Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing
Abstract
:1. Introduction
2. Results
2.1. The ppr278-1 Mutants Cause Aberrant Seed Development in Maize
2.2. PPR278 Encodes a Constitutively Expressed PPR Protein
2.3. PPR278 Belongs to the p-Subfamily and Dually Localizes in Cytoplasm and Nucleus
2.4. PPR278 Is Essential for the Cis-Splicing of nad2 Intron 4 and nad5 Introns 1 and 4
2.5. PPR278 Is Required for C-to-U RNA Editing in 10 Mitochondrial Transcripts
2.6. Mutation of PPR278 Alters the Expression of Mitochondrial Function-Related Genes
3. Discussion
3.1. PPR278 Functions in RNA Cis-Splicing and RNA Editing
3.2. PPR278 Is Involved in Regulation of Nuclear Gene Expression
4. Materials and Methods
4.1. Plant Materials
4.2. Bulked Segregant Analysis
4.3. Candidate Gene Analysis and Validation
4.4. Subcellular Localization of PPR278
4.5. Phylogenetic Analysis
4.6. RT-PCR and qRT-PCR
4.7. Analysis of RNA Splicing by PPR278
4.8. Analysis of RNA Editing by PPR278
4.9. RNA-Sequencing Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Toole, N.; Hattori, M.; Andres, C.; Iida, K.; Lurin, C.; Schmitz-linneweber, C.; Sugita, M.; Small, I. On the expansion of the pentatricopeptide repeat gene family in plants. Mol. Biol. Evol. 2008, 25, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Barkan, A.; Rojas, M.; Fujii, S.; Yap, A.; Chong, Y.S.; Bond, C.S.; Small, I. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet. 2012, 8, e1002910. [Google Scholar] [CrossRef] [PubMed]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Lurin, C.; Andres, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyere, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz-linneweber, C.; Small, I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008, 13, 663–670. [Google Scholar] [CrossRef]
- Clifton, S.W.; Minx, P.; Fauron, C.M.; Gibson, M.; Allen, J.O.; Sun, H.; Thompson, M.; Barbazuk, W.B.; Kanuganti, S.; Tayloe, C.; et al. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 2004, 136, 3486–3503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.G.; Francs-Small, C.C.D.; Ostersetzer-Biran, O. Group II intron splicing factors in plant mitochondria. Front. Plant Sci. 2014, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.J.; Ren, Z.J.; Zhang, X.F.; Liu, Y.; Fu, J.J.; Qi, C.L.; Tatar, W.; Rasmusson, A.G.; Wang, G.Y.; Liu, Y.J. The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial nad1 intron 2 and seed development in maize. J. Exp. Bot. 2020, 72, 6933–6948. [Google Scholar] [CrossRef]
- Xiu, Z.; Sun, F.; Shen, Y.; Zhang, X.; Jiang, R.; Bonnard, G.; Zhang, J.; Tan, B.C. Empty pericarp 16 is required for mitochondrial nad2 intron 4 cis-splicing.; complex I assembly and seed development in maize. Plant J. 2016, 85, 507–519. [Google Scholar] [CrossRef]
- Chen, X.Z.; Feng, F.; Qi, W.W.; Xu, L.M.; Yao, D.S.; Wang, Q.; Song, R.T. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Mol. Plant 2017, 10, 427–441. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.W.; Luan, S.C.; Chen, X.Z.; Wang, Q.; Feng, Y.; Zhu, C.G.; Qi, W.W.; Song, R.T. Maize Dek37 encodes a P-type PPR protein that affects cis-splicing of mitochondrial nad2 intron 1 and seed development. Genetics 2018, 208, 1069–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, W.; Tian, Z.; Lu, L.; Chen, X.; Chen, X.; Zhang, W.; Song, R.T. Editing of mitochondrial transcripts nad3 and cox2 by Dek10 is essential for mitochondrial function and maize plant development. Genetics 2017, 205, 1489–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, W.; Yang, Y.; Feng, X.; Zhang, M.; Song, R.T. Mitochondrial function and maize kernel development requires Dek2.; a pentatricopeptide repeat protein involved in nad1 mRNA splicing. Genetics 2017, 205, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.M.; Pan, Z.Y.; Zhao, H.L.; Zhao, J.L.; Cai, M.J.; Li, J.; Zhang, Z.X.; Qiu, F.Z. Empty pericarp11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J. Exp. Bot. 2017, 68, 4571–4581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Zhang, X.Y.; Shen, Y.; Wang, H.C.; Liu, R.; Wang, X.M.; Gao, D.H.; Yang, Y.Z.; Liu, Y.W.; Tan, B.C. The pentatricopeptide repeat protein empty pericarp8 is required for the splicing of three mitochondrial introns and seed development in maize. Plant J. 2018, 95, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, J.Y.; Zhong, S.; Gu, H.Y.; He, S.; Qu, L.J. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. J. Genet. Genom. 2018, 45, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Xiu, Z.H.; Jiang, R.C.; Liu, Y.W.; Zhang, X.Y.; Yang, Y.Z.; Li, X.J.; Zhang, X.; Wang, Y.; Tan, B.C. The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of three nad2 introns and seed development in maize. J. Exp. Bot. 2019, 70, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.Y.; Liu, M.; Xiao, Z.Y.; Ren, X.M.; Zhao, H.L.; Gong, D.M.; Liang, K.; Tan, Z.D.; Shao, Y.Q.; Qiu, F.Z. ZmSMK9, a pentatricopeptide repeat protein, is involved in the cis-splicing of nad5, kernel development and plant architecture in maize. Plant. Sci. 2019, 288, 110205. [Google Scholar] [CrossRef]
- Ren, R.C.; Wang, L.L.; Zhang, L.; Zhao, Y.J.; Wu, J.W.; Wei, Y.M.; Zhang, X.S.; Zhao, X.Y. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the cis-splicing of nad4 in maize mitochondria. J. Integr. Plant Biol. 2020, 62, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Feng, F.; Qi, W.W.; Song, R.T. Dek42 encodes an RNA binding protein that affects alternative pre-mRNA splicing and maize kernel development. J. Integr. Plant Biol. 2020, 61, 728–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiu, Z.H.; Peng, L.; Wang, Y.; Yang, H.H.; Sun, F.; Wang, X.M.; Cao, S.K.; Jiang, R.C.; Wang, L.; Chen, B.Y.; et al. Empty pericarp 24 and empty pericarp 25 are required for the splicing of mitochondrial introns complex Ⅰ assembly and seed development in maize. Front. Plant Sci. 2020, 11, 608550. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; Xiu, Z.H.; Wang, L.; Cao, S.K.; Li, X.L.; Sun, F.; Tan, B.C. Two pentatricopeptide repeat proteins are required for the splicing of nad5 introns in maize. Front. Plant Sci. 2020, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Z.; Ding, S.; Liu, X.Y.; Tang, J.J.; Wang, Y.; Sun, F.; Xu, C.H.; Tan, B.C. EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize. RNA Biol. 2020, 18, 499–509. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Ding, S.; Wang, Y.; Wang, H.C.; Liu, X.Y.; Sun, F.; Xu, C.; Liu, B.; Tan, B.C. PPR20 is required for the cis-splicing of mitochondrial nad2 intron 3 and seed development in maize. Plant Cell Physiol. 2020, 61, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chen, Z.L.; Yang, Y.Z.; Sun, F.; Ding, S.; Li, X.L.; Xu, C.H.; Tan, B.C. PPR14 interacts with PPR-SMR1 and CRM protein Zm-Mcsf1 to facilitate mitochondrial intron splicing in maize. Front. Plant Sci. 2020, 11, 814. [Google Scholar] [CrossRef]
- Liu, R.; Cao, S.K.; Sayyed, A.; Xu, C.H.; Sun, F.; Wang, X.M.; Tan, B.C. The mitochondrial pentatricopeptide repeat protein PPR18 is required for the cis-splicing of nad4 intron 1 and essential to seed development in maize. Int. J. Mol. Sci. 2020, 21, 4047. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Zhang, Q.X.; Yin, P. RNA editing machinery in plant organelles. Sci. China Life Sci. 2018, 61, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Gualberto, J.M.; Lamattina, L.; Bonnard, G.; Weil, J.H.; Grienenberger, J.M. RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 1989, 341, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Boussardon, C.; Salone, V.; Avon, A.; Berthome, R.; Hammani, K.; Okuda, K.; Shikanai, T.; Small, I.; Lurin, C. Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids. Plant Cell 2012, 24, 3684–3694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.J.; Fan, K.J.; Fang, T.; Zhang, J.J.; Yang, L.; Wang, J.H.; Wang, G.Y.; Liu, Y.J. Maize empty pericarp602 encodes a P-Type PPR protein that is essential for seed development. Plant Cell Physiol. 2019, 60, 1734–1746. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Xiu, Z.H.; Meeley, R.; Tan, B.C. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 2013, 25, 868–883. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Wang, X.; Bonnard, G.; Shen, Y.; Xiu, Z.; Li, X.; Gao, D.; Zhang, Z.; Tan, B.C. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing.; mitochondrial function and seed development in maize. Plant J. 2015, 84, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Z.; Ding, S.; Wang, H.C.; Sun, F.; Huang, W.L.; Song, S.; Xu, C.; Tan, B.C. The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing; mitochondrial complex biogenesis and seed development in maize. New Phytol. 2017, 214, 782–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.L.; Huang, W.L.; Yang, H.H.; Jiang, R.C.; Sun, F.; Wang, H.C.; Zhao, J.; Xu, C.H.; Tan, B.C. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. New Phytol. 2019, 221, 896–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, X.Y.; Yang, Y.Z.; Huang, J.; Sun, F.; Lin, J.S.; Gu, Z.Q.; Sayyed, A.; Xu, C.H.; Tan, B.C. Empty pericarp21 encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize. PLoS Genet. 2019, 15, e1008305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhong, M.Y.; Shuai, B.L.; Song, J.D.; Zhang, J.; Han, L.; Ling, H.L.; Tang, Y.P.; Wang, G.F.; Song, R.T. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. New Phytol. 2017, 214, 1563–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.J.; Gu, W.; Sun, S.L.; Chen, Z.L.; Chen, J.; Song, W.B.; Zhao, H.M.; Lai, J.S. Defective Kernel 39 encodes a PPR protein required for seed development in maize. J. Integr. Plant Biol. 2018, 60, 45–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosso, D.; Mbelo, S.; Vernoud, V.; Gendrot, G.; Dedieu, A.; Chambrier, P.; Dauzat, M.; Heurtevin, L.; Guyon, V.; Takenaka, M. PPR2263, a DYW-subgroup pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth. Plant Cell 2012, 24, 676–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.J.; Zhang, Y.F.; Hou, M.; Sun, F.; Shen, Y.; Xiu, Z.H.; Wang, X.; Chen, Z.L.; Sun, S.S.; Small, I. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J. 2014, 79, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Sayyed, A.; Liu, X.Y.; Yang, Y.Z.; Sun, F.; Wang, Y.; Wang, M.; Tan, B.C. Small kernel4 is required for mitochondrial cox1 transcript editing and seed development in maize. J. Integr. Plant Biol. 2019, 62, 777–792. [Google Scholar] [CrossRef]
- Ding, S.; Liu, X.Y.; Wang, H.C.; Wang, Y.; Tang, J.J.; Yang, Y.Z.; Tan, B.C. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. Plant Physiol. 2019, 240, 152992. [Google Scholar] [CrossRef] [PubMed]
- Colcombet, J.; Lopez-obando, M.; Heurtevin, L.; Bernard, C.; Martin, K.; Berthomé, R.; Lurin, C. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol. 2014, 10, 1557–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammani, K.; Gobert, A.; Hleibieh, K.; Choulier, L.; Small, I.; Giege, P. An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. Plant Cell 2011, 23, 730–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, C.; Jiang, S.C.; Lu, Y.F.; Wu, F.Q.; Yu, Y.T.; Liang, S.; Feng, X.J.; Comeras, S.P.; Lu, K.; Wu, Z.; et al. Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. J. Exp. Bot. 2014, 65, 5317–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.H.; Liu, N.Y.; Tang, Z.S.; Liu, J.; Yang, W.C. Arabidopsis glutamine-rich protein23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 2006, 18, 815–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, M.Y.; Liu, L.L.; Yu, Y.F.; Zhu, J.P.; Gao, H.; Wang, Y.H.; Wan, J.M. Lose-of-function of a rice nucleolus-localized pentatricopeptide repeat protein is responsible for the floury endosperm14 mutant phenotypes. Rice 2019, 12, 100–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.Y.; Wang, Y.L.; Wu, M.M.; Zhu, X.P.; Teng, X.; Sun, Y.L.; Zhu, J.P.; Zhang, Y.Y.; Jing, R.N.; Lei, J.; et al. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. J. Exp. Bot. 2019, 70, 4705–4720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekih, R.; Takagi, H.; Tamiru, M.; Abe, A.; Natsume, S.; Yaegashi, H.; Sharma, S.; Sharma, S.; Kanzaki, H.; Matsumura, H.; et al. MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS ONE 2013, 8, e68529. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.F.; Gutmann, B.; Zhong, X.; Ye, Y.T.; Fisher, M.F.; Bai, F.Q.; Castleden, I.; Song, Y.; Song, B.; Huang, J.Y.; et al. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J. 2016, 85, 532–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, G.; Royan, S.; Schallenberg-Rüdinger, M.; Lenz, H.; Castleden, I.R.; McDowell, R.; Vacher, M.A.; Tonti-Filippini, J.; Bond, C.S.; Knoop, V.; et al. The Expansion and Diversification of Pentatricopeptide Repeat RNA-Editing Factors in Plants. Mol. Plant 2020, 13, 215–230. [Google Scholar] [CrossRef]
- Yin, P.; Li, Q.; Yan, C.; Liu, Y.; Yu, F.; Wang, Z.; Long, J.; He, J.; Wang, H.W.; Wang, J.; et al. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 2013, 504, 168–171. [Google Scholar] [CrossRef]
- Giege, P.; Grienenberger, J.M.; Bonnard, G. Cytochrome c biogenesis in mitochondria. Mitochondrion 2008, 8, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Doniwa, Y.; Ueda, M.; Ueta, M.; Wada, A.; Kadowaki, K.I.; Tsutsumi, N. The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Gene 2010, 454, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Leu, K.C.; Hsieh, M.H.; Wang, H.J.; Hsieh, H.L.; Jauh, G.Y. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biol. 2016, 13, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Guillaumot, D.; Lopez-obando, M.; Baudry, K.; Avon, A.; Rigaill, G.; Longevialle, A.F.D.; Broche, B.; Takenaka, M.; Berthomé, R.; Jaeger, G.D.; et al. Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proc. Natl Acad. Sci. USA 2017, 114, 8877–8882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, M.J.; Li, S.Z.; Sun, F.; Sun, Q.; Zhao, H.L.; Ren, X.M.; Zhao, Y.X.; Tan, B.C.; Zhang, Z.X.; Qiu, F.Z. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant J. 2017, 91, 132–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Francisco, B.; Bretsnyder, E.C.; Rodgers, K.R.; Kranz, R.G. Heme ligand identification and redox properties of the cytochrome c synthetase, CcmF. Biochemistry 2011, 50, 10974–10985. [Google Scholar] [CrossRef] [Green Version]
- San Francisco, B.; Sutherland, M.C.; Kranz, R.G. The CcmFH complex is the system I holocytochrome c synthetase: Engineering cytochrome c maturation independent of CcmABCDE. Mol. Microbiol. 2014, 91, 996–1008. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.E.; Yan, X.W.; Zhao, Y.J.; Wei, Y.M.; Lu, X.D.; Zang, J.; Wu, J.W.; Zheng, G.M.; Ding, X.H.; Zhang, X.S.; et al. The novel E-subfamily pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize. BMC Plant Biol. 2020, 20, 553. [Google Scholar] [CrossRef] [PubMed]
- Gal, C.; Moore, K.M.; Paszkiewicz, K.; Kent, N.A.; Whitehall, S.M. The impact of the HIRA histone chaperone upon global nucleosome architecture. Cell Cycle 2015, 14, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.G.; Jin, G.P.; Fang, P.; Zhang, Y.; Feng, X.Z.; Tang, Y.P.; Qi, W.W.; Song, R.T. Maize pentatricopeptide repeat protein DEK41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. J. Exp. Bot. 2019, 70, 3795–3808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.W.; Chen, F.L.; Yu, X.H.; Lin, C.T.; Fu, Y.F. Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol. Biol. 2009, 71, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Z.; Tan, B.C. A distal ABA responsive element in AtNECD3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. PLoS ONE 2014, 9, e87283. [Google Scholar]
Gene | Position from ATG | C-to-U Editing Efficiency | WT | ppr 278-1 | ppr 278-2 | Gene | Position from ATG | C-to-U Editing Efficiency | WT | ppr 278-1 | ppr 278-2 |
---|---|---|---|---|---|---|---|---|---|---|---|
atp1 | 30 | A | Leu | Leu | Leu | nad3 | 275 | D | Ser/Phe | Ser/Phe | Ser/Phe |
atp1 | 1178 | A | Leu/Ser | Ser | Ser | nad3 | 317 | D | Ser/Phe | Ser/Phe | Ser/Phe |
atp1 | 1292 | A | Leu/Pro | Pro | Pro | nad3 | 344 | D | Ser/Leu | Ser/Leu | Ser/Leu |
atp1 | 1490 | A | Leu/Pro | Pro | Pro | nad3 | 349 | D | Arg/Trp | Arg/Trp | Arg/Trp |
atp1 | 1499 | A | Phe/Ser | Ser | Ser | rpl16 | 228 | D | Ile | Ile | Ile |
atp4 | 56 | A | Leu | Pro | Pro | rps2A | 200 | D | Ser/Phe | Ser/Phe | Ser/Phe |
atp4 | 59 | A | Phe | Ser | Ser | rps2A | 449 | D | Ala/Val | Ala/Val | Ala/Val |
atp4 | 71 | D | Leu | Ser | Leu/Ser | rps2A | 514 | D | Ser | Ser/Pro | Ser/Pro |
atp4 | 76 | D | Ser | Pro | Pro | rps2A | 541 | D | Cys | Cys/Arg | Cys/Arg |
atp4 | 89 | D | Leu | Ser | Leu/Ser | rps2A | 548 | D | Leu | Ser/Leu | Ser |
atp4 | 118 | D | Cys | Arg | Cys/Arg | rps2B | 550 | I | Arg/Cys | Cys | Cys |
atp4 | 360 | D | Cys | Cys | Cys | rps12 | 71 | D | Ser/Leu | Ser/Leu | Ser/Leu |
atp4 | 407 | D | Leu | Ser | Leu/Ser | rps12 | 196 | D | His/Tyr | His/Tyr | His/Tyr |
atp4 | 428 | D | Ile | Thr | Ile/Thr | rps12 | 221 | D | Ser/Leu | Ser/Leu | Ser/Leu |
atp8 | 58 | D | Leu/Phe | Leu/Phe | Leu/Phe | rps12 | 269 | D | Ser/Leu | Ser/Leu | Ser/Leu |
atp8 | 123 | D | Leu | Leu | Leu | rps12 | 284 | D | Ser/Leu | Ser/Leu | Ser/Leu |
atp8 | 200 | D | Ser/Leu | Ser/Leu | Ser/Leu | rps12 | 289 | D | Arg/Cys | Arg/Cys | Arg/Cys |
atp8 | 436 | D | Pro/Ser /Leu | Pro/Ser /Leu | Pro/Ser /Leu | ccmFN | 76 | A | Ser | Pro | Pro |
atp8 | 437 | ccmFN | 77 | ||||||||
cox3 | 69 | D | Leu | Leu | Leu | ccmFN | 137 | A | Leu | Pro | Pro |
cox3 | 245 | D | Leu/Pro | Leu/Pro | Leu/Pro | ccmFN | 176 | A | Leu | Ser | Ser |
cox3 | 257 | D | Phe/Ser | Phe/Ser | Phe/Ser | ccmFN | 181 | A | Cys | Arg | Arg |
cox3 | 289 | D | Phe/Ser | Phe/Ser | Phe/Ser | ccmFN | 190 | A | Ser | Pro | Pro |
cox3 | 311 | D | Ser/Phe | Ser/Phe | Ser/Phe | ccmFN | 287 | A | Leu | Ser | Ser |
cox3 | 314 | D | Phe | Ser | Ser/Phe | ccmFN | 302 | A | Leu | Pro | Pro |
cox3 | 413 | D | Leu | Pro | Leu/Pro | ccmFN | 401 | A | Phe | Ser | Ser |
cox3 | 422 | D | Leu | Pro | Leu/Pro | ccmFN | 410 | A | Leu | Ser | Ser |
cox3 | 527 | D | Phe | Ser/Phe | Ser/Phe | ccmFN | 417 | A | Phe | Phe | Phe |
cox3 | 566 | D | Phe/Ser | Ser | Phe/Ser | ccmFN | 743 | A | Leu | Pro | Pro |
cox3 | 754 | D | Trp | Arg | Trp/Arg | ccmFN | 752 | A | Leu | Ser | Ser |
nad3 | 5 | D | Ser/Leu | Ser/Leu | Ser/Leu | ccmFN | 790 | A | Cys | Arg | Arg |
nad3 | 39 | D | Ile | Ile | Ile | ccmFN | 812 | A | Leu | Ser | Ser |
nad3 | 44 | D | Pro/Leu | Pro/Leu | Pro/Leu | ccmFN | 824 | A | Leu | Pro | Pro |
nad3 | 61 | D | Pro/Ser /Leu | Pro/Ser /Leu | Pro/Ser /Leu | ccmFN | 839 | A | Leu | Ser | Ser |
nad3 | 62 | ccmFN | 1325 | A | Leu | Pro | Pro | ||||
nad3 | 80 | D | Pro/Leu | Pro/Leu | Pro/Leu | ccmFN | 1342 | A | Tyr | His | His |
nad3 | 137 | D | Ser/Phe | Ser/Phe | Ser/Phe | ccmFN | 1357 | A | Trp | Arg | Arg |
nad3 | 138 | D | ccmFN | 1375 | A | Trp | Arg | Arg | |||
nad3 | 146 | D | Ser/Phe | Ser/Phe | Ser/Phe | ccmFN | 1408 | A | Trp | Arg | Arg |
nad3 | 185 | D | Pro/Leu | Pro/Leu | Pro/Leu | ccmFN | 1469 | A | Leu | Ser | Ser |
nad3 | 190 | D | Pro/Ser | Pro/Ser | Pro/Ser | ccmFN | 1489 | A | Phe | Leu | Leu |
nad3 | 208 | D | Pro/Ser /Leu | Pro/Ser /Leu | Pro/Ser /Leu | ccmFN | 1493 | A | Leu | Pro | Pro |
nad3 | 209 | ccmFN | 1505 | A | Leu | Ser | Ser | ||||
nad3 | 215 | D | Pro/Leu | Pro/Leu | Pro/Leu | ccmFN | 1540 | A | Ser | Pro | Pro |
nad3 | 230 | D | Ser/Phe | Ser/Phe | Ser/Phe | ccmFN | 1553 | A | Phe | Ser | Ser |
nad3 | 247 | D | Pro/Ser | Pro/Ser | Pro/Ser | ccmFN | 1588 | A | Trp | Arg | Arg |
nad3 | 251 | D | Pro/Leu | Pro/Leu | Pro/Leu | ccmFN | 1709 | A | Leu | Pro | Pro |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Cui, Y.; Zhang, X.; Yang, Z.; Lai, J.; Song, W.; Liang, J.; Li, X. Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. Int. J. Mol. Sci. 2022, 23, 3035. https://doi.org/10.3390/ijms23063035
Yang J, Cui Y, Zhang X, Yang Z, Lai J, Song W, Liang J, Li X. Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. International Journal of Molecular Sciences. 2022; 23(6):3035. https://doi.org/10.3390/ijms23063035
Chicago/Turabian StyleYang, Jing, Yang Cui, Xiangbo Zhang, Zhijia Yang, Jinsheng Lai, Weibin Song, Jingang Liang, and Xinhai Li. 2022. "Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing" International Journal of Molecular Sciences 23, no. 6: 3035. https://doi.org/10.3390/ijms23063035
APA StyleYang, J., Cui, Y., Zhang, X., Yang, Z., Lai, J., Song, W., Liang, J., & Li, X. (2022). Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. International Journal of Molecular Sciences, 23(6), 3035. https://doi.org/10.3390/ijms23063035