRef]
- Guzman-Aranguez, A.; Santano, C.; Martin-Gil, A.; Fonseca, B.; Pintor, J. Nucleotides in the eye: Focus on functional aspects and therapeutic perspectives. J. Pharmacol. Exp. Ther. 2013, 345, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huete, F.; Guzman-Aranguez, A.; Ortin, J.; Hoyle, C.H.; Pintor, J. Effects of diadenosine tetraphosphate on FGF9-induced chloride flux changes in achondroplastic chondrocytes. Purinergic Signal. 2011, 7, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Gil, A.; de Lara, M.J.; Crooke, A.; Santano, C.; Peral, A.; Pintor, J. Silencing of P2Y(2) receptors reduces intraocular pressure in New Zealand rabbits. Br. J. Pharmacol. 2012, 165, 1163–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintor, J.; Sanchez-Nogueiro, J.; Irazu, M.; Mediero, A.; Pelaez, T.; Peral, A. Immunolocalisation of P2Y receptors in the rat eye. Purinergic Signal. 2004, 1, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Pintor, J.; Peral, A.; Hoyle, C.H.; Redick, C.; Douglass, J.; Sims, I.; Yerxa, B. Effects of diadenosine polyphosphates on tear secretion in New Zealand white rabbits. J. Pharmacol. Exp. Ther. 2002, 300, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Yerxa, B.R.; Douglass, J.G.; Elena, P.P.; Caillaud, T.; Amar, T.; Edick, C.; Peterson, W.M. Potency and duration of action of synthetic P2Y2 receptor agonists on Schirmer scores in rabbits. Adv. Exp. Med. Biol. 2002, 506, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Godinez, C.O.; Martin-Gil, A.; Carracedo, G.; Guzman-Aranguez, A.; González-Méijome, J.M.; Pintor, J. In vitro and in vivo delivery of the secretagogue diadenosine tetraphosphate from conventional and silicone hydrogel soft contact lenses. J. Optom. 2013, 6, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Godinez, C.; Carracedo, G.; Pintor, J. Diquafosol Delivery from Silicone Hydrogel Contact Lenses: Improved Effect on Tear Secretion. J. Ocul. Pharmacol. Ther. 2018, 34, 170–176. [Google Scholar] [CrossRef]
- Fujihara, T.; Murakami, T.; Nagano, T.; Nakamura, M.; Nakata, K. INS365 suppresses loss of corneal epithelial integrity by secretion of mucin-like glycoprotein in a rabbit short-term dry eye model. J. Ocul. Pharmacol. Ther. 2002, 18, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Endo, K.I.; Sakamoto, A.; Fujisawa, K. Diquafosol tetrasodium elicits total cholesterol release from rabbit meibomian gland cells via P2Y(2) purinergic receptor signalling. Sci. Rep. 2021, 11, 6989. [Google Scholar] [CrossRef]
- Pintor, J.; Bautista, A.; Carracedo, G.; Peral, A. UTP and diadenosine tetraphosphate accelerate wound healing in the rabbit cornea. Ophthalmic Physiol. Opt. 2004, 24, 186–193. [Google Scholar] [CrossRef]
- Mediero, A.; Peral, A.; Pintor, J. Dual roles of diadenosine polyphosphates in corneal epithelial cell migration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4500–4506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loma, P.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Pintor, J. Diadenosine tetraphosphate induces tight junction disassembly thus increasing corneal epithelial permeability. Br. J. Pharmacol. 2015, 172, 1045–1058. [Google Scholar] [CrossRef]
- Loma, P.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Pintor, J. Diadenosine tetraphosphate improves adrenergic anti-glaucomatous drug delivery and efficiency. Exp. Eye Res. 2015, 134, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Peral, A.; Loma, P.; Yerxa, B.; Pintor, J. Topical application of nucleotides increase lysozyme levels in tears. Clin. Ophthalmol. 2008, 2, 261–267. [Google Scholar]
- Loma, P.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Pintor, J. Lactoferrin Levels in Tears are Increased by the Topical Application of Diadenosine Tetraphosphate. Curr. Eye Res. 2016, 41, 1150–1152. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, S.; Chen, Y. Comparison of the efficacy between topical diquafosol and artificial tears in the treatment of dry eye following cataract surgery: A meta-analysis of randomized controlled trials. Med. Baltim. 2017, 96, e8174. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Kim, H.J.; Yoo, A. Efficacy and Safety of Topical 3% Diquafosol Ophthalmic Solution for the Treatment of Multifactorial Dry Eye Disease: Meta-Analysis of Randomized Clinical Trials. Ophthalmic Res. 2019, 61, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Bremond-Gignac, D.; Gicquel, J.J.; Chiambaretta, F. Pharmacokinetic evaluation of diquafosol tetrasodium for the treatment of Sjogren’s syndrome. Expert Opin. Drug Metab. Toxicol. 2014, 10, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.; Ikeda, C.; Takai, Y.; Watanabe, H.; Maeda, N.; Nishida, K. Long-term results of treatment with diquafosol ophthalmic solution for aqueous-deficient dry eye. Jpn. J. Ophthalmol. 2013, 57, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Nishijima, T.; Shimazaki, J.; Takamura, E.; Yokoi, N.; Watanabe, H.; Ohashi, Y. Real-world assessment of diquafosol in dry eye patients with risk factors such as contact lens, meibomian gland dysfunction, and conjunctivochalasis: Subgroup analysis from a prospective observational study. Clin. Ophthalmol. 2015, 9, 2251–2256. [Google Scholar] [CrossRef] [Green Version]
- Nagahara, Y.; Koh, S.; Nishida, K.; Watanabe, H. Prolonged increase in tear meniscus height by 3% diquafosol ophthalmic solution in eyes with contact lenses. Clin. Ophthalmol. 2015, 9, 1029–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, K.T.; Ahn, S.M.; Eom, Y.; Kim, H.M.; Song, J.S. Immediate Effects of 3% Diquafosol and 0.1% Hyaluronic Acid Ophthalmic Solution on Tear Break-Up Time in Normal Human Eyes. J. Ocul. Pharmacol. Ther. 2015, 31, 631–635. [Google Scholar] [CrossRef]
- Carpena-Torres, C.; Pintor, J.; Huete-Toral, F.; Rodriguez-Pomar, C.; Martínez-Águila, A.; Carracedo, G. Preclinical Development of Artificial Tears Based on an Extract of Artemia Salina Containing Dinucleotides in Rabbits. Curr. Eye Res. 2021, 46, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Finamore, F.J.; Warner, A.H. The occurrence of P1, P4-diguanosine 5′-tetraphosphate in brine shrimp eggs. J. Biol. Chem. 1963, 238, 344–348. [Google Scholar] [CrossRef]
- Gilmour, S.J.; Warner, A.H. The presence of guanosine 5′-diphospho-5′-guanosine and guanosine 5′-triphospho-5′-adenosine in brine shrimp embryos. J. Biol. Chem. 1978, 253, 4960–4965. [Google Scholar] [CrossRef]
- Carpena-Torres, C.; Pintor, J.; Pérez de Lara, M.J.; Huete-Toral, F.; Crooke, A.; Pastrana, C.; Carracedo, G. Optimization of a Rabbit Dry Eye Model Induced by Topical Instillation of Benzalkonium Chloride. J. Ophthalmol. 2020, 2020, 7204951. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, T.; Murakami, T.; Fujita, H.; Nakamura, M.; Nakata, K. Improvement of corneal barrier function by the P2Y(2) agonist INS365 in a rat dry eye model. Investig. Ophthalmol. Vis. Sci. 2001, 42, 96–100. [Google Scholar]
- Ikeda, K.; Simsek, C.; Kojima, T.; Higa, K.; Kawashima, M.; Dogru, M.; Shimizu, T.; Tsubota, K.; Shimazaki, J. The effects of 3% diquafosol sodium eye drop application on meibomian gland and ocular surface alterations in the Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. Graefes. Arch. Clin. Exp. Ophthalmol. 2018, 256, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.P.; Argueso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef] [Green Version]
- Hori, Y.; Kageyama, T.; Sakamoto, A.; Shiba, T.; Nakamura, M.; Maeno, T. Comparison of Short-Term Effects of Diquafosol and Rebamipide on Mucin 5AC Level on the Rabbit Ocular Surface. J. Ocul. Pharmacol. Ther. 2017, 33, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kang, B.; Eom, Y.; Lee, H.K.; Kim, H.M.; Song, J.S. The Protective Effect of a Topical Mucin Secretagogue on Ocular Surface Damage Induced by Airborne Carbon Black Exposure. Investig. Ophthalmol. Vis. Sci. 2019, 60, 255–264. [Google Scholar] [CrossRef]
- Shigeyasu, C.; Hirano, S.; Akune, Y.; Yamada, M. Diquafosol Tetrasodium Increases the Concentration of Mucin-like Substances in Tears of Healthy Human Subjects. Curr. Eye Res. 2015, 40, 878–883. [Google Scholar] [CrossRef]
- Shigeyasu, C.; Yamada, M.; Akune, Y.; Tsubota, K. Diquafosol sodium ophthalmic solution for the treatment of dry eye: Clinical evaluation and biochemical analysis of tear composition. Jpn. J. Ophthalmol. 2015, 59, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Crooke, A.; Mediero, A.; Guzman-Aranguez, A.; Pintor, J. Silencing of P2Y2 receptor delays Ap4A-corneal re-epithelialization process. Mol. Vis. 2009, 15, 1169–1178. [Google Scholar] [PubMed]
- Mediero, A.; Guzman-Aranguez, A.; Crooke, A.; Peral, A.; Pintor, J. Corneal re-epithelialization stimulated by diadenosine polyphosphates recruits RhoA/ROCK and ERK1/2 pathways. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4982–4992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediero, A.; Crooke, A.; Guzman-Aranguez, A.; Pintor, J. Phospholipase C/Protein Kinase C pathway is essential for corneal re-epithelialization induced by Ap(4)A. Curr. Eye Res. 2011, 36, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, V.E.; Weinger, I.; Kaczmarek, E.; Trinkaus-Randall, V. P2Y receptors play a critical role in epithelial cell communication and migration. J. Cell Biochem. 2004, 93, 1115–1133. [Google Scholar] [CrossRef] [PubMed]
- Weinger, I.; Klepeis, V.E.; Trinkaus-Randall, V. Tri-nucleotide receptors play a critical role in epithelial cell wound repair. Purinergic Signal. 2005, 1, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Yang, I.J.; Nguyen, L.T.H.; Gum, S.I.; Yu, S.; Lee, G.J.; Kim, B.A.; Jung, J.C.; Park, Y.J. Effect of Diquafosol on Hyperosmotic Stress-induced Tumor Necrosis Factor-α and Interleukin-6 Expression in Human Corneal Epithelial Cells. Korean J. Ophthalmol. 2020, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.; Kang, H.G.; Yeo, A.; Noh, H.; Kim, H.C.; Song, J.S.; Ji, Y.W.; Lee, H.K. Comparison of Ocular Surface Mucin Expression After Topical Ophthalmic Drug Administration in Dry Eye-Induced Mouse Model. J. Ocul. Pharmacol. Ther. 2018, 34, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Moon, S.H.; Kang, D.H.; Um, H.J.; Kang, S.S.; Kim, J.Y.; Tchah, H. Diquafosol Sodium Inhibits Apoptosis and Inflammation of Corneal Epithelial Cells via Activation of Erk1/2 and RSK: In Vitro and In Vivo Dry Eye Model. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5108–5115. [Google Scholar] [CrossRef] [PubMed]
- Jamerson, E.C.; Elhusseiny, A.M.; ElSheikh, R.H.; Eleiwa, T.K.; El Sayed, Y.M. Role of Matrix Metalloproteinase 9 in Ocular Surface Disorders. Eye Contact Lens 2020, 46 (Suppl. 2), S57–S63. [Google Scholar] [CrossRef] [PubMed]
- Idzko, M.; Ferrari, D.; Eltzschig, H.K. Nucleotide signalling during inflammation. Nature 2014, 509, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Song, Y.; Luan, S.; Wan, P.; Li, N.; Tang, J.; Han, Y.; Xiong, C.; Wang, Z. Research on the stability of a rabbit dry eye model induced by topical application of the preservative benzalkonium chloride. PLoS ONE 2012, 7, e33688. [Google Scholar] [CrossRef] [Green Version]
- Ehrenberg, M.; Zolotariov, E.; Loeb, E.; Poliansky, V.; Levy, A. Combining Sodium Hyaluronate and Polyvinylpyrrolidone Therapies for the Rabbit Cornea: A New Approach to Relief of the Human Dry Eye Syndrome. Curr. Eye Res. 2015, 40, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Kaur, N.; Sharma, R.; Rana, V. Investigating the potential of carboxymethyl pullulan for protecting the rabbit eye from systematically induced precorneal tear film damage. Exp. Eye Res. 2019, 184, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.V.L.; Sampaio, M.O.B.; Viapiana, G.N.; Seabra, N.M.; Russ, H.H.; Montiani-Ferreira, F.; Mello, P.A.A. Effects of benzalkonium chloride and cyclosporine applied topically to rabbit conjunctiva: A histomorphometric study. Arq. Bras. Oftalmol. 2019, 82, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Luo, L.J.; Harroun, S.G.; Wei, S.C.; Unnikrishnan, B.; Chang, H.T.; Huang, Y.F.; Lai, J.Y.; Huang, C.C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019, 11, 5580–5594. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Li, Y.; Jin, R.; Shrestha, T.; Choi, J.S.; Lee, W.J.; Moon, M.J.; Ju, H.T.; Choi, W.; Yoon, K.C. The Efficiency of Cyclosporine A-Eluting Contact Lenses for the Treatment of Dry Eye. Curr. Eye Res. 2019, 44, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.L.; Hung, Y.J.; Chen, Z.Y.; Fang, H.W.; Chen, K.H. Synergistic Effect of Artificial Tears Containing Epigallocatechin Gallate and Hyaluronic Acid for the Treatment of Rabbits with Dry Eye Syndrome. PLoS ONE 2016, 11, e0157982. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.J.; Lai, J.Y. Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome. Sci. Rep. 2017, 7, 9380. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.L.; Chen, Z.Y.; Renn, T.Y.; Hsiao, S.H.; Burnouf, T. Solvent/Detergent Virally Inactivated Serum Eye Drops Restore Healthy Ocular Epithelium in a Rabbit Model of Dry-Eye Syndrome. PLoS ONE 2016, 11, e0153573. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Y.; Wang, M.C.; Chen, Z.Y.; Chiu, W.Y.; Chen, K.H.; Lin, I.C.; Yang, W.V.; Wu, C.C.; Tseng, C.L. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int. J. Nanomed. 2018, 13, 7251–7273. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Lu, Y.; Zhang, X.; Gong, L.; Wei, C. Treatment of dry eye by intracanalicular injection of a thermosensitive chitosan-based hydrogel: Evaluation of biosafety and availability. Biomater. Sci. 2018, 6, 3160–3169. [Google Scholar] [CrossRef] [PubMed]
- Efron, N. Grading scales for contact lens complications. In Contact Lens Complications, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 301–305. [Google Scholar]
- Peral, A.; Pintor, J. Ocular mucin visualization by confocal laser scanning microscopy. Cornea 2008, 27, 395–401. [Google Scholar] [CrossRef] [PubMed]
Variable | Group (n = 5, Each One) | Mean ± SD | p-Value | |
---|---|---|---|---|
PRE | POST | |||
Tear secretion (μL) | Healthy | 7.0 ± 3.4 | 6.0 ± 3.1 | 0.373 |
Dry eye | 7.8 ± 2.2 | 6.3 ± 2.3 | 0.081 | |
Dry eye + HPMC | 8.1 ± 2.5 | 7.4 ± 3.0 | 0.477 | |
Dry eye + Artemia | 7.3 ± 2.7 | 12.0 ± 3.4 | 0.008 ^ | |
Tear break-up time (s) | Healthy | 4.2 ± 0.7 | 4.1 ± 1.3 | 0.896 |
Dry eye | 5.4 ± 2.7 | 1.7 ± 0.6 | 0.005 * | |
Dry eye + HPMC | 5.2 ± 1.5 | 1.7 ± 0.9 | 0.005 ^ | |
Dry eye + Artemia | 4.1 ± 1.1 | 2.5 ± 1.0 | <0.001 * | |
Corneal staining (score) | Healthy | 1.90 ± 0.88 | 1.70 ± 1.06 | 0.516 |
Dry eye | 1.60 ± 0.84 | 4.00 ± 0.00 | 0.004 * | |
Dry eye + HPMC | 1.70 ± 0.95 | 3.70 ± 0.48 | 0.007 * | |
Dry eye + Artemia | 2.30 ± 0.67 | 3.00 ± 0.94 | 0.140 | |
Conjunctival hyperemia (score) | Healthy | 0.00 ± 0.00 | 0.10 ± 0.32 | 0.317 |
Dry eye | 0.00 ± 0.00 | 3.40 ± 0.70 | 0.004 * | |
Dry eye + HPMC | 0.00 ± 0.00 | 3.50 ± 0.85 | 0.004 * | |
Dry eye + Artemia | 0.00 ± 0.00 | 2.90 ± 0.57 | 0.004 * | |
Density of Goblet cells (cells/mm2) | Healthy | 641.2 ± 216.7 | 646.5 ± 263.5 | 0.960 |
Dry eye | 911.7 ± 319.9 | 291.5 ± 103.2 | <0.001 * | |
Dry eye + HPMC | 850.8 ± 297.1 | 382.9 ± 336.2 | 0.022 * | |
Dry eye + Artemia | 851.8 ± 248.4 | 578.4 ± 254.1 | 0.071 | |
Height of mucin cloud (μm) | Healthy | 18.4 ± 1.0 | 18.1 ± 1.6 | 0.532 |
Dry eye | 16.8 ± 2.1 | 10.8 ± 1.7 | <0.001 * | |
Dry eye + HPMC | 16.7 ± 1.2 | 14.0 ± 4.0 | 0.053 | |
Dry eye + Artemia | 16.6 ± 1.9 | 15.5 ± 1.9 | 0.139 | |
mRNA levels of IL-1β (fold change) | Healthy | 6.430 ± 8.572 | 3.466 ± 3.067 | 0.878 |
Dry eye | 7.758 ± 11.702 | 42.369 ± 42.889 | 0.009 ^ | |
Dry eye + HPMC | 4.103 ± 2.772 | 46.116 ± 26.483 | 0.001 * | |
Dry eye + Artemia | 1.295 ± 1.838 | 12.408 ± 10.426 | 0.012 ^ | |
mRNA levels of IL-6 (fold change) | Healthy | 0.072 ± 0.082 | 0.416 ± 0.457 | 0.028 ^ |
Dry eye | 0.046 ± 0.036 | 0.338 ± 0.401 | 0.017 ^ | |
Dry eye + HPMC | 0.051 ± 0.086 | 0.230 ± 0.195 | 0.009 ^ | |
Dry eye + Artemia | 0.026 ± 0.033 | 0.175 ± 0.132 | 0.025 ^ | |
mRNA levels of MMP9 (fold change) | Healthy | 0.028 ± 0.034 | - | - |
Dry eye | 0.042 ± 0.059 | 0.314 ± 0.266 | 0.009 ^ | |
Dry eye + HPMC | 0.030 ± 0.017 | 0.525 ± 0.483 | 0.005 ^ | |
Dry eye + Artemia | 0.012 ± 0.017 | 0.174 ± 0.176 | 0.012 ^ |
Primer | Sequence (Forward/Reverse) |
---|---|
HPRT1 | 5′-CTGGCAAAACAATGCAGACCT-3′/ 5′-GTCCTTTTCACCAGCAGGCTT-3′ |
IL-1β | 5′-TTGAAGAAGAACCCGTCCTCTG-3′/ 5′-CTCATACGTGCCAGACAACACC-3′ |
IL-6 | 5′-GCCTCACAAACTTCCTGGAG-3′/ 5′-GATGGTGTGTTCTGACCGTG-3′ |
MMP9 | 5′-AAGACGCAGACGGTGGATTC-3′/ 5′-ACTCACACGCCAGAAGAAGC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpena-Torres, C.; Pintor, J.; Huete-Toral, F.; Martin-Gil, A.; Rodríguez-Pomar, C.; Martínez-Águila, A.; Carracedo, G. Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model. Int. J. Mol. Sci. 2021, 22, 11999. https://doi.org/10.3390/ijms222111999
Carpena-Torres C, Pintor J, Huete-Toral F, Martin-Gil A, Rodríguez-Pomar C, Martínez-Águila A, Carracedo G. Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model. International Journal of Molecular Sciences. 2021; 22(21):11999. https://doi.org/10.3390/ijms222111999
Chicago/Turabian StyleCarpena-Torres, Carlos, Jesus Pintor, Fernando Huete-Toral, Alba Martin-Gil, Candela Rodríguez-Pomar, Alejandro Martínez-Águila, and Gonzalo Carracedo. 2021. "Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model" International Journal of Molecular Sciences 22, no. 21: 11999. https://doi.org/10.3390/ijms222111999
APA StyleCarpena-Torres, C., Pintor, J., Huete-Toral, F., Martin-Gil, A., Rodríguez-Pomar, C., Martínez-Águila, A., & Carracedo, G. (2021). Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model. International Journal of Molecular Sciences, 22(21), 11999. https://doi.org/10.3390/ijms222111999