The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis
Abstract
:1. Introduction
2. Results
2.1. Identification of Enriched GO Categories
2.2. Identification of Enriched KEGG Pathways
2.3. Cross-Species Sequence Analysis
2.4. Immunohistological Validation of Fibronectin Expression
3. Discussion
4. Materials and Methods
4.1. Systematic Review
4.2. Microarray Data
4.3. Differential Gene Expression Analysis
4.4. Ortholog Mapping
4.5. Sequence Conservation Analysis
4.6. Ontological and Pathway Enrichment Analyses
4.7. Interactome Analysis
4.7.1. GO Enrichment Analysis
4.7.2. KEGG Analysis
4.8. Animal Care and Surgery
4.9. Immunohistological Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zavvarian, M.-M.; Toossi, A.; Khazaei, M.; Hong, J.; Fehlings, M. Novel Innovations in Cell and Gene Therapies for Spinal Cord Injury. F1000Res 2020, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Tetreault, L.; Kalsi-Ryan, S.; Nouri, A.; Fehlings, M.G. Global Prevalence and Incidence of Traumatic Spinal Cord Injury. Clin. Epidemiol. 2014, 6, 309–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Spinal Cord Injury Statistical Center. Spinal Cord Injury Facts and Figures at a Glance; University of Alabama at Birmingham: Birmingham, AL, USA, 2021. [Google Scholar]
- Jain, N.B.; Ayers, G.D.; Peterson, E.N.; Harris, M.B.; Morse, L.; O’Connor, K.C.; Garshick, E. Traumatic Spinal Cord Injury in the United States, 1993–2012. JAMA 2015, 313, 2236. [Google Scholar] [CrossRef] [PubMed]
- Zavvarian, M.-M.; Hong, J.; Khazaei, M.; Chio, J.C.T.; Wang, J.; Badner, A.; Fehlings, M.G. The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021, 11, 972. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic Spinal Cord Injury. Nat. Rev. Dis. Prim. 2017, 3, 17018. [Google Scholar] [CrossRef]
- O’Shea, T.M.; Burda, J.E.; Sofroniew, M.V. Cell Biology of Spinal Cord Injury and Repair. J. Clin. Investig. 2017, 127, 3259–3270. [Google Scholar] [CrossRef]
- Zavvarian, M.-M.; Hong, J.; Fehlings, M.G. The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury. Front. Cell. Neurosci. 2020, 14, 127. [Google Scholar] [CrossRef]
- Le Corre, M.; Noristani, H.N.; Mestre-Frances, N.; Saint-Martin, G.P.; Coillot, C.; Goze-Bac, C.; Lonjon, N.; Perrin, F.E. A Novel Translational Model of Spinal Cord Injury in Nonhuman Primate. Neurotherapeutics 2018, 15, 751–769. [Google Scholar] [CrossRef] [Green Version]
- Fehlings, M.G.; Wilson, J.R.; Harrop, J.S.; Kwon, B.K.; Tetreault, L.A.; Arnold, P.M.; Singh, J.M.; Hawryluk, G.; Dettori, J.R. Efficacy and Safety of Methylprednisolone Sodium Succinate in Acute Spinal Cord Injury: A Systematic Review. Glob. Spine J. 2017, 7, 116S–137S. [Google Scholar] [CrossRef]
- Lammertse, D.; Tuszynski, M.H.; Steeves, J.D.; Curt, A.; Fawcett, J.W.; Rask, C.; Ditunno, J.F.; Fehlings, M.G.; Guest, J.D.; Ellaway, P.H.; et al. Guidelines for the Conduct of Clinical Trials for Spinal Cord Injury as Developed by the ICCP Panel: Clinical Trial Design. Spinal Cord 2007, 45, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Sroga, J.M.; Jones, T.B.; Kigerl, K.A.; McGaughy, V.M.; Popovich, P.G. Rats and Mice Exhibit Distinct Inflammatory Reactions after Spinal Cord Injury. J. Comp. Neurol. 2003, 462, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Nagoshi, N.; Fehlings, M.G. Investigational Drugs for the Treatment of Spinal Cord Injury: Review of Preclinical Studies and Evaluation of Clinical Trials from Phase I to II. Expert Opin. Investig. Drugs 2015, 24, 645–658. [Google Scholar] [CrossRef]
- Zhang, G.; Pizarro, I.V.; Swain, G.P.; Kang, S.H.; Selzer, M.E. Neurogenesis in the Lamprey Central Nervous System Following Spinal Cord Transection: Neurogenesis in the Lamprey CNS after Spinal Cord Transection. J. Comp. Neurol. 2014, 522, 1316–1332. [Google Scholar] [CrossRef] [Green Version]
- Sabin, K.; Santos-Ferreira, T.; Essig, J.; Rudasill, S.; Echeverri, K. Dynamic Membrane Depolarization Is an Early Regulator of Ependymoglial Cell Response to Spinal Cord Injury in Axolotl. Dev. Biol. 2015, 408, 14–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverri, K. Ectoderm to Mesoderm Lineage Switching During Axolotl Tail Regeneration. Science 2002, 298, 1993–1996. [Google Scholar] [CrossRef]
- Rodrigo Albors, A.; Tazaki, A.; Rost, F.; Nowoshilow, S.; Chara, O.; Tanaka, E.M. Planar Cell Polarity-Mediated Induction of Neural Stem Cell Expansion during Axolotl Spinal Cord Regeneration. eLife 2015, 4, e10230. [Google Scholar] [CrossRef]
- Cornide-Petronio, M.E.; Ruiz, M.S.; Barreiro-Iglesias, A.; Rodicio, M.C. Spontaneous Regeneration of the Serotonergic Descending Innervation in the Sea Lamprey after Spinal Cord Injury. J. Neurotrauma 2011, 28, 2535–2540. [Google Scholar] [CrossRef] [PubMed]
- Diaz Quiroz, J.F.; Tsai, E.; Coyle, M.; Sehm, T.; Echeverri, K. Precise Control of MiR-125b Levels Is Required to Create a Regeneration-Permissive Environment after Spinal Cord Injury: A Cross-Species Comparison between Salamander and Rat. Dis. Models Mech. 2014, 7, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Squair, J.W.; Tigchelaar, S.; Moon, K.-M.; Liu, J.; Tetzlaff, W.; Kwon, B.K.; Krassioukov, A.V.; West, C.R.; Foster, L.J.; Skinnider, M.A. Integrated Systems Analysis Reveals Conserved Gene Networks Underlying Response to Spinal Cord Injury. eLife 2018, 7. [Google Scholar] [CrossRef]
- Herman, P.E.; Papatheodorou, A.; Bryant, S.A.; Waterbury, C.K.M.; Herdy, J.R.; Arcese, A.A.; Buxbaum, J.D.; Smith, J.J.; Morgan, J.R.; Bloom, O. Highly Conserved Molecular Pathways, Including Wnt Signaling, Promote Functional Recovery from Spinal Cord Injury in Lampreys. Sci. Rep. 2018, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.R.; Walker, J.A.; Page, R.B.; Putta, S.; Beachy, C.K.; Voss, S.R. Early Gene Expression during Natural Spinal Cord Regeneration in the Salamander Ambystoma Mexicanum. J. Neurochem. 2007, 101, 27–40. [Google Scholar] [CrossRef]
- Chamankhah, M.; Eftekharpour, E.; Karimi-Abdolrezaee, S.; Boutros, P.C.; San-Marina, S.; Fehlings, M.G. Genome-Wide Gene Expression Profiling of Stress Response in a Spinal Cord Clip Compression Injury Model. BMC Genom. 2013, 14, 583. [Google Scholar] [CrossRef] [Green Version]
- Di Giovanni, S.; Knoblach, S.M.; Brandoli, C.; Aden, S.A.; Hoffman, E.P.; Faden, A.I. Gene Profiling in Spinal Cord Injury Shows Role of Cell Cycle Neuronal Death. Ann. Neurol. 2003, 53, 454–468. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Res. 2012, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Reimand, J.; Kull, M.; Peterson, H.; Hansen, J.; Vilo, J. G:Profiler—A Web-Based Toolset for Functional Profiling of Gene Lists from Large-Scale Experiments. Nucleic Acids Res. 2007, 35, W193–W200. [Google Scholar] [CrossRef]
- Duan, H.; Ge, W.; Zhang, A.; Xi, Y.; Chen, Z.; Luo, D.; Cheng, Y.; Fan, K.S.; Horvath, S.; Sofroniew, M.V.; et al. Transcriptome Analyses Reveal Molecular Mechanisms Underlying Functional Recovery after Spinal Cord Injury. Proc. Natl. Acad. Sci. USA 2015, 112, 13360–13365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munro, K.M.; Perreau, V.M.; Turnley, A.M. Differential Gene Expression in the EphA4 Knockout Spinal Cord and Analysis of the Inflammatory Response Following Spinal Cord Injury. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Tica, J.; Didangelos, A. Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns. Front. Neurosci. 2018, 12, 808. [Google Scholar] [CrossRef] [Green Version]
- Fleming, J.C.; Norenberg, M.D.; Ramsay, D.A.; Dekaban, G.A.; Marcillo, A.E.; Saenz, A.D.; Pasquale-Styles, M.; Dietrich, W.D.; Weaver, L.C. The Cellular Inflammatory Response in Human Spinal Cords after Injury. Brain 2006, 129, 3249–3269. [Google Scholar] [CrossRef]
- Kasuya, Y.; Umezawa, H.; Hatano, M. Stress-Activated Protein Kinases in Spinal Cord Injury: Focus on Roles of P38. Int. J. Mol. Sci. 2018, 19, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badner, A.; Vawda, R.; Laliberte, A.; Hong, J.; Mikhail, M.; Jose, A.; Dragas, R.; Fehlings, M. Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury: Intravenous Human Brain Stromal Cells in SCI. Stem Cells Transl. Med. 2016, 5, 991–1003. [Google Scholar] [CrossRef]
- Bradbury, E.J.; Burnside, E.R. Moving beyond the Glial Scar for Spinal Cord Repair. Nat. Commun. 2019, 10, 3879. [Google Scholar] [CrossRef]
- Gaudet, A.D.; Popovich, P.G. Extracellular Matrix Regulation of Inflammation in the Healthy and Injured Spinal Cord. Exp. Neurol. 2014, 258, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradbury, E.J.; Moon, L.D.F.; Popat, R.J.; King, V.R.; Bennett, G.S.; Patel, P.N.; Fawcett, J.W.; McMahon, S.B. Chondroitinase ABC Promotes Functional Recovery after Spinal Cord Injury. Nature 2002, 416, 636–640. [Google Scholar] [CrossRef]
- Burnside, E.R.; De Winter, F.; Didangelos, A.; James, N.D.; Andreica, E.-C.; Layard-Horsfall, H.; Muir, E.M.; Verhaagen, J.; Bradbury, E.J. Immune-Evasive Gene Switch Enables Regulated Delivery of Chondroitinase after Spinal Cord Injury. Brain 2018, 141, 2362–2381. [Google Scholar] [CrossRef]
- King, V.R.; Hewazy, D.; Alovskaya, A.; Phillips, J.B.; Brown, R.A.; Priestley, J.V. The Neuroprotective Effects of Fibronectin Mats and Fibronectin Peptides Following Spinal Cord Injury in the Rat. Neuroscience 2010, 168, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Anderson, P.N.; Campbell, G.; Mohajeri, H.; Schachner, M.; Lieberman, A.R. Tenascin-C Expression by Neurons and Glial Cells in the Rat Spinal Cord: Changes during Postnatal Development and after Dorsal Root or Sciatic Nerve Injury. J. Neurocytol. 1995, 24, 585–601. [Google Scholar] [CrossRef]
- Zhang, Y.; Winterbottom, J.K.; Schachner, M.; Lieberman, A.R.; Anderson, P.N. Tenascin-C Expression and Axonal Sprouting Following Injury to the Spinal Dorsal Columns in the Adult Rat. J. Neurosci. Res. 1997, 49, 433–450. [Google Scholar] [CrossRef]
- Zhu, Y.; Soderblom, C.; Trojanowsky, M.; Lee, D.-H.; Lee, J.K. Fibronectin Matrix Assembly after Spinal Cord Injury. J. Neurotrauma 2015, 32, 1158–1167. [Google Scholar] [CrossRef] [Green Version]
- Goh, F.G.; Piccinini, A.M.; Krausgruber, T.; Udalova, I.A.; Midwood, K.S. Transcriptional Regulation of the Endogenous Danger Signal Tenascin-C: A Novel Autocrine Loop in Inflammation. J. Immunol. 2010, 184, 2655–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, J.; Schachner, M.; Schumacher, U.; Lorke, D.E. Extracellular Matrix Alterations, Accelerated Leukocyte Infiltration and Enhanced Axonal Sprouting after Spinal Cord Hemisection in Tenascin-C-Deficient Mice. Acta Histochem. 2013, 115, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Joon Lee, H.; Jakovcevski, I.; Shah, R.; Bhagat, N.; Loers, G.; Liu, H.-Y.; Meiners, S.; Taschenberger, G.; Kügler, S.; et al. The Extracellular Matrix Glycoprotein Tenascin-C Is Beneficial for Spinal Cord Regeneration. Mol. Ther. J. Am. Soc. Gene Ther. 2010, 18, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Calve, S.; Odelberg, S.J.; Simon, H.-G. A Transitional Extracellular Matrix Instructs Cell Behavior during Muscle Regeneration. Dev. Biol. 2010, 344, 259–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Davis, R.J.; Flavell, R.A. MAP Kinases in the Immune Response. Annu. Rev. Immunol. 2002, 20, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Godwin, J.W.; Rosenthal, N. Scar-Free Wound Healing and Regeneration in Amphibians: Immunological Influences on Regenerative Success. Differ. Res. Biol. Divers. 2014, 87, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Mercer, S.E.; Cheng, C.-H.; Atkinson, D.L.; Krcmery, J.; Guzman, C.E.; Kent, D.T.; Zukor, K.; Marx, K.A.; Odelberg, S.J.; Simon, H.-G. Multi-Tissue Microarray Analysis Identifies a Molecular Signature of Regeneration. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineau, I.; Sun, L.; Bastien, D.; Lacroix, S. Astrocytes Initiate Inflammation in the Injured Mouse Spinal Cord by Promoting the Entry of Neutrophils and Inflammatory Monocytes in an IL-1 Receptor/MyD88-Dependent Fashion. Brainbehavior Immun. 2010, 24, 540–553. [Google Scholar] [CrossRef]
- Guo, L.; Lv, J.; Huang, Y.-F.; Hao, D.-J.; Liu, J.-J. Bioinformatics Analyses of Differentially Expressed Genes Associated with Spinal Cord Injury: A Microarray-Based Analysis in a Mouse Model. Neural Regen. Res. 2019, 14, 1262–1270. [Google Scholar] [CrossRef]
- Shi, Z.; Ning, G.; Zhang, B.; Yuan, S.; Zhou, H.; Pan, B.; Li, J.; Wei, Z.; Cao, F.; Kong, X.; et al. Signatures of Altered Long Noncoding RNAs and Messenger RNAs Expression in the Early Acute Phase of Spinal Cord Injury. J. Cellular Physiol. 2019, 234, 8918–8927. [Google Scholar] [CrossRef]
- Dubreuil, C.I.; Winton, M.J.; McKerracher, L. Rho Activation Patterns after Spinal Cord Injury and the Role of Activated Rho in Apoptosis in the Central Nervous System. J. Cell Biol. 2003, 162, 233–243. [Google Scholar] [CrossRef]
- Salvador, J.M.; Brown-Clay, J.D.; Fornace, A.J. Gadd45 in Stress Signaling, Cell Cycle Control, and Apoptosis. In Gadd45 Stress Sensor Genes; Liebermann, D.A., Hoffman, B., Eds.; Springer: New York, NY, USA, 2013; pp. 1–19. ISBN 978-1-4614-8289-5. [Google Scholar]
- Zhang, L.; Yang, Z.; Ma, A.; Qu, Y.; Xia, S.; Xu, D.; Ge, C.; Qiu, B.; Xia, Q.; Li, J.; et al. Growth Arrest and DNA Damage 45G Down-Regulation Contributes to Janus Kinase/Signal Transducer and Activator of Transcription 3 Activation and Cellular Senescence Evasion in Hepatocellular Carcinoma: Zhang et al. Hepatology 2014, 59, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Duan, L.-J.; Sun, Q.-L.; Gao, Y.-S.; Yang, Y.-D.; Tang, X.-S.; Zhao, D.-Y.; Xiong, Y.; Hu, Z.-G.; Li, C.-H.; et al. Identification of Key Pathways and Genes in L4 Dorsal Root Ganglion (DRG) After Sciatic Nerve Injury via Microarray Analysis. J. Investig. Surg. 2020, 33, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Chiu, R.; Boyle, W.J.; Meek, J.; Smeal, T.; Hunter, T.; Karin, M. The C-Fos Protein Interacts with c-Jun/AP-1 to Stimulate Transcription of AP-1 Responsive Genes. Cell 1988, 54, 541–552. [Google Scholar] [CrossRef]
- Sabin, K.Z.; Jiang, P.; Gearhart, M.D.; Stewart, R.; Echeverri, K. AP-1cFos/JunB/MiR-200a Regulate the pro-Regenerative Glial Cell Response during Axolotl Spinal Cord Regeneration. Commun. Biol. 2019, 2, 91. [Google Scholar] [CrossRef] [Green Version]
- Phan, A.Q.; Lee, J.; Oei, M.; Flath, C.; Hwe, C.; Mariano, R.; Vu, T.; Shu, C.; Dinh, A.; Simkin, J.; et al. Positional Information in Axolotl and Mouse Limb Extracellular Matrix Is Mediated via Heparan Sulfate and Fibroblast Growth Factor during Limb Regeneration in the Axolotl (Ambystoma mexicanum). Regeneration 2015, 2, 182–201. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M.; Al-Qattan, A.M.; Al-Maged Ahmed, D.A.; Abd Al-Wahed, M.M.; Shier, M.K. Limb Regeneration in Salamanders and Digital Tip Regeneration in Experimental Mice: Implications for the Hand Surgeon. J. Hand Surg. Eur. Vol. 2014, 39, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Debuque, R.J.; Nowoshilow, S.; Chan, K.E.; Rosenthal, N.A.; Godwin, J.W. Distinct Toll-like Receptor Signaling in the Salamander Response to Tissue Damage. Dev. Dyn. 2021, dvdy.340. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, A.M.; Åström, P.; Salo, T.; Roy, S.; Tran, S.D. Axolotls’ and Mices’ Oral-Maxillofacial Trephining Wounds Heal Differently. Cells Tissues Organs 2021, 210, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Sena, E.; van der Worp, H.B.; Howells, D.; Macleod, M. How Can We Improve the Pre-Clinical Development of Drugs for Stroke? Trends Neurosci. 2007, 30, 433–439. [Google Scholar] [CrossRef]
- Davis, S.; Meltzer, P.S. GEOquery: A Bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinform. (Oxf. Engl.) 2007, 23, 1846–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Gentleman, R. Annotate: Annotation for Microarrays. R Package Version 1.66.0. 2020. Available online: https://rdrr.io/bioc/annotate/man/findNeighbors.html (accessed on 25 November 2021).
- Huggins, P.; Johnson, C.K.; Schoergendorfer, A.; Putta, S.; Bathke, A.C.; Stromberg, A.J.; Voss, S.R. Identification of Differentially Expressed Thyroid Hormone Responsive Genes from the Brain of the Mexican Axolotl (Ambystoma mexicanum). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 155, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Nowoshilow, S.; Schloissnig, S.; Fei, J.-F.; Dahl, A.; Pang, A.W.C.; Pippel, M.; Winkler, S.; Hastie, A.R.; Young, G.; Roscito, J.G.; et al. The Axolotl Genome and the Evolution of Key Tissue Formation Regulators. Nature 2018, 554, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Schloissnig, S.; Kawaguchi, A.; Nowoshilow, S.; Falcon, F.; Otsuki, L.; Tardivo, P.; Timoshevskaya, N.; Keinath, M.C.; Smith, J.J.; Voss, S.R.; et al. The Giant Axolotl Genome Uncovers the Evolution, Scaling, and Transcriptional Control of Complex Gene Loci. Proc. Natl. Acad. Sci. USA 2021, 118, e2017176118. [Google Scholar] [CrossRef]
- Pruitt, K.; Murphy, T.; Garth, B.; Murphy, M. RefSeq Frequently Asked Questions (FAQ). Natl. Cent. Biotechnol. Inf. 2010, 16. Available online: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000112 (accessed on 25 November 2021).
- Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-Based Alignment Tool for Multiple Protein Sequences. Bioinformatics 2007, 23, 1073–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for MacOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broad Institute Morpheus. Available online: https://software.broadinstitute.org/morpheus (accessed on 22 July 2020).
- Wilcox, J.T.; Satkunendrarajah, K.; Nasirzadeh, Y.; Laliberte, A.M.; Lip, A.; Cadotte, D.W.; Foltz, W.D.; Fehlings, M.G. Generating Level-Dependent Models of Cervical and Thoracic Spinal Cord Injury: Exploring the Interplay of Neuroanatomy, Physiology, and Function. Neurobiol. Dis. 2017, 105, 194–212. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Species | Injury Model | Sample Size | Time-Point (dpi) | Normalization Format |
---|---|---|---|---|---|
Chamankhah et al. (2013) [23] | Wistar rat | T7 Clip-Compression | 4 injured rats/time point 4 sham rats | 1, 3, 7, 14, and 56 days | gcRMA |
Sabin et al. (2015) [15] | Axolotl (salamander) | Transection (Caudal to cloaca) | 3 injured replicates/time point 3 uninjured replicates (10 axolotls were pooled into each replicate) | 1, 3, and 7 days | RMA |
Duan et al. (2015) [28] | Wistar rat | T7/8 Transection | 3 injured replicates/time point 3 uninjured replicates (4 rats were pooled into each replicate) | 1, 3, 10, 20, 30, 60, and 90 days | RMA |
Munro et al. (2012) [29] | C57/Bl6 Mouse | T13/L1 Left hemisection | 3 injured mice 3 sham mice | 4 days | RMA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavvarian, M.-M.; Zhou, C.; Kahnemuyipour, S.; Hong, J.; Fehlings, M.G. The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis. Int. J. Mol. Sci. 2021, 22, 12934. https://doi.org/10.3390/ijms222312934
Zavvarian M-M, Zhou C, Kahnemuyipour S, Hong J, Fehlings MG. The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis. International Journal of Molecular Sciences. 2021; 22(23):12934. https://doi.org/10.3390/ijms222312934
Chicago/Turabian StyleZavvarian, Mohammad-Masoud, Cindy Zhou, Sabah Kahnemuyipour, James Hong, and Michael G. Fehlings. 2021. "The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis" International Journal of Molecular Sciences 22, no. 23: 12934. https://doi.org/10.3390/ijms222312934
APA StyleZavvarian, M. -M., Zhou, C., Kahnemuyipour, S., Hong, J., & Fehlings, M. G. (2021). The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis. International Journal of Molecular Sciences, 22(23), 12934. https://doi.org/10.3390/ijms222312934