Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. In Vivo Results
2.1.1. Human Subjects
2.1.2. Animal Models
2.1.2.1. Gut Dopamine Levels in IBD-Specific Animal Models
2.1.2.2. Colonic TH, AADC, and DAT Expression in IBD-Specific Animal Models
2.1.2.3. The Colonic Expression of Dopamine Receptors in IBD-Specific Animal Models
2.1.2.4. Immune Alterations Associated with D3R Deficiency
2.1.2.5. Immune Alterations Associated with D5R Deficiency
2.1.2.6. Rag1−/− Mice (Lacking T- and B-Lymphocytes) and DR Deficiencies
2.1.2.7. Rag1−/− Mice (Lacking T- and B-Lymphocytes) Together with 6-OHDA Treatment (Unselective Sympathetic Dysfunction) or Surgical Sympathectomy
2.1.2.8. Colonic and Immune Alterations in Models Primarily Associated with Chemical Sympathetic Denervation Together with Disease-Specific Models
2.1.2.9. Dopamine Agonists and Experimental Colitis
2.1.2.10. Dopamine Antagonists and Experimental Colitis
2.1.2.11. Adrenergic Compounds and Experimental Colitis
2.2. In Vitro/Ex Vivo Results
2.2.1. Jurak Cells (the Human T Lymphocyte Cell Line) and the Presence of CCR9:D5R Heteromers
2.2.2. The Influence of D3R Deficiency on T-Cells
2.2.3. The Influence of Dopamine on Bone Marrow-Derived Macrophages (BMDMs)
2.2.4. The Influence of Berberine on Mesenteric Lymph Node (MLN) Lymphocytes
2.2.5. The Influence of Adrenergic Compounds on Lamina Propria Mononuclear Cells (LPMCs)
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, G.G.; Ng, S.C. Globalisation of inflammatory bowel disease: Perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol. Hepatol. 2016, 1, 307–316. [Google Scholar] [CrossRef]
- Actis, G.C.; Pellicano, R.; Fagoonee, S.; Ribaldone, D.G. History of Inflammatory Bowel Diseases. J. Clin. Med. 2019, 8, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgart, D.C.; Carding, S. Inflammatory bowel disease: Cause and immunobiology. Lancet 2007, 369, 1627–1640. [Google Scholar] [CrossRef]
- Plichta, D.R.; Graham, D.B.; Subramanian, S.; Xavier, R.J. Therapeutic opportunities in inflammatory bowel disease: Mechanistic dissection of host-microbiome relationships. Cell 2019, 178, 1041–1056. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Lobbestael, E.; Vermeire, S.; Sabino, J.; Cleynen, I. Inflammatory bowel disease and Parkinson’s disease: Common pathophysiological links. Gut 2020. [Google Scholar] [CrossRef] [PubMed]
- Witoelar, A.; Jansen, I.E.; Wang, Y.; Desikan, R.S.; Gibbs, J.R.; Blauwendraat, C.; Thompson, W.K.; Hernandez, D.G.; Djurovic, S.; Schork, A.J.; et al. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases. JAMA Neurol. 2017, 74, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Li, C.; Gong, J.; Zhu, W.; Gu, L.; Li, N. The risk of Parkinson’s disease in inflammatory bowel disease: A systematic review and meta-analysis. Dig. Liver Dis. 2018, 51, 38–42. [Google Scholar] [CrossRef]
- Strang, R.R. The association of gastro-duodenal ulceration and Parkinson’s disease. Med. J. Aust. 1965, 1, 842–843. [Google Scholar] [CrossRef]
- Szabo, S. Dopamine disorder in duodenal ulceration. Lancet 1979, 314, 880–882. [Google Scholar] [CrossRef]
- Hernandez, D.E.; Adcock, J.W.; Orlando, R.C.; Patrick, K.S.; Nemeroff, C.B.; Prange, A.J. Prevention of stress-induced gastric ulcers by dopamine agonists in the rat. Life Sci. 1984, 35, 2453–2458. [Google Scholar] [CrossRef]
- Parmar, N.S.; Tariq, M.; Ageel, A.M. Effect of bromoctriptine a dopamine receptor agonist on experimental induced gastric ulcers in albino rats. Life Sci. 1984, 35, 2035–2039. [Google Scholar] [CrossRef]
- Sikiric, P.J.; Geber, E.; Suchanek, D.; Ivanovic, V.; Gjuris, J.; Aleksic, P.; Marovic, A.R. The role of dopamine in the formation of gastric ulcers in rats. Eur. J. Pharm. 1985, 112, 127–129. [Google Scholar] [CrossRef]
- Glavin, G.B.; Szabo, S. Dopamine in gastrointestinal disease. Dig. Dis. Sci. 1990, 35, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in Health and Disease: Much More Than a Neurotransmitter. Biomedicines 2021, 9, 109. [Google Scholar] [CrossRef]
- Torres, G.E.; Gainetdinov, R.; Caron, M.G. Plasma membrane monoamine transporters: Structure, regulation and function. Nat. Rev. Neurosci. 2003, 4, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Musacchio, J.M. Chapter 1: Enzymes involved in the biosynthesis and degradation of catecholamines. In Bio-Chemistry of Biogenic Amines; Iverson, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–35. [Google Scholar]
- Eisenhofer, G.; Aneman, A.; Friberg, P.; Hooper, D.; Fåndriks, L.; Lonroth, H.; Hunyady, B.; Mezey, E. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab. 1997, 82, 3864–3871. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Kimura, T.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1288–G1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, C.J.; Aherne, A.M.; Lane, E.; Power, O.; Carey, R.M.; O’Connell, D.P. Identification and regional distribution of the dopamine D(1A) receptor in the gastrointestinal tract. Am. J. Physiol. Integr. Comp. Physiol. 2000, 279, R599–R609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anlauf, M.; Schäfer, M.K.-H.; Eiden, L.; Weihe, E. Chemical coding of the human gastrointestinal nervous system: Cholinergic, VIPergic, and catecholaminergic phenotypes. J. Comp. Neurol. 2003, 459, 90–111. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Pham, T.D.; Tamir, H.; Chen, J.J.; Gershon, M.D. Enteric dopaminergic neurons: Definition, developmental lineage, and effects of extrinsic denervation. J. Neurosci. 2004, 24, 1330–1339. [Google Scholar] [CrossRef]
- Li, Z.S.; Schmauss, C.; Cuenca, A.; Ratcliffe, E.; Gershon, M.D. Physiological Modulation of Intestinal Motility by Enteric Dopaminergic Neurons and the D2 Receptor: Analysis of Dopamine Receptor Expression, Location, Development, and Function in Wild-Type and Knock-Out Mice. J. Neurosci. 2006, 26, 2798–2807. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.F.; Lu, Y. Immunomodulatory Effects of Dopamine in Inflammatory Diseases. Front. Immunol. 2021, 12, 663102. [Google Scholar] [CrossRef] [PubMed]
- Singaram, C.; Ashraf, W.; Gaumnitz, E.A.; Torbey, C.; Sengupta, A.; Pfeiffer, R.; Quigley, E.M. Dopaminergic defect of enteric nervous system in Parkinson’s disease patients with chronic constipation. Lancet 1995, 346, 861–864. [Google Scholar] [CrossRef]
- Fasano, A.; Visanji, N.P.; Liu, L.W.; Lang, A.E.; Pfeiffer, R.F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015, 14, 625–639. [Google Scholar] [CrossRef]
- Miller, C.; Emmanuel, A.; Zarate-Lopez, N.; Taylor, S.; Bloom, S. Constipation in ulcerative colitis: Pathophysiology and practical management. Frontline Gastroenterol. 2021, 12, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Barrios, F.; Navarro, G.; Campos, J.; Ugalde, V.; Prado, C.; Raïch, I.; Contreras, F.; López, E.; Espinoza, A.; Lladser, A.; et al. The Heteromeric Complex Formed by Dopamine Receptor D5 and CCR9 Leads the Gut Homing of CD4+ T Cells Upon Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 489–506. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, E.; Kawasawa-Imamura, Y.; Zhang, L.; Huang, X.; Koltun, W.A.; Coates, M.D.; Vrana, K.E. A single nucleotide polymorphism in dopamine beta hydroxylase (rs6271(C>T)) is over-represented in inflammatory bowel disease patients and reduces circulating enzyme. PLoS ONE 2019, 14, e0210175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, A.; Chen, J.; Liao, W.; Lu, N.; Guo, Y. Catecholamine Mediates Psychological Stress-Induced Colitis Through a2-Adrenoreceptor. J. Interf. Cytokine Res. 2015, 35, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Cunha, E.; Araujo, F.; Meireles, E.; Pereira, P.; Dinis-Ribeiro, M.; Veloso, F.T.; Medeiros, R.; Soares-Da-Silva, P. Dopamine D2 Receptor Polymorphisms in Inflammatory Bowel Disease and the Refractory Response to Treatment. Dig. Dis. Sci. 2006, 51, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Vieira-Coelho, M.A.; Fraga, S.; Serrao, P.; Veloso, F.T.; Ribeiro, T.; Soares-Da-Silva, P. Impaired Synthesis or Cellular Storage of Norepinephrine, Dopamine, and 5-Hydroxytryptamine in Human Inflammatory Bowel Disease. Dig. Dis. Sci. 2002, 47, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Tomic, S.; Skelac, D.; Mick, D.; Segec, I.; Resan, B.; Soldo, S.B. Continuous duodenal levodopa infusion in a patient with Crohn’s disease and small bowel surgery—Case report. J. Neurol. Sci. 2015, 358, 525–526. [Google Scholar] [CrossRef]
- Check, J.H.; Katsoff, B.; Cohen, R. Novel highly effective medical treatment of severe treatment refractory Crohn’s disease using sympathomimetic amines: Case report. Inflamm. Bowel. Dis. 2010, 16, 1999–2000. [Google Scholar] [CrossRef] [PubMed]
- Kane, S.V.; Altschuler, E.L.; Kast, R. Crohn’s disease remission on bupropion. Gastroenterology 2003, 125, 1290. [Google Scholar] [CrossRef] [PubMed]
- Kast, R.E.; Altschuler, E.L. Remission of Crohn’s disease on bupropion. Gastroenterology 2001, 121, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Kast, R.E. Crohn’s disease remission with phenelzine treatment. Gastroenterology 1998, 115, 1034–1035. [Google Scholar] [CrossRef]
- Lechin, F.; Van Der Dijs, B.; Insausti, C.L.; Gómez, F. Treatment of Ulcerative Colitis with Thioproperazine. J. Clin. Gastroenterol. 1982, 4, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, Y.; Wang, B.; Jiang, Y.; Lin, L.; Li, X.; Yang, S. DA-DRD5 signaling controls colitis by regulating colonic M1/M2 macrophage polarization. Cell Death Dis. 2021, 12, 500. [Google Scholar] [CrossRef]
- Ugalde, V.; Contreras, F.; Prado, C.; Chovar, O.; Espinoza, A.; Pacheco, R. Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol. 2020, 14, 652–666. [Google Scholar] [CrossRef] [PubMed]
- Contreras, F.; Prado, C.; González, H.; Franz, D.; Osorio-Barrios, F.; Osorio, F.; Ugalde, V.; Lopez, E.; Elgueta, D.; Figueroa, A.; et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J. Immunol. 2016, 196, 4143–4149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oehlers, S.H.; Flores, M.V.; Hall, C.; Wang, L.; Ko, D.C.; Crosier, K.E.; Crosier, P.S. A whole animal chemical screen approach to identify modifiers of intestinal neutrophilic inflammation. FEBS J. 2016, 284, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Kawano, M.; Takagi, R.; Kaneko, A.; Matsushita, S. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses. J. Neuroimmunol. 2015, 289, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Tolstanova, G.; Deng, X.; Ahluwalia, A.; Paunovic, B.; Prysiazhniuk, A.; Ostapchenko, L.; Tarnawski, A.; Sandor, Z.; Szabo, S. Role of Dopamine and D2 Dopamine Receptor in the Pathogenesis of Inflammatory Bowel Disease. Dig. Dis. Sci. 2015, 60, 2963–2975. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Veiga, P.; Wardwell-Scott, L.H.; Tickle, T.; Segata, N.; Michaud, M.; Gallini, C.A.; Beal, C.; Hylckama-Vlieg, J.E.T.V.; Ballal, S.; et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 2014, 8, 1403–1417. [Google Scholar] [CrossRef]
- Bai, A.; Lu, N.; Guo, Y.; Chen, J.; Liu, Z. Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis. Clin. Exp. Immunol. 2009, 156, 353–362. [Google Scholar] [CrossRef]
- Magro, F.; Fraga, S.; Ribeiro, T.; Soares-Da-Silva, P. Decreased availability of intestinal dopamine in transmural colitis may relate to inhibitory effects of interferon-gamma upon L-DOPA uptake. Acta Physiol. Scand. 2004, 180, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Herak-Perković, V.; Grabarević, Z.; Banić, M.; Anić, B.; Novosel, V.; Pogacnik, M. Effects of dopaminergic drugs on inflammatory bowel disease induced with 2,4-dinitrofluorbenzene in BALB/c mice. J. Vet. Pharmacol. Ther. 2001, 24, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Willemze, R.A.; Welting, O.; Van Hamersveld, P.; Verseijden, C.; Nijhuis, L.E.; Hilbers, F.W.; Meijer, S.L.; Heesters, B.A.; Folgering, J.H.A.; Darwinkel, H.; et al. Loss of intestinal sympathetic innervation elicits an innate immune driven colitis. Mol. Med. 2019, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Prysiazhniuk, A.I.; Rudyk, M.; Chervinska, T.M.; Dovbynchuk, T.V.; Skivka, L.M.; Tolstanova, G.M. Role of peripheral dopaminergic system in the pathogenesis of experimental colitis in rats. Ukr. Biochem. J. 2017, 89, 56–67. [Google Scholar] [CrossRef] [Green Version]
- McCafferty, D.M.; Wallace, J.L.; Sharkey, K. Effects of chemical sympathectomy and sensory nerve ablation on experimental colitis in the rat. Am. J. Physiol. Content 1997, 272, G272–G280. [Google Scholar] [CrossRef] [PubMed]
- Tonini, M.; Cipollina, L.; Poluzzi, E.; Crema, F.; Corazza, G.R.; De Ponti, F. Review article: Clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Aliment. Pharmacol. Ther. 2004, 19, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Flemström, G.; Säfsten, B. Role of dopamine and other stimuli of mucosal bicarbonate secretion in duodenal protection. Dig. Dis. Sci. 1994, 39, 1839–1842. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Zhang, X.-L.; Feng, X.-Y.; Liu, C.-Z.; Zhang, X.-N.; Quan, Z.-S.; Yan, J.-T.; Zhu, J.-X. Dopamine promotes colonic mucus secretion through dopamine D5 receptor in rats. Am. J. Physiol. Physiol. 2019, 316, C393–C403. [Google Scholar] [CrossRef]
- George, S.R.; Kern, A.; Smith, R.G.; Franco, R. Dopamine receptor heteromeric complexes and their emerging functions. Prog. Brain Res. 2014, 211, 183–200. [Google Scholar] [PubMed]
- Adams, D.H. More Levels of Complexity in the Control of Intestinal Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 791–792. [Google Scholar] [CrossRef] [PubMed]
- Rezende, K.S.; Fernandes, M.R.; de Faria, B.B.; Guimarães, R.C.A.; Freitas, K.C. Use of Animal Models in the Study of Colitis, Experimental Animal Models of Human Diseases—An Effective Therapeutic Strategy, Ibeh Bartholomew; IntechOpen: London, UK, 2018. [Google Scholar]
- Wirtz, S.; Popp, V.; Kindermann, M.; Gerlach, K.; Weigmann, B.; Fichtner-Feigl, S.; Neurath, S.W.V. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 2017, 12, 1295–1309. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice. Curr. Protoc. Immunol. 2014, 104, 15.25.1–15.25.14. [Google Scholar] [CrossRef]
- Mizoguchi, E.; Nguyen, D.; Low, D. Animal models of ulcerative colitis and their application in drug research. Drug Des. Dev. Ther. 2013, 7, 1341–1357. [Google Scholar] [CrossRef] [Green Version]
- Eri, R.; McGuckin, M.A.; Wadley, R. T cell transfer model of colitis: A great tool to assess the contribution of T cells in chronic intestinal inflammation. Methods Mol. Biol. 2012, 844, 261–275. [Google Scholar] [PubMed]
- Kühn, R.; Löhler, J.; Rennick, D.; Rajewsky, K.; Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993, 75, 263–274. [Google Scholar] [CrossRef]
- Garrett, W.S.; Lord, G.M.; Punit, S.; Lugo-Villarino, G.; Mazmanian, S.K.; Ito, S.; Glickman, J.N.; Glimcher, L.H. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007, 131, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Garrett, W.S.; Gallini, C.A.; Yatsunenko, T.; Michaud, M.; DuBois, A.; Delaney, M.L.; Punit, S.; Karlsson, M.; Bry, L.; Glickman, J.N.; et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010, 8, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, D.K.; Ollech, J.E.; Andersen, M.; Weisshof, R.; Zmeter, N.; Sossenheimer, P.; Rubin, D.T. Long-Duration Oral Vancomycin to Treat Clostridioides difficile in Patients with Inflammatory Bowel Disease Is Associated with a Low Rate of Recurrence. Am. J. Gastroenterol. 2019, 114, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Jones, S.R.; Fumagalli, F.; Wightman, R.M.; Caron, M.G. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res. Brain Res. Rev. 1998, 26, 148–153. [Google Scholar] [CrossRef]
- Cerantola, S.; Caputi, V.; Contarini, G.; Mereu, M.; Bertazzo, A.; Bosi, A.; Banfi, D.; Mantini, D.; Giaroni, C.; Giron, M.C. Do-pamine Transporter Genetic Reduction Induces Morpho-Functional Changes in the Enteric Nervous System. Biomedicines 2021, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Mezey, E.; Palkovits, M. Localization of targets for anti-ulcer drugs in cells of the immune system. Science 1992, 258, 1662–1665. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine Receptors: From Structure to Function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matt, S.; Gaskill, P.J. Where Is Dopamine and how do Immune Cells See it? Dopamine-Mediated Immune Cell Function in Health and Disease. J. Neuroimmune Pharmacol. 2019, 15, 114–164. [Google Scholar] [CrossRef] [PubMed]
- Vidal, P.; Pacheco, R. Targeting the Dopaminergic System in Autoimmunity. J. Neuroimmune Pharmacol. 2019, 15, 57–73. [Google Scholar] [CrossRef]
- Olsen, T.; Rismo, R.; Cui, G.; Goll, R.; Christiansen, I.; Florholmen, J. TH1 and TH17 interactions in untreated inflamed mucosa of inflammatory bowel disease, and their potential to mediate the inflammation. Cytokine 2011, 56, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Mayne, C.G.; Williams, C.B. Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2013, 19, 1772–1788. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Huang, F.; Wang, W.; Zhao, C. Association between the DRD2 TaqIA gene polymorphism and Parkinson disease risk: An updated meta-analysis. Medicine 2019, 98, e17136. [Google Scholar] [CrossRef]
- Kawamura, M.; Schwartz, J.P.; Nomura, T.; Kopin, I.J.; Goldstein, D.S.; Huynh, T.T.; Hooper, D.R.; Harvey-White, J.; Eisenhofer, G. Differential effects of chemical sympathectomy on expression and activity of tyrosine hydroxylase and levels of catecholamines and DOPA in peripheral tissues of rats. Neurochem. Res. 1999, 24, 25–32. [Google Scholar] [CrossRef]
- Finkel, Y.; Eklöf, A.C.; Granquist, L.; Soares-Da-Silva, P.; Bertorello, A.M. Endogenous dopamine modulates jejunal sodium absorption during high-salt diet in young but not in adult rats. Gastroenterology 1994, 107, 675–679. [Google Scholar] [CrossRef]
- Quelhas-Santos, J.; Serrão, M.P.; Soares-Silva, I.; Fernandes-Cerqueira, C.; Simões-Silva, L.; Pinho, M.J.; Remião, F.; Sampaio-Maia, B.; Desir, G.V.; Pestana, M. Renalase regulates peripheral and central dopaminergic activities. Am. J. Physiol. Ren. Physiol. 2015, 308, F84–F91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira-Coelho, M.A.; Teixeira, V.A.L.; Finkel, Y.; Soares-Da-Silva, P.; Bertorello, A.M. Dopamine-dependent inhibition of jejunal Na+-K+-ATPase during high-salt diet in young but not in adult rats. Am. J. Physiol. Content 1998, 275, G1317–G1323. [Google Scholar] [CrossRef] [PubMed]
- Levandis, G.; Balestra, B.; Siani, F.; Rizzo, V.; Ghezzi, C.; Ambrosi, G.; Cerri, S.; Bonizzi, A.; Vicini, R.; Vairetti, M.; et al. Response of colonic motility to dopaminergic stimulation is subverted in rats with nigrostriatal lesion: Relevance to gastrointestinal dysfunctions in Parkinson’s disease. Neurogastroenterol. Motil. 2015, 27, 1783–1795. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gil, P.; Rodriguez-Perez, A.I.; Dominguez-Meijide, A.; Guerra, M.J.; Labandeira-Garcia, J.L. Bidirectional neural in-teraction between central dopaminergic and gut lesions in Parkinson’s disease Models. Mol. Neurobiol. 2018, 55, 7297–7316. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, D.C.; Sandborn, W.J. Crohn’s disease. Lancet 2012, 380, 1590–1605. [Google Scholar] [CrossRef] [Green Version]
- Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet 2012, 380, 1606–1619. [Google Scholar] [CrossRef] [Green Version]
- Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L.; ECCO-EpiCom. The burden of inflammatory bowel disease in Europe. J. Crohn’s Colitis 2013, 7, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Windsor, J.W.; Kaplan, G.G. Evolving Epidemiology of IBD. Curr. Gastroenterol. Rep. 2019, 21, 40. [Google Scholar] [CrossRef]
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Lund, J.L.; Dellon, E.S.; Williams, J.L.; Jensen, E.T.; Shaheen, N.J.; Barritt, A.S.; Lieber, S.R.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology 2019, 156, 254–272.e11. [Google Scholar] [CrossRef] [Green Version]
- Bassi, A.; Dodd, S.; Williamson, P.; Bodger, K. Cost of illness of inflammatory bowel disease in the UK: A single centre retrospective study. Gut 2004, 53, 1471–1478. [Google Scholar] [CrossRef]
- Van der Valk, M.E.; Mangen, M.-J.J.; Leenders, M.; Dijkstra, G.; van Bodegraven, A.; Fidder, H.H.; de Jong, D.J.; Pierik, M.; van der Woude, C.J.; Romberg-Camps, M.J.L.; et al. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFα therapy: Results from the COIN study. Gut 2012, 63, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Roda, G.; Jharap, B.; Neeraj, N.; Colombel, J.-F. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin. Transl. Gastroenterol. 2016, 7, e135. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Peyriere, H.; Roux, C.; Ferard, C.; Deleau, N.; Kreft-Jais, C.; Hillaire-Buys, D.; Boulenger, J.; Blayac, J.-P.; Hillaire-Buys, D. Antipsychotics-induced ischaemic colitis and gastrointestinal necrosis: A review of the French pharmacovigilance database. Pharmacoepidemiol. Drug Saf. 2009, 18, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, C.N.; Hitchon, C.A.; Walld, R.; Bolton, J.M.; Sareen, J.; Walker, J.R.; Graff, L.A.; Patten, S.B.; Singer, A.; Lix, L.M.; et al. Defining the Burden and Managing the Effects of Psychiatric Comorbidity in Chronic Immunoinflammatory Disease. Increased Burden of Psychiatric Disorders in Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2019, 25, 360–368. [Google Scholar] [CrossRef]
- Marino, F.; Cosentino, M. Adrenergic modulation of immune cells: An update. Amino Acids 2011, 45, 55–71. [Google Scholar] [CrossRef]
- Straub, R.H.; Wiest, R.; Strauch, U.G.; Harle, P.; Scholmerich, J. The role of the sympathetic nervous system in intestinal inflammation. Gut 2006, 55, 1640–1649. [Google Scholar] [CrossRef]
- Lei, S. Cross interaction of dopaminergic and adrenergic systems in neural modulation. Int. J. Physiol. Pathophysiol. Pharmacol. 2014, 6, 137–142. [Google Scholar]
- Bonaz, B.L.; Bernstein, C.N. Brain-Gut Interactions in Inflammatory Bowel Disease. Gastroenterology 2013, 144, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cominelli, F.; Arseneau, K.O.; Rodriguez-Palacios, A.; Pizarro, T.T. Uncovering Pathogenic Mechanisms of Inflammatory Bowel Disease Using Mouse Models of Crohn’s Disease–Like Ileitis: What is the Right Model? Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 19–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos-Acuña, J.; Elgueta, D.; Pacheco, R. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson’s Disease. Front. Immunol. 2019, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Willemze, R.A.; Welting, O.; Van Hamersveld, H.P.; Meijer, S.; Folgering, J.H.; Darwinkel, H.; Witherington, J.; Sridhar, A.; Vervoordeldonk, M.J.; Seppen, J.; et al. Neuronal control of experimental colitis occurs via sympathetic intestinal innervation. Neurogastroenterol. Motil. 2017, 30, e13163. [Google Scholar] [CrossRef]
- Grathwohl, S.; Quansah, E.; Maroof, N.; Steiner, J.A.; Spycher, L.; Benmansour, F.; Duran-Pacheco, G.; Siebourg-Polster, J.; Oroszlan-Szovik, K.; Remy, H.; et al. Specific immune modulation of experimental colitis drives enteric alpha-synuclein accumulation and triggers age-related Parkinson-like brain pathology. Free Neuropathol. 2021, 2, 13. [Google Scholar]
- Peter, I.; Dubinsky, M.; Bressman, S.; Park, A.; Lu, C.; Chen, N.; Wang, A. Anti–Tumor Necrosis Factor Therapy and Incidence of Parkinson Disease Among Patients with Inflammatory Bowel Disease. JAMA Neurol. 2018, 75, 939–946. [Google Scholar] [CrossRef]
- Pellegrini, C.; Fornai, M.; Colucci, R.; Tirotta, E.; Blandini, F.; Levandis, G.; Cerrj, S.; Segnani, C.; Ippolit, C.; Bernardini, N.; et al. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J. Neuroinflamm. 2016, 13, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, C.; Ippolito, C.; Segnani, C.; Dolfi, A.; Errede, M.; Virgintino, D.; Fornai, M.; Antonioli, L.; Garelli, F.; Nericcio, A.; et al. Pathological remodelling of colonic wall following dopaminergic nigrostriatal neurodegeneration. Neurobiol. Dis. 2020, 139, 104821. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
Cross-Sectional Studies | |||||
---|---|---|---|---|---|
References | IBD Patient Characteristics (Including the Number of Patients/Samples) | Inclusion Criteria | Exclusion Criteria | Control Subject Characteristics (Including the Number of Patients/Samples) | Type of Samples |
Osorio-Barios et al., 2021 [27] | n = 3 with UC, n = 4 with CD (inflamed mucosa) | N/A | N/A | n = 6 (noninflamed mucosa) | Intestinal biopsies from HUB-ICO-IDIBELL Biobank |
Gonzalez-Lopez et al., 2019 [28] | In total, n = 45 (38.2 ± 3.8 years): n = 21 (10 females) with CD and n = 24 (12 females) with UC (from Penn State Hershey Medical Center’s IBD BioBank for Central Pennsylvania | Endoscopic criteria | N/A | n = 74 (65.1 ± 8.7 years old), free of any diagnosed major neurological illness or IBD | Blood samples |
Bai et al., 2015 [29] | n = 3 with active CD, n= 4 with active UC | IBD diagnosis based on clinical, endoscopic, histological, and/or radiological criteria (Bernstein et al., 2010) | N/A | n = 4 | Colonic biopsies |
Magro et al., 2006 [30] | n = 143 with CD (81% were on mesalamine, 21% on corticosteroids, 45% on azathioprine and/or infliximab), n = 77 with UC (72% were on mesalamine, 22% on corticosteroids, 19% on azathioprine) | Refractory treatment for CD: (1) moderate to severe CD in patients taking mesalamine for at least 2 months and corticosteroids for at least 1 month; (2) patients with moderate to severe CD taking mesalamine for at least 2 months and were unable to reduce corticosteroids for at least 2 months in two attempts (corticosteroid dependency); (3) patients with moderate to severe CD taking azathioprine for at least 4 months; (4) all patients with moderate to severe CD taking corticosteroids for at least 1 month or azathioprine for at least 4 months and who needed infliximab for disease control; (5) patients with active perianal CD that has been treated with antibiotics for at least 2 months; (6) patients with relapsing perianal CD; (7) patients with active perianal CD in treatment with antibiotics and azathioprine for at least 4 months and who needed infliximab for CD control. Refractory treatment for UC: (1) moderate to severe UC in patients taking mesalamine for at least 2 months and corticosteroids for at least 1 month; (2) patients with moderate to severe UC taking mesalamine for at least 2 months who were unable to reduce corticosteroids for at least 2 months in two attempts (corticosteroid dependency); (3) patients with moderate to severe UC taking azathioprine for at least 4 months, (4) all patients with moderate to severe UC taking corticosteroids for at least 1 month and/or azathioprine for at least 4 months and who needed cyclosporine for disease control; (4) all patients with severe UC taking corticosteroids and who needed cyclosporine for disease control. | N/A | n = 93 (random blood donors) | Blood samples |
Magro et al., 2002 [31] | n = 22 with CD, n = 21 with UC, all patients had a disease history of several years; all but one patient were on mesalazine, none were on steroids or azathioprine | Endoscopic criteria | N/A | n = 16 with normal colonoscopy (subjects with abdominal pain or colonic polyps) | Biopsy specimens, 10 for each patient, taken from inflamed and noninflamed colonic mucosae. The specimens obtained from IBD patients in noninflamed tissues were taken 10 cm from the inflamed area, the biopsies in the inflamed colonic mucosa were not taken from ulcers, and control biopsies were taken at 20 cm from the anal margin |
Case Reports | |||||
References | Patient Characteristics | Successful treatment | |||
Tomic et al., 2015 [32] | 63-year-old man with CD and PD, admitted to an outpatient clinic for continuous duodenal levodopa infusion. Considerable clinical improvements without any complications were noted during an 8-month follow up. | Continuous duodenal levodopa (L-DOPA) infusion | |||
Check et al., 2011 [33] | 39-year-old woman with a 12-year history of CD that was nonresponsive to adalimumab, mesalamine, prednisone, cyclophosphamide, and infliximab. | Dextroamphetamine (induces the release of dopamine within the mesocorticolimbic system) | |||
Kane et al., 2003 [34] | Two women with Crohn’s ileitis treated with bupropion daily for smoking cessation. Another 2 patients with Crohn’s colitis were treated with bupropion for depression and similarly experienced a remission of their disease symptoms. | Bupropion (a weak inhibitor of the neuronal uptake of norepinephrine and dopamine) | |||
Kast et al., 2001 [35] | 44-year-old woman with 10-year history of CD, reporting daily pain, frequent blood in stool, and inadvertent loss of stool several times a month. Treated with bupropion due to dysthymia. | ||||
Kast 1998 [36] | A 33-year-old woman with an 18-year history of CD presented for treatment of a major depressive episode. Her depression responded well, and all signs of abdominal discomfort were absent for the first time in her adult life after phenelzine treatment initiation | Phenelzine (monoamine oxidase inhibitor) | |||
Lechin et al., 1982 [37] | 35-year-old woman, 48-year-old man, and 13-year-old boy, all with diagnosed ulcerative colitis, reported developing cramping abdominal pain and bloody diarrhea. The corticosteroid treatment was unsuccessful (2 patients) or partly successful (48-year-old man). | Thioperazine (an antagonist on dopaminergic (D1, D2, D3, and D4), serotonergic (5-HT1 and 5-HT2), histaminergic (H1), α1/α2, and cholinergic (M1/M2) receptors) |
Disease-Specific Models | |||||
---|---|---|---|---|---|
References | Experimental Model | Pharmacological/Biological Intervention | Animals | Time Frame | Assessment of Colonic Inflammation |
Liu et al., 2021 [38] | 2.5% DSS (TdB Consultancy, Sweden) as an addition to drinking water for 6 days | SKF-38393 (Tocris, UK) given via i.p. (10 mg/kg daily) starting 1 d before DSS | Wild-type C57BL/6 male mice, Drd5−/− mice (Cyagen Biosciences Inc, China); Rosa26-tdTomato and Cx3cr1-Cre mice (provided by Dr. Jiawei Zhou, Institute of Neuroscience, Chinese Academy of Sciences, China) | Up to 6 weeks | DAI and histological scoring |
Osorio-Barrios et al., 2021 [27] | 1.75% DSS (MP Biomedical, USA) as an addition to drinking water for 5 days; Rag 1−/− mice received via i.p. 5x 105 naive CD4+ T-cells | CD4+ T-cells (6 × 106 total cells per mouse) bearing single positive congenic markers (CD45.1+, CD45.2- or CD45.1-, CD45.2+) | Wild-type C57BL/6 (Drd5+/+, Cd45.2+/+), Ccr9−/−, Rag1−/−, (Jackson Laboratory), C57BL/6 Drd5−/− (donated by Dr. Sibley), B6.SJL-Ptprca (CD45.1+) (donated by Dr. Rosa Bono), Drd5−/−Cd45.1+/+ as well as Cd45.1+/–Cd45.2+/– (generated by crossing parental strains) mice, 6–10 weeks old | Up to 12 weeks | Body weight, DAI, immune cell infiltration |
Ugalde et al., 2021 [39] | 1 or 1.75% DSS (MP Biomedicals, USA) as an addition to drinking water for 8 days, or 2.5 mg OVA (Genescript, USA) given via oral lavage for 5 days | Drd3-deficient Treg cells (CD3+, CD4+, CD25+ cells, 3 × 105 cells per mouse), ex vivo RV-shDrd3-transduced (retroviral vectors codifying for an shRNA directed to reduce Drd3 transcription, 2 × 105 cells per mouse), both given via i.v. | Wild-type C57BL/6 (Drd3+/+, Cd45.2+/+), Ccr9−/−, Rag1−/−, C57BL/6 Foxp3gfp (Jackson Laboratory), Rag1−/−Drd3−/−, Cd45.1+/−Cd45.2+/−, Foxp3gfp Drd3−/−, and Ccr9−/−Drd3−/− (generated by crossing parental strains) mice, 8–10 weeks old | Up to 10 weeks | DAI and histological scoring |
Contreras et al., 2016 [40] | Rag1−/− mice received via i.p. 5 x 105 naive (CD45RBhigh) or regulatory/memory (CD45RBlow) CD4+ T-cells via i.p; 100 mg OVA in CFA via s.c. or 20 mg OVA in Alum adjuvant via i.p. (Sigma Aldrich, St. Louis, MI, USA; Thermo Scientific, Waltham, MA, USA) | Naive CD45.2+, Drd3+/+, or Drd3−/− OT-II (105) cells i.v. transferred before s.c. immunization with OVA; a mixture (107) of total Drd3+/+ or Drd3−/− OT-II CD4+ T-cells and WT CD4+ T-cell-depleted splenocytes (in a 15:85 ratio) given via i.v. before i.p. immunization with OVA | Wild-type C57BL/6, Rag1−/− (Jackson Laboratory), Drd3−/−, (donated by Dr. Caron), OT-II, B6.SJL-Ptprca (CD45.1+) (donated by Dr. Rosa Bono), Drd3−/− OT-II (generated by crossing parental strains) mice, 6–10 weeks old | Up to 10 weeks | |
Oehlers et al., 2016 [41] | 0.5% DSS or TNBS (final concentration 70 ug/mL) as an addition to the larval media | Devazepide (Tocris, UK), dexamethasone, haloperidol, cabergoline, lorglumide, and sincalide (Sigma-Aldrich, USA) as an addition to the larval media | Zebrafish embryos obtained from natural spawnings and raised at 28.5 °C in E3 embryo medium supplemented with methylene blue until 1 dpf | Up to 6 dpf | Neutrophil enumeration |
Bai et al., 2015 [29] | TNBS (1 mg, Sigma Aldrich, USA) given rectally; restrain stress model | RX821002 (250 ug per mouse) given via i.p. | Male BALB/c mice 7–8 weeks old, weighing approximately 22 g | 10 days | Body weight and histological scoring |
Kawano et al., 2015 [42] | 4% DDS (MP Biomedicals, USA) in drinking water for 4 days | Berberine (high purity extract from Coptis rhizome provided by Tsumura & Co, Japan), SCH23390, L750667, and lipopolysaccharide (Sigma-Aldrich, USA) given via i.p. | C57BL/6 mice (Japan SLC, Japan) | 7 days | Body weight, colon length, and histological scoring |
Tolstanova et al., 2015 [43] | 6% IA (Sigma, USA) given rectally and IL-10-deficient colitis | Quinpirole (Sigma, USA) and cabergoline (Pfizer, USA), both given via i.g. | Female Sprague–Dawley (Harlan Laboratory, San Diego, USA) rats (170–200 g), female Wistar (Animal Research Facility, KNU, Ukraine) rats (170–220 g), IL-10 knockout mice on a C57BL/6J background (12 weeks old), sex- and age-matched wild-type C57BL/6J (Jackson Laboratory, USA) mice | Up to 12 weeks | DAI, histological scoring, MPO activity |
Rooks et al., 2014 [44] | TRUC colitis (T-bet−/−Rag2−/−) | Metronidazole (1 g/L, Sigma Aldrich, USA), gentamicin (2 g/L, Cellgro, USA), vancomycin (500 mg/L, Sigma Aldrich, USA), dissolved in drinking water; a hamster anti-mouse TNF-a neutralizing antibody (15 mg/kg, clone TN4-19.12, Bio X Cell, USA) given via i.v., FACS-sorted peripheral lymph node CD4+CD62LhiCD25+ cells (75 000 cells per mouse) given via i.v. | Homozygous T-bet−/−Rag2−/−(TRUC) SPF BALB/c mice and genobiotic TRUC BALB/c mice (Harvard School of Public Health, USA) | Up to 8 weeks | Histological scoring |
Bai et al., 2009 [45] | 5% DSS (Amersham Pharmacia Biotech AB, Sweden) in drinking water every second day or TNBS (2.5 mg, Sigma Aldrich, USA) given rectally | RX821002 (10 mg/kg) or UK14304 (2 mg/kg), both given via i.p. | Male BALB/c mice 7–8 weeks old, weighing approximately 22 g | Up to 10 days | DAI, histological scoring, MPO activity |
Magro et al., 2004 [46] | TNBS (30 mg; Sigma Aldrich, USA) given rectally | - | Male Wistar rats (Harlan-Interfauna, Spain) weighing 220–250 g | 7 days | Macroscopic and histological scoring, MPO activity |
Herak-Perkovic et al., 2001 [47] | 0.5% DNBF (Sigma Aldrich, USA) given rectally | Domperidone (Sigma Aldrich, USA) or bromocriptine (Bromergon, Slovenia), both given via i.p. | Male BALB/c mice (Institute Ruder Boskovic, Croatia), 8–12-week-old (20–25 g) | 5 days | Histological scoring |
Models Associated with Sympathetic Denervation Together with Disease-Specific Models | |||||
Willemze et al., 2019 [48] | 6-OHDA (80 mg/kg body weight on three consecutive days, and every 10 days thereafter; Sigma) given via i.p.; intestine-specific sympathectomy (transection of the superior mesenteric nerve along the mesenteric artery) | - | Female C57BL/6 inbred mice (8–12 weeks old; Charles River Laboratories, Netherlands), male and female Rag1−/− mice (8–12 weeks old; The Jackson Laboratory, USA), male and female Rag1−/−Adrβ2−/− mice (Philippe Blancou at the Institute of Molecular and Cellular Pharmacology, France) | Up to 4 weeks | Macroscopic, histological, and endoscopic scoring |
Prysiazhniuk et al., 2017 [49] | MPTP (4 × 20 mg/kg, Sigma Aldrich, USA) given via s.c. and/or 6% IA (rectally) | - | Male Wistar rats, 170–200 g | Up to 18 days | DAI, macroscopic and histological scoring, MPO activity, phagocytosis assay |
McCafferty et al., 1997 [50] | TNBS (30 mg, ICN Pharmaceuticals, USA; Fluka, Canada) given rectally and/or 6-OHDA (total dose 300 mg/kg, RBI, USA) given via s.c. | Capsaicine (AstraPharma, intracolonic, or via s.c.), lidocaine (USP, intracolonic) | Male or female Sprague-Dawley rats (Charles River Breeding Farms, Canada) weighing 250–300 g | NA | Body weight, mortality, macroscopic and histological scoring, MPO activity |
Bromocriptine | Cabergoline | Quinpirol | SKF-38393 | Berberine | Domperidone | Haloperidol | Brimonidine (UK14304) | RX821002 | |
---|---|---|---|---|---|---|---|---|---|
IUPAC name | 6aR,9R)-5-bromo-N-[(1S,2S,4R,7S)-2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo [7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide | (6aR,9R,10aR)-N-[3-(dimethylamino)propyl]-N-(ethylcarbamoyl)-7-prop-2-enyl-6,6a,8,9,10,10a-hexahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide | (4aR,8aR)-5-propyl-1,4,4a,6,7,8,8a,9-octahydropyrazolo[3,4-g]quinoline | 5-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol | 16,17-dimethoxy-5,7-dioxa-13-azoniapentacyclo[11.8.,0.02,10.04,8.015,20]henicosa-1(13),2,4(8),9,14,16,18,20-octaene | 6-chloro-3-[1-[3-(2-oxo-3H-benzimidazol-1-yl)propyl]piperidin-4-yl]-1H-benzimidazol-2-one | 4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-1-(4-fluorophenyl)butan-1-one | 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)quinoxalin-6-amine | 2-(3-methoxy-2H-1,4-benzodioxin-3-yl)-4,5-dihydro-1H-imidazole |
Molecular formula | C32H40BrN5O5 | C26H37N5O2 | C13H21N3 | C16H17NO2 | C20H18NO4+ | C22H24ClN5O2 | C21H23ClFNO2 | C11H10BrN5 | C12H14N2O3 |
Molecular weight [g] | 654.6 | 451.6 | 219.33 | 255.31 | 336.4 | 425.9 | 375.9 | 292.13 | 234.25 |
Affinity to catecholaminergic receptors | Primarily a D2R subfamily agonist (higher affinity to D2/3R) | A long-acting D2R agonist | A D3/D4R agonist | D1R subfamily agonist (a higher affinity to D5R) | A D1/D2R antagonist | A D2/D3R peripheral-specific antagonist | A D2R subfamily antagonist | A highly selective a2-adrenoceptor agonist | An a2-adrenoceptor antagonist |
Biological half life | 2–8 h | 63–69 h | N/A | N/A | 7 h | 14.5–36.7 h | 3 h (ocular administration), 12 h (topical administration) | N/A | |
Protein binding | 90–96% | 40–42% | 91–93% | 88.4–92.5% | N/A | ||||
Metabolism in human subjects | P450 3A4 and excreted primarily in the feces via biliary secretion. | Extensively metabolized, predominately via hydrolysis of the acylurea bond of the urea moiety, and cytochrome P-450 mediated metabolism appears to be minimal | Extensive metabolism after oral administration | CYP1A2, CYP2B6, CYP2C8, CYP2D6, CYP3A4 | Highly lipophilic and is well-absorbed from the gastrointestinal tract. However, the first-pass hepatic metabolism decreases its oral bioavailability; reduced CYP2D6 enzyme (including genetic polymorphisms) activity may result in increased concentrations | It was reported to be metabolized in the cornea after topical administration reaches systemic circulation and undergoes extensive hepatic metabolism mediated by hepatic aldehyde oxidases | |||
Drug indication | Galactorrhea due to hyperprolactinemia, prolactin-dependent menstrual disorders and infertility, prolactin-secreting adenomas, prolactin-dependent male hypogonadism, Parksinsonian syndrome, and as an off-label medication to treat restless legs syndrome and neuroleptic malignant syndrome | High prolactin levels, prolactinomas, Parkinson’s disease (but also possesses antioxidant and neuroprotective properties due to its free radical scavenging activity) | Research chemical | Parasitic and fungal infections, diarrhea (dietary supplements); a research chemical with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic, and antidiabetic activities | Dyspepsia, heartburn, epigastric pain, nausea, vomiting | Schizophrenia, tics and vocal utterances of Tourette’s disorder, severe behavioral problems in children of combative, explosive hyperexcitability and short-term treatment of hyperactive children with excessive motor activity with accompanying conduct disorders | Lowering intraocular pressure in patients with open-angle glaucoma or ocular hypertension as a monotherapy or in combination; persistent (non-transient) facial erythema of rosacea in adults 18 years of age or older | Research chemical | |
Toxicity/side effects | Nausea, headache, vertigo, constipation, light-headedness, abdominal cramps, nasal congestion, diarrhea, severe hypotension | Nasal congestion, syncope, hallucinations | N/A | Galactorrhea, gynecomastia, menstrual irregularities | Extrapyramidal reactions, hypotension, respiratory difficulty, impairment of consciousness | Hypotension, asthenia, vomiting, lethargy, sedation, bradycardia, arrhythmias, miosis, apnea, hypotonia, hypothermia, respiratory depression, and seizures | N/A |
Disease-Specific Models | ||
---|---|---|
References | Chemical Dyes for Histology | Primary Antibodies for Immunostaining (Including Immunohistochemistry, Flow Cytometry, Western Blotting, and ELISA) |
Liu et al., 2021 [38] | Hematoxylin and eosin | Anti-Inos (ab15323, Abcam, UK), -β-actin (A1978, Sigma), -Arg1 (PA585267), -F4/80 (14-4801-82), -PE IgG (35- 4914-81), -PEcy7 IgG 25-4914-82 (eBioscience, USA); anti-phosphorylated PKA C (5661, SCT); anti-PKA C-α (55388-1-AP), -Drd5 (20310-1-AP/ADR-005, Proteintech/Alomone); anti-phosphorylated IKKα/β (2697), -IKKβ (2370), -phosphorylated IκBα (9246), -phosphorylated CREB (9198s, Cell Signaling Technology); anti-CREB (48601-2, SAB), anti-TCR-β-eFlour450 (48-5961-80), -CD45-AF700 (30-F11, 85-11-0112-81), -APC-CD45.1 (17-0453-82), -APC-eflour-780-CD45.2(47-0454-82), -CD11b- FITC (M1/70,85-12-0114-81), -F4/80-APC (BM8, 17- 4801-82), -Ly6c-PE-Cy7 (HK1.4, 25-5932-82), -Ly6g-percpcy5.5 (48-9668-82), FVD-eFlour®506 (65- 0866), -APC-TNFα (17-7321-82, eBioscience, USA); anti-CD11c (12-0114-82), -CD19 (17- 0193-80), -NK1.1-PE-cy7 (25-5941-81, Thermo) |
Osorio-Barrios et al., 2021 [27] | Zombie Aqua (Biolegend, USA) | Anti-CCR9 (1:100 dilution, ab140765, Abcam, UK), anti-DRD5 (1:100 dilution, 324408, Calbiochem, USA); anti-IFNγ (clone XMG1.2), -a4b7 (clone DATK32), -CCR9 (clone CW.1.2, eBioscience, USA); anti-CD4 (clone GK1.5), -CD25 (clone PC61), -CD44 (clone IM7), -CD62L (clone MEL14), -IL-17A (clone TC11-181710.1), -CD45.2 (clone 104), -CD45.1 (clone A20), -TCR b chain (clone H57-597) (BioLegend, USA) |
Ugalde et al., 2021 [39] | Hematoxylin and eosin, Alcian blue, Zombie Aqua (Biolegend, San Diego, CA, USA), Cell trace violet (Invitrogen, USA) | Anti-FoxP3 (clone FJK-16S), -IFNγ (clone XMG1.2), -α4β7 (clone DATK32), -CCR9 (clone CW.1.2) (eBioscience, USA); anti-CD4 (clone GK1.5),-CD25 (clone PC61), -CD44 (clone IM7), -CD62L (clone MEL14), -IL-17A (clone TC11-181710.1), -CD45.2 (clone 104), -CD45.1 (clone A20), -TCRVα2 (clone B20.1), -TCRVβ5 (clone MR9-4), -CD28 (clone 37.51),-CD3ε (clone 145-2C11), -IFNγ (clone AN-18) (Biolegend, USA); anti-DRD3 (ADR-003) (Alomone labs) |
Contreras et al., 2016 [40] | Hematoxylin and eosin | Anti-CD4 (GK1.5), -CD44 (IM7), -CD62L (MEL-14), -CD25 (PC61), -IL-7Ra (A7R34), -CD27 (LG.3A10), -CD45.2 (104), -CD45.1 (A20), -IFNγ (XMG1.2),-IL-17A (TC11-18H10.1),-T-bet (4B10),-IL-4 (11B11),-IL-5 (TRFK5),-CD3ε (145-2C11),-CD28 (37.51), –IFNγ (AN-18),–IL-4 (11B11),–IL-12 (C17.8), -mouse IgG1 (RMG1-1) (BioLegend, USA); anti-Foxp3 (FJK16s),-IL-13 (eBio13A),-IFNγ (XMG1.2) (eBioscience, USA); anti–IL-4 (BVD4-1D11, BVD6-24G2) (BD Biosciences, USA), anti-suppressor of cytokine signaling (SOCS) 3 (H-103), -SOCS5 (M-300, Santa Cruz Biotechnology, USA) |
Oehlers et al., 2016 [41] | DAF-FM-DA, 4-amino-5-methylamino-2′, 7′- difluorofluorescein diacetate (Invitrogen, USA) | - |
Bai et al., 2015 [29] | Hematoxylin and eosin | Anti-DBH antibodies (Santa Cruz Biotechnology, USA); anti-TNFα, -IL-1β (ELISA, R&D Systems, USA) |
Kawano et al., 2015 [42] | Hematoxylin and eosin (New Histo. Science Laboratory Co, Japan) | Anti-IFNγ, -IL-6, -TNFα, -IL-1β, -IL-12, -IL-4, -TGFβ, -IL-23, -IL-17 (ELISA DuoSet kits, R&D Systems) |
Tolstanova et al., 2015 [43] | Evans blue, fluorescein isothiocyanate-conjugated (FITC)–dextran, hematoxylin and eosin (Sigma, USA) | Anti-TH, -Akt, -phospho-AktSer473, -Src, -phospho-Src familyTyr416 (Cell Signaling Technology, USA), -dopamine transporter DAT, -D2-R, -β-actin (Santa Cruz, USA), -GAPDH (EnCor Biotech, USA), -Von Willebrand factor (Chemicon, USA) |
Rooks et al., 2014 [44] | Hematoxylin and eosin | Anti-dopamine DOP Research ELISA (Labor Diagnostika Nord, Germany) |
Bai et al., 2009 [45] | Anti-TH or anti-DBH antibodies (Santa Cruz Biotechnology, USA); anti-TNFα, -IL-1β (ELISA, R&D Systems, USA) | |
Magro et al., 2004 [46] | - | Anti-IFNγ (an assay kit according to van der Meide et al., 1990) |
Herak-Perkovic et al., 2001 [47] | Hematoxylin and eosin | - |
Models Primarily Associated with Sympathetic Denervation Together with Disease-Specific Models | ||
Willemze et al., 2019 [48] | Hamatoxylin and eosin | Anti-IL-1β, -IL-4, -IL-6, -IL-10, -IL-17, -IFNγ and TNFα (R&D systems, UK); anti-human-IL-1β, -IL-6, -IL-10, -IL-12 and TNFα (CBA; BD Bioscience, USA); anti-CD45 (Brunschwig, USA); anti-CD11b, -Ly6G, -CD64, -MHC-II (Biolegend, USA); anti-CD11c, -Ly6C (Affymetrix, Austra) |
Prysiazhniuk et al., 2017 [49] | - | Anti-TH and -β actin (Santa Cruz Biotechnology, Germany) |
McCafferty et al., 1997 [50] | Hamatoxylin and eosin | - |
Human | Rat | Mice | |
---|---|---|---|
Duodenum | - | 239 pmol/g [74] | - |
- | 57 pmol/g 6-OHDA treatment [74] | - | |
Jejunum | - | 61 pmol/g (mucosa) [75] | 0.03 pmol/g [76] |
41 pmol/g (mucosa) [77] | |||
36 pmol/g (epithelial cells) [77] | |||
Ileum | - | 30 pmol/g [46] | 15.7 ng/g [18] (gut lumen) |
- | 28 pmol/g TNBS-treatment [46] | - | |
* 163 pg/µg [78] | |||
- | * 167 pg/µg 6-OHDA treatment [78] | - | |
Cecum | - | - | 115.4 ng/g [18] (gut lumen) |
Colon | * 135 pmol/g [30] | 26 pmol/g [46] | 177 ng/g [18] (gut lumen) |
* 50 pmol/g (inflamed mucosa) in both CD and UC patients [30] | 17 pmol/g TNBS-treatment [46] in inflamed colonic mucosa | 1.5 × 10−7 M [38] | |
- | * 60 pg/µg [78] | 1 × 10−7 M [38] DSS treatment | |
- | * 130 pg/µg 6-OHDA treatment [78] | - | |
- | *12 pg/mg [79] | - | |
* 27 pg/mg 6-OHDA treatment [79] | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurnik-Łucka, M.; Pasieka, P.; Łączak, P.; Wojnarski, M.; Jurczyk, M.; Gil, K. Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 12932. https://doi.org/10.3390/ijms222312932
Kurnik-Łucka M, Pasieka P, Łączak P, Wojnarski M, Jurczyk M, Gil K. Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review. International Journal of Molecular Sciences. 2021; 22(23):12932. https://doi.org/10.3390/ijms222312932
Chicago/Turabian StyleKurnik-Łucka, Magdalena, Paweł Pasieka, Patrycja Łączak, Marcin Wojnarski, Michał Jurczyk, and Krzysztof Gil. 2021. "Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review" International Journal of Molecular Sciences 22, no. 23: 12932. https://doi.org/10.3390/ijms222312932
APA StyleKurnik-Łucka, M., Pasieka, P., Łączak, P., Wojnarski, M., Jurczyk, M., & Gil, K. (2021). Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review. International Journal of Molecular Sciences, 22(23), 12932. https://doi.org/10.3390/ijms222312932