How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa
Abstract
:1. Introduction
2. Results
2.1. Cloning and Analysis of the PtCP5 Gene
2.2. Expression Pattern of the PtCP5 Gene
2.3. Overexpressing PtCP5 Obviously Delayed Seed Germination Time and Decreased the Growth Rate in Arabidopsis
2.4. Overexpressing PtCP5 Markedly Impaired Pollen Development
3. Discussion
3.1. PtCP5 Is Involved in Storage Proteins Accumulated in Seeds
3.2. PtCP5 Is Involved in Pollen Maturation
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Cloning of PtCP5 Gene
4.3. Promoter Region Cloning of the PtCP5 Gene
4.4. Multiple Alignments and Bioinformatic Analyses
4.5. Expression Pattern Analysis of PtCP5
4.6. Localization Analysis of PtCP5
4.7. Histochemical Staining Analysis
4.8. Plasmid Construction and Plant Transformation
4.9. Physiological Experiments
4.10. Light Microscopic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grudkowska, M.; Zagdanska, B. Multifunctional role of plant cysteine proteinases. Acta Biochim. Pol. 2004, 51, 609–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan-Wilson, A.L.; Wilson, K.A. Mobilization of seed protein reserves. Physiol. Plant. 2012, 145, 140–153. [Google Scholar] [CrossRef]
- Prabucka, B.; Drzymała, A.; Grabowska, A. Molecular cloning and expression analysis of the main gliadin-degrading cysteine endopeptidase EP8 from triticale. J. Cereal. Sci. 2013, 58, 284–289. [Google Scholar] [CrossRef]
- Liu, H.; Hu, M.; Wang, Q.; Cheng, L.; Zhang, Z. Role of Papain-Like Cysteine Proteases in Plant Development. Front. Plant. Sci. 2018, 9, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewinska, J.; Siminska, J.; Bielawski, W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. J. Plant Physiol. 2016, 207, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Minamikawa, T. Identification and characterization of a rice cysteine endopeptidase that digests glutelin. Eur. J. Biochem. 1996, 239, 310–316. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Jones, B.L. Characterization of germinated barley endoproteolytic enzymes by two-dimensional gel electrophoresis. J. Cereal. Sci. 1995, 21, 145–153. [Google Scholar] [CrossRef]
- Shimada, T.; Yamada, K.; Kataoka, M.; Nakaune, S.; Koumoto, Y.; Kuroyanagi, M.; Tabata, S.; Kato, T.; Shinozaki, K.; Seki, M.; et al. Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 32292–32299. [Google Scholar] [CrossRef] [Green Version]
- Nakaune, S.; Yamada, K.; Kondo, M.; Kato, T.; Tabata, S.; Nishimura, M.; Hara-Nishimura, I. A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 2005, 17, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Mikkonen, A.; Porali, I.; Cercós, M.; Ho, T.-H.D. A major cysteine proteinase, EPB, in germinating barley seeds: Structure of two intronless genes and regulation of expression. Plant. Mol. Biol. 1996, 31, 239–254. [Google Scholar] [CrossRef]
- Martinez, M.; Cambra, I.; Carrillo, L.; Diaz-Mendoza, M.; Diaz, I. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol. 2009, 151, 1531–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambra, I.; Martinez, M.; Dader, B.; Gonzalez-Melendi, P.; Gandullo, J.; Santamaria, M.E.; Diaz, I. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins. J. Exp. Bot. 2012, 63, 4615–4629. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Mendoza, M.; Dominguez-Figueroa, J.D.; Velasco-Arroyo, B.; Cambra, I.; Gonzalez-Melendi, P.; Lopez-Gonzalvez, A.; Garcia, A.; Hensel, G.; Kumlehn, J.; Diaz, I.; et al. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination. Plant Physiol. 2016, 170, 2511–2524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Wang, Y.; Lv, X.M.; Li, H.; Sun, P.; Lu, H.; Li, F.L. NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. J. Exp. Bot. 2009, 60, 1569–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.X.; Dong, C.H.; Yu, J.Y.; Shi, L.; Tong, C.B.; Li, Z.B.; Huang, J.Y.; Liu, S.Y. Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. Plant Cell Tissue Organ Cult. 2014, 119, 383–397. [Google Scholar] [CrossRef]
- Zhang, D.D.; Liu, D.; Lv, X.M.; Wang, Y.; Xun, Z.L.; Liu, Z.X.; Li, F.L.; Lu, H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 2014, 26, 2939–2961. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.Y.; Guo, X.R.; Zhang, J.X.; Liu, Y.D.; Wang, B.; Li, H.; Lu, H. betaVPE is involved in tapetal degradation and pollen development by activating proprotease maturation in Arabidopsis thaliana. J. Exp. Bot. 2020, 71, 1943–1955. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhou, Z.; Tang, S.; Zhang, Z.Q.; Xia, S.Q.; Qin, M.M.; Li, B.; Wen, J.; Yi, B.; Shen, J.X.; et al. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis. Plant Cell Physiol. 2016, 57, 1972–1984. [Google Scholar] [CrossRef]
- Lee, S.; Jung, K.H.; An, G.; Chung, Y.Y. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant. Mol. Biol. 2004, 54, 755–765. [Google Scholar] [CrossRef]
- Richau, K.H.; Kaschani, F.; Verdoes, M.; Pansuriya, T.C.; Niessen, S.; Stuber, K.; Colby, T.; Overkleeft, H.S.; Bogyo, M.; Van der Hoorn, R.A. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol. 2012, 158, 1583–1599. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Fernandez, R.; Wozny, D.; Iriondo-de Hond, M.; Onate-Sanchez, L.; Carbonero, P.; Barrero-Sicilia, C. The AtCathB3 gene, encoding a cathepsin B-like protease, is expressed during germination of Arabidopsis thaliana and transcriptionally repressed by the basic leucine zipper protein GBF1. J. Exp. Bot. 2014, 65, 2009–2021. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.M.; Yu, J.; Ge, Y.; Mironov, A.; Gallois, P. Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis. New Phytol. 2018, 218, 1143–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLellan, H.; Gilroy, E.M.; Yun, B.W.; Birch, P.R.J.; Loake, G.J. Functional redundancy in the Arabidopsis Cathepsin B gene family contributes to basal defence, the hypersensitive response and senescence. New Phytol. 2009, 183, 408–418. [Google Scholar] [CrossRef]
- Perraki, A.; Cacas, J.L.; Crowet, J.M.; Lins, L.; Castroviejo, M.; German-Retana, S.; Mongrand, S.; Raffaele, S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement. Plant Physiol. 2012, 160, 624–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntz, K.; Belozersky, M.A.; Dunaevsky, Y.E.; Schlereth, A.; Tiedemann, J. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J. Exp. Bot. 2001, 52, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, A.; Tsukamoto, K.; Iwamoto, K.; Ito, Y.; Yuasa, K. Enzymatic characterization of germination-specific cysteine protease-1 expressed transiently in cotyledons during the early phase of germination. J. Biochem. 2013, 153, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, N.A.; Craddock, C.P.; Frigerio, L. Pathways for protein transport to seed storage vacuoles. Biochem. Soc. Trans. 2005, 33, 1016–1018. [Google Scholar] [CrossRef]
- Feeney, M.; Kittelmann, M.; Menassa, R.; Hawes, C.; Frigerio, L. Protein Storage Vacuoles Originate from Remodeled Preexisting Vacuoles in Arabidopsis thaliana. Plant Physiol. 2018, 177, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Herman, E.M.; Larkins, B.A. Protein storage bodies and vacuoles. Plant Cell 1999, 11, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Oracz, K.; Stawska, M. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination. Front. Plant Sci. 2016, 7, 1128. [Google Scholar] [CrossRef] [Green Version]
- Stacey, M.G.; Osawa, H.; Patel, A.; Gassmann, W.; Stacey, G. Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 2006, 223, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.H.; Wang, W.L.; Zhao, K.K.; Liu, C.M.; Bai, L.; Li, R.; Guo, Y. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development. Plant Physiol. 2017, 173, 219–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannini, C.; Marsoni, M.; Scoccianti, V.; Ceccarini, C.; Domingo, G.; Bracale, M.; Crinelli, R. Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. J. Proteom. 2019, 192, 334–345. [Google Scholar] [CrossRef] [PubMed]
Element | Core Sequence | Function | Number |
---|---|---|---|
TATC-box | TATCCCA | Respond to GA | 1 |
ABRE | ACGTG | Respond to ABA | 1 |
TGACG-motif | TGACG | Respond to methyl jasmonate | 1 |
GC-motif | CCCCCG | enhancer-like element involved in anoxic specific inducibility | 1 |
G-box | TACGTG | cis-acting regulatory element involved in light responsiveness | 1 |
Gap-box | CAAATGAA(A/G)A | part of a light responsive element | 1 |
chs-CMA1a | TTACTTAA | part of a light responsive element | 1 |
AuxRR-core | GGTCCAT | Respond to auxin | 1 |
CGTCA-motif | CGTCA | Respond to methyl jasmonate | 1 |
circadian | CAAAGATATC | Regulation to circadian rhythm | 1 |
MRE | AACCTAA | MYB binding site involved in light responsiveness | 2 |
MYB | CAACCA/CAACAG | Regulation to drought and ABA | 2 |
MYC | CAATTG/CATTTG | Regulation to drought, ABA and cold | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Mo, L.; Guo, X.; Zhang, Q.; Li, H.; Liu, D.; Lu, H. How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa. Int. J. Mol. Sci. 2021, 22, 12637. https://doi.org/10.3390/ijms222312637
Liu X, Mo L, Guo X, Zhang Q, Li H, Liu D, Lu H. How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa. International Journal of Molecular Sciences. 2021; 22(23):12637. https://doi.org/10.3390/ijms222312637
Chicago/Turabian StyleLiu, Xiatong, Lijie Mo, Xiaorui Guo, Qiang Zhang, Hui Li, Di Liu, and Hai Lu. 2021. "How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa" International Journal of Molecular Sciences 22, no. 23: 12637. https://doi.org/10.3390/ijms222312637
APA StyleLiu, X., Mo, L., Guo, X., Zhang, Q., Li, H., Liu, D., & Lu, H. (2021). How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa. International Journal of Molecular Sciences, 22(23), 12637. https://doi.org/10.3390/ijms222312637