Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acid/Base Properties of the Compounds
2.2. Interaction with Copper (II) Ions
2.3. Interaction with Nickel (II) Ions
2.4. Biological Evaluation
2.4.1. Study on Attenuation of LPS-Induced Cytotoxicity
2.4.2. Anti-Inflammatory Activity
3. Materials and Methods
3.1. Synthesis and Purification of the Compounds
3.2. Potentiometric Titration
3.3. Spectroscopic Measurements (UV-Vis and CD)
3.4. Mass Spectrometry Measurements
3.5. Biological Evaluation
3.5.1. Cell Line and Culture Media
3.5.2. Cytotoxicity Evaluation
3.5.3. Experimental Design
3.5.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Florio, R.; Carradori, S.; Veschi, S.; Brocco, D.; Genni, T.D.; Cirilli, R.; Casulli, A.; Cama, A.; Lellis, L. De Screening of Benzimidazole-Based Anthelmintics and Their Enantiomers as Repurposed Drug Candidates in Cancer Therapy. Pharmaceuticals 2021, 14, 372. [Google Scholar] [CrossRef] [PubMed]
- Florio, D.; Iacobucci, I.; Ferraro, G.; Mansour, A.M. Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing. Pharmaceuticals 2019, 12, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marasco, D.; Messori, L.; Marzo, T.; Merlino, A. Oxaliplatin vs. cisplatin: Competition experiments on their binding to lysozyme. Dalton Trans. 2015, 44, 10392–10398. [Google Scholar] [CrossRef] [Green Version]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef]
- Jeżowska-Bojczuk, M.; Stokowa-Sołtys, K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur. J. Med. Chem. 2018, 143, 997–1009. [Google Scholar] [CrossRef]
- Sherlina Daphny, C.; Arputha Bibiana, M.; Vengatesan, R.; Selvamani, P.; Latha, S. Antimicrobial Peptides-A milestone for developing antibiotics against drug resistant infectious pathogens. J. Pharm. Sci. Res. 2015, 7, 226–230. [Google Scholar]
- Alexander, J.L.; Thompson, Z.; Cowan, J.A. Antimicrobial Metallopeptides. ACS Chem. Biol. 2018, 13, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. 2021. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Waldron, K.J.; Robinson, N.J. How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 2009, 7, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Barber-Zucker, S.; Shaanan, B.; Zarivach, R. Transition metal binding selectivity in proteins and its correlation with the phylogenomic classification of the cation diffusion facilitator protein family. Sci. Rep. 2017, 7, 16381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure-stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319–346. [Google Scholar] [CrossRef]
- Sóvágó, I.; Osz, K. Metal ion selectivity of oligopeptides. Dalt. Trans. 2006, 32, 3841–3854. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.J. Structure and Function of “Metalloantibiotics”. Med. Res. Rev. 2003, 23, 697–762. [Google Scholar] [CrossRef] [PubMed]
- Garbutt, J.T.; Morehouse, A.L.; Hanson, A.M. Metal Binding Properties of Bacitracin. J. Agric. Food Chem. 1961, 9, 285–289. [Google Scholar] [CrossRef]
- Ming, L.J.; Epperson, J.D. Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J. Inorg. Biochem. 2002, 91, 46–58. [Google Scholar] [CrossRef]
- Scogin, D.A.; Mosberg, H.I.; Storm, D.R.; Gennis, R.B. Binding of nickel and zinc ions to bacitracin A. Biochemistry 1980, 19, 3348–3352. [Google Scholar] [CrossRef]
- Piacham, T.; Isarankura-Na-Ayudhya, C.; Nantasenamat, C.; Yainoy, S.; Ye, L.; Bülow, L.; Prachayasittikul, V. Metalloantibiotic Mn(II)-bacitracin complex mimicking manganese superoxide dismutase. Biochem. Biophys. Res. Commun. 2006, 341, 925–930. [Google Scholar] [CrossRef]
- Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. New Antibiotics, Bleomycin A and B. J. Antibiot. 1966, 19, 200–209. [Google Scholar] [CrossRef]
- Iitaka, Y.; Nakamura, H.; Nakatani, T.; Muraoka, Y.; Fulu, A.; Takita, T.; Umezawa, H. Chemistry of bleomycin. XX the x-ray structure determination of P-3A Cu(II)-complex, a biosynthetic intermediate of bleomycin. J. Antibiot. 1978, 31, 1070–1072. [Google Scholar] [CrossRef] [Green Version]
- Paulmann, M.; Arnold, T.; Linke, D.; Özdirekcan, S.; Kopp, A.; Gutsmann, T.; Kalbacher, H.; Wanke, I.; Schuenemann, V.J.; Habeck, M.; et al. Structure-activity analysis of the dermcidin-derived peptide DCD-1L, an anionic antimicrobial peptide present in human sweat. J. Biol. Chem. 2012, 287, 8434–8443. [Google Scholar] [CrossRef] [Green Version]
- Libardo, M.D.J.; Bahar, A.A.; Ma, B.; Fu, R.; McCormick, L.E.; Zhao, J.; McCallum, S.A.; Nussinov, R.; Ren, D.; Angeles-Boza, A.M.; et al. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J. 2017, 284, 3662–3683. [Google Scholar] [CrossRef] [Green Version]
- Pinkham, A.M.; Yu, Z.; Cowan, J.A. Attenuation of West Nile Virus NS2B/NS3 Protease by Amino Terminal Copper and Nickel Binding (ATCUN) Peptides. J. Med. Chem. 2018, 61, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Omardien, S.; Brul, S.; Zaat, S.A.J. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Front. Cell Dev. Biol. 2016, 4, 1–16. [Google Scholar] [CrossRef]
- Wenzel, M.; Chiriac, A.I.; Otto, A.; Zweytick, D.; May, C.; Schumacher, C.; Gust, R.; Albada, H.B.; Penkova, M.; Krämer, U.; et al. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc. Natl. Acad. Sci. USA 2014, 111, 1409–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramón-García, S.; Mikut, R.; Ng, C.; Ruden, S.; Volkmer, R.; Reischl, M.; Hilpert, K.; Thompson, C.J. Targeting mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob. Agents Chemother. 2013, 57, 2295–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khara, J.S.; Priestman, M.; Uhía, I.; Hamilton, M.S.; Krishnan, N.; Wang, Y.; Yang, Y.Y.; Langford, P.R.; Newton, S.M.; Robertson, B.D.; et al. Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. J. Antimicrob. Chemother. 2016, 71, 2181–2191. [Google Scholar] [CrossRef] [Green Version]
- Pitucha, M.; Korga-Plewko, A.; Czylkowska, A.; Rogalewicz, B.; Drozd, M.; Iwan, M.; Kubik, J.; Humeniuk, E.; Adamczuk, G.; Karczmarzyk, Z.; et al. Influence of complexation of thiosemicarbazone derivatives with Cu (II) ions on their antitumor activity against melanoma cells. Int. J. Mol. Sci. 2021, 22, 3104. [Google Scholar] [CrossRef]
- Padnya, P.; Shibaeva, K.; Arsenyev, M.; Baryshnikova, S.; Terenteva, O.; Shiabiev, I.; Khannanov, A.; Boldyrev, A.; Gerasimov, A.; Grishaev, D.; et al. Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules 2021, 26, 2334. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.F.; Huang, Q.P.; Cai, J.H.; Zheng, G.J.; Huang, Q.C.; Liu, Z.L.; Chen, Z.L.; Wei, Y.H. Synthesis, characterization, DNA/HSA interactions, and anticancer activity of two novel copper(II) complexes with 4-chloro-3-nitrobenzoic acid ligand. Molecules 2021, 26, 4028. [Google Scholar] [CrossRef]
- Grimsley, G.R.; Scholtz, J.M.; Pace, C.N. A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 2009, 18, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K.L.; Grimsley, G.R.; Yakovlev, G.I.; Makarov, A.A.; Pace, C.N. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci. 2001, 10, 1206–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal, W.; Jezowska-Bojczuk, M.; Kozlowski, H.; Chruscinski, L.; Kupryszewski, G.; Witczuk, B. Cu(II) binding by angiotensin II fragments: Asp-Arg-Val-Tyr-Ile-His and Arg-Val-Tyr-Ile-His. Competition between amino group and imidazole nitrogens in anchoring of metal ions. J. Inorg. Biochem. 1995, 57, 235–247. [Google Scholar] [CrossRef]
- Myari, A.; Malandrinos, G.; Deligiannakis, Y.; Plakatouras, J.C.; Hadjiliadis, N.; Nagy, Z.; Sòvágó, I. Interaction of Cu2+ with His–Val–His and of Zn2+ with His–Val–Gly–Asp, two peptides surrounding metal ions in Cu,Zn-superoxide dismutase enzyme. J. Inorg. Biochem. 2001, 85, 253–261. [Google Scholar] [CrossRef]
- Orfei, M.; Alcaro, M.C.; Marcon, G.; Chelli, M.; Ginanneschi, M.; Kozlowski, H.; Brasuń, J.; Messori, L. Modeling of copper(II) sites in proteins based on histidyl and glycyl residues. J. Inorg. Biochem. 2003, 97, 299–307. [Google Scholar] [CrossRef]
- Czapor-Irzabek, H.; Cebrat, M.; Czyznikowska, Z.; Brasuń, J. The interaction of the ubiquitin 50-59 fragment with copper(II) ions. J. Inorg. Biochem. 2012, 110, 40–45. [Google Scholar] [CrossRef]
- Wątły, J.; Hecel, A.; Wieczorek, R.; Świątek-Kozłowska, J.; Kozłowski, H.; Rowińska-Żyrek, M. Uncapping the N-terminus of a ubiquitous His-tag peptide enhances its Cu2+ binding affinity. Dalt. Trans. 2019, 48, 13567–13579. [Google Scholar] [CrossRef]
- Szyrwiel, Ł.; Pap, J.S.; Szczukowski, Ł.; Kerner, Z.; Brasuń, J.; Setner, B.; Szewczuk, Z.; Malinka, W. Branched peptide with three histidines for the promotion of CuII binding in a wide pH range—Complementary potentiometric, spectroscopic and electrochemical studies. RSC Adv. 2015, 5, 56922–56931. [Google Scholar] [CrossRef] [Green Version]
- Szyrwiel, Ł.; Szczukowski, Ł.; Pap, J.S.; Setner, B.; Szewczuk, Z.; Malinka, W. The Cu2+ binding properties of branched peptides based on l -2,3-diaminopropionic acid. Inorg. Chem. 2014, 53, 7951–7959. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, A.; Kuczer, M.; Czarniewska, E.; Rosiński, G.; Kowalik-Jankowska, T. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity. J. Inorg. Biochem. 2014, 138, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Paksi, Z.; Jancsó, A.; Pacello, F.; Nagy, N.; Battistoni, A.; Gajda, T. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. J. Inorg. Biochem. 2008, 102, 1700–1710. [Google Scholar] [CrossRef]
- Sigel, H.; Martin, R.B. Coordinating Properties of the Amide Bond. Stability and Structure of Metal Ion Complexes of Peptides and Related Ligands. Chem. Rev. 1982, 82, 385–426. [Google Scholar] [CrossRef]
- Brookes, G.; Pettit, L.D. Stability constants for complex formation between cobalt(II), nickel(II), copper(II) and 2,3-diaminopropionic acid, 2,4-diaminobutyric acid, ornithine, lysine, and arginine. Dalt. Trans. 1976, 1, 42–46. [Google Scholar] [CrossRef]
- Nair, M.S.; Venkatachalapathi, K.; Santappa, M.; Murugan, P.K. Ternary Co-ordination Complexes of Copper (II) with Some selected Amino-acids. Dat. Trans. 1982, 1, 55–60. [Google Scholar] [CrossRef]
- Nair, M.S.; Theodore, S.; Manickam, D.; Arasu, P.T.; Natarajan, C. Stability and structure of Cu(II) and Zn(II) ternary complexes with L-glutamic acid and some diaminocarboxylic acids. Proc. Indian Acad. Sci. Chem. Sci. 1990, 102, 731–736. [Google Scholar] [CrossRef]
- Conato, C.; Contino, A.; Maccarrone, G.; Magrì, A.; Remelli, M.; Tabbì, G. Copper(II) complexes with L-lysine and L-ornithine: Is the side-chain involved in the coordination? A thermodynamic and spectroscopic study. Thermochim. Acta 2000, 362, 13–23. [Google Scholar] [CrossRef]
- Sóvágó, I.; Kállay, C.; Várnagy, K. Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes. Coord. Chem. Rev. 2012, 256, 2225–2233. [Google Scholar] [CrossRef]
- Damante, C.A.; Ösz, K.; Nagy, Z.; Pappalardo, G.; Grasso, G.; Impellizzeri, G.; Rizzarelli, E.; Sóvágó, I. The metal loading ability of β-amyloid N-terminus: A combined potentiometric and spectroscopic study of copper(II) complexes with β-amyloid(1–16), its short or mutated peptide fragments, and its polyethylene glycol (PEG)-ylated analogue. Inorg. Chem. 2008, 47, 9669–9683. [Google Scholar] [CrossRef]
- Neupane, K.P.; Aldous, A.R.; Kritzer, J.A. Metal-binding and redox properties of substituted linear and cyclic ATCUN motifs. J. Inorg. Biochem. 2014, 139, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Swiatek-Kozlowska, J.; Brasuń, J.; Łuczkowski, M.; Makowski, M. Binding abilities of dehydropeptides towards Cu(II) and Ni(II) ions. Impact of Z-E isomerization on metal ion binding. J. Inorg. Biochem. 2002, 90, 106–112. [Google Scholar] [CrossRef]
- Wątły, J.; Hecel, A.; Rowińska-Żyrek, M.; Kozłowski, H. Impact of histidine spacing on modified polyhistidine tag—Metal ion interactions. Inorg. Chim. Acta 2018, 472, 119–126. [Google Scholar] [CrossRef]
- Witkowska, D.; Politano, R.; Rowinska-Zyrek, M.; Guerrini, R.; Remelli, M.; Kozlowski, H. The coordination of Ni II and Cu II ions to the polyhistidyl motif of Hpn protein: Is it as strong as we think? Chem. A Eur. J. 2012, 18, 11088–11099. [Google Scholar] [CrossRef] [PubMed]
- Irving, H.M.; Miles, M.G.; Pettit, L.D. A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 1967, 38, 475–488. [Google Scholar] [CrossRef]
- Gran, G. Determination of the Equivalent Point in Potentiometric Titrations.pdf. Acta Chem. Scand. 1950, 4, 559–577. [Google Scholar] [CrossRef] [Green Version]
- Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77, 661–671. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
L1 | L2 | L3 | ||||
---|---|---|---|---|---|---|
Form | logβi | logKi | logβi | logKi | logβi | logKi |
H10L | 91.45 ± 0.05 | 5.86 | ||||
H9L | 85.59 ± 0.05 | 6.92 | ||||
H8L | 78.67 ± 0.05 | 8.45 | 67.25 ± 0.03 | 2.50 | 69.10 ± 0.02 | 2.64 |
H7L | 70.22 ± 0.05 | 8.94 | 64.75 ± 0.03 | 5.96 | 66.47 ± 0.02 | 6.77 |
H6L | 61.29 ± 0.05 | 9.39 | 58.79 ± 0.03 | 7.18 | 59.70 ± 0.02 | 8.50 |
H5L | 51.90 ± 0.07 | 9.64 | 51.60 ± 0.03 | 9.00 | 51.20 ± 0.02 | 9.10 |
H4L | 42.26 ± 0.04 | 10.08 | 42.60 ± 0.03 | 9.73 | 42.09 ± 0.02 | 9.73 |
H3L | 32.18 ± 0.10 | 10.21 | 32.87 ± 0.03 | 10.22 | 32.36 ± 0.03 | 10.14 |
H2L | 21.97 ± 0.02 | 10.82 | 22.65 ± 0.02 | 11.03 | 22.22 ± 0.01 | 10.91 |
HL | 11.15 ± 0.11 | 11.15 | 11.62 ± 0.04 | 11.62 | 11.31 ± 0.03 | 11.31 |
L1 | L2 | L3 | ||||
---|---|---|---|---|---|---|
Complex Form | logβpqr | logKpqr | logβpqr | logKpqr | logβpqr | logKpqr |
CuH7L | 80.58 ± 0.01 | 4.54 | ||||
CuH6L | 76.04 ± 0.01 | 6.46 | ||||
CuH5L | 69.59 ± 0.01 | 9.08 | ||||
CuH4L | 60.50 ± 0.01 | 9.51 | 53.25 ± 0.03 | 5.28 | 55.24 ± 0.06 | 4.84 |
CuH3L | 50.99 ± 0.01 | 9.83 | 47.97 ± 0.03 | 9.36 | 50.40 ± 0.03 | 9.39 |
CuH2L | 41.16 ± 0.01 | 10.12 | 38.60 ± 0.06 | 9.79 | 41.01 ± 0.08 | 9.82 |
CuHL | 31.04 ± 0.01 | 10.46 | 28.81 ± 0.05 | 10.37 | 31.19 ± 0.07 | 10.33 |
CuL | 20.58 ± 0.02 | 10.78 | 18.44 ± 0.08 | 10.96 | 20.86 ± 0.08 | 10.88 |
CuH−1L | 9.80 ± 0.01 | 11.38 | 7.48 ± 0.09 | 11.13 | 9.98 ± 0.07 | |
CuH−2L | −1.58 ± 0.01 | −3.65 ± 0.07 |
L1 | L2 | L3 | ||||
---|---|---|---|---|---|---|
Complex Form | logβpqr | logKpqr | logβpqr | logKpqr | logβpqr | logKpqr |
NiH6L | 68.79 ± 0.02 | 7.26 | ||||
NiH5L | 61.53 ± 0.03 | 18.21 | ||||
NiH4L | 48.21 ± 0.05 | 6.69 | ||||
NiH3L | 43.32 ± 0.04 | 20.09 | 41.52 ± 0.02 | 18.94 | 42.38 ± 0.02 | 9.26 |
NiH2L | 33.13 ± 0.04 | 9.65 | ||||
NiHL | 23.23 ± 0.05 | 10.25 | 22.58 ± 0.02 | 20.88 | 23.47 ± 0.05 | 10.38 |
NiL | 12.98 ± 0.05 | 21.75 | 13.09 ± 0.05 | 10.47 | ||
NiH-1L | 1.70 ± 0.03 | 11.05 | 2.63 ± 0.03 | |||
NiH-2L | −8.77 ± 0.05 | −9.35 ± 0.05 | 11.62 | |||
NiH-3L | −20.97 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotynia, A.; Wiatrak, B.; Kamysz, W.; Neubauer, D.; Jawień, P.; Marciniak, A. Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics. Int. J. Mol. Sci. 2021, 22, 12028. https://doi.org/10.3390/ijms222112028
Kotynia A, Wiatrak B, Kamysz W, Neubauer D, Jawień P, Marciniak A. Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics. International Journal of Molecular Sciences. 2021; 22(21):12028. https://doi.org/10.3390/ijms222112028
Chicago/Turabian StyleKotynia, Aleksandra, Benita Wiatrak, Wojciech Kamysz, Damian Neubauer, Paulina Jawień, and Aleksandra Marciniak. 2021. "Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics" International Journal of Molecular Sciences 22, no. 21: 12028. https://doi.org/10.3390/ijms222112028
APA StyleKotynia, A., Wiatrak, B., Kamysz, W., Neubauer, D., Jawień, P., & Marciniak, A. (2021). Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics. International Journal of Molecular Sciences, 22(21), 12028. https://doi.org/10.3390/ijms222112028