A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (Solanum Section Lycopersicon) Clade
Abstract
:1. Introduction
2. Results
2.1. Candidates and CRISPR/Cas9 Mutants
2.2. SpDIR1L Behaves as an IRB Barrier Gene
2.3. DIR1L Genes Are Expressed in Species with Strong IRBs
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Candidate Gene Selection Criteria
4.3. CRISPR/Cas9 Constructs
4.4. Plant Transformation and Mutual Identification
4.5. Pollination Phenotypes
4.6. Immunoblot Analysis
4.7. Genomic Sequence Mapping
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barton, N.H. The role of hybridization in evolution. Mol. Ecol. 2001, 10, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.E.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C.A.; Buggs, R.; et al. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haussmann, B.I.G.; Parzies, H.K.; Presterl, T.; Sušić, Z.; Miedaner, T. Plant genetic resources in crop improvement. Plant Genet. Res. 2004, 2, 3–21. [Google Scholar] [CrossRef]
- Muñoz-Sanz, J.V.; Zuriaga, E.; Cruz-García, F.; McClure, B.; Romero, C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. Front. Plant Sci. 2020, 11, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashman, T.-L.; Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 2013, 100, 1061–1070. [Google Scholar] [CrossRef]
- Callaway, T.D.; Singh-Cundy, A. HD-AGPs as Speciation Genes: Positive Selection on a Proline-Rich Domain in Non-Hybridizing Species of Petunia, Solanum, and Nicotiana. Plants 2019, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- De Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Broz, A.K.; Bedinger, P.A. Pollen-Pistil Interactions as Reproductive Barriers. Annu. Rev. Plant Biol. 2021, 72, 615–639. [Google Scholar] [CrossRef] [PubMed]
- Bedinger, P.A.; Broz, A.K.; Tovar-Mendez, A.; McClure, B. Pollen-pistil interactions and their role inmate selection. Plant Physiol. 2017, 173, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Mendez, A.; Kumar, A.; Kondo, K.; Ashford, A.; Baek, Y.S.; Welch, L.; Bedinger, P.A.; McClure, B.A. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. Plant J. 2014, 77, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Chalivendra, S.C.; Lopez-Casado, G.; Kumar, A.; Kassenbrock, A.R.; Royer, S.; Tovar-Mendez, A.; Covey, P.A.; Dempsey, L.A.; Randle, A.M.; Stack, S.M.; et al. Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. J. Exp. Bot. 2013, 64, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Kubo, K.; Entani, T.; Tanaka, A.; Wang, N.; Fields, A.M.; Hua, Z.; Toyoda, M.; Kawashima, S.-I.; Ando, T.; Isogai, A.; et al. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 2010, 330, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 2005, 56, 467–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwano, M.; Takayama, S. Self/non-self discrimination in angiosperm self-incompatibility. Curr. Opin. Plant Biol. 2012, 15, 78–83. [Google Scholar] [CrossRef]
- McClure, B.A.; Mou, B.; Canevascini, S.; Bernatzky, R. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc. Natl. Acad. Sci. USA 1999, 96, 13548–13553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, C.N.; Kent, L.; McClure, B.A. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J. 2005, 43, 716–723. [Google Scholar] [CrossRef]
- Juárez-Díaz, J.A.; McClure, B.; Vázquez-Santana, S.; Guevara-García, A.; León-Mejía, P.; Márquez-Guzmán, J.; Cruz-García, F. A novel thioredoxin h is secreted in Nicotiana alata and reduces S-RNases in vitro. J. Biol. Chem. 2006, 281, 3418–3424. [Google Scholar] [CrossRef] [Green Version]
- Busot, G.Y.; McClure, B.; Ibarra-Sánchez, C.P.; Jiménez-Durán, K.; Vázquez-Santana, S.; Cruz-García, F. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue. J. Exp. Bot. 2008, 59, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- García-Valencia, L.E.; Bravo-Alberto, C.E.; Wu, H.M.; Rodríguez-Sotres, R.; Cheung, A.Y.; Cruz-García, F. SIPP, a novel mitochondrial phosphate carrier, mediates in self-incompatibility. Plant Physiol. 2017, 175, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Huang, J.; Zhao, Z.; Li, Q.; Sims, T.L.; Xue, Y. The Skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J. 2010, 62, 52–63. [Google Scholar] [CrossRef]
- Li, W.; Chetelat, R.T. The role of a pollen-expressed Cullin1 protein in gametophytic self-incompatibility in Solanum. Genetics 2014, 196, 439–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murfett, J.; Strabala, T.J.; Zurek, D.M.; Mou, B.; Beecher, B.; McClure, B.A. S-RNase and interspecific pollen rejection in the genus Nicotiana: Multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 1996, 8, 943–958. [Google Scholar] [CrossRef]
- Peralta, I.E.; Spooner, D.M.; Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 2008, 84, 1–186. [Google Scholar]
- Baek, Y.S.; Covey, P.A.; Petersen, J.J.; Chetelat, R.T.; McClure, B.; Bedinger, P.A. Testing the SI × SC rule: Pollen–pistil interactions in interspecific crosses between members of the tomato clade (Solanum section Lycopersicon, Solanaceae). Am. J. Bot. 2015, 102, 302–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, D.; Crowe, L.K. Unilateral interspecific incompatibility in flowering plants. Heredity 1958, 12, 233–256. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.W. The genetic control of unilateral incompatibility between two tomato species. Genetics 1967, 56, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chetelat, R.T. A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 2010, 330, 1827–1830. [Google Scholar] [CrossRef]
- Li, W.; Chetelat, R.T. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc. Natl. Acad. Sci. USA 2015, 112, 4417–4422. [Google Scholar] [CrossRef] [Green Version]
- Hogenboom, N.G. Breaking breeding barriers in Lycopersicon. 4. Breakdown of unilateral incompatibility between L. peruvianum (L.) Mill. and L. esculentum Mill. Euphytica 1972, 21, 397–404. [Google Scholar] [CrossRef]
- Liedl, B.E.; McCormick, S.; Mutschler, M.A. Unilateral incongruity in crosses involving Lycopersicon pennellii and L. esculentum is distinct from self-incompatibility in expression, timing and location. Sex. Plant Reprod. 1996, 9, 299–308. [Google Scholar] [CrossRef]
- Covey, P.A.; Kondo, K.; Welch, L.; Frank, E.; Sianta, S.; Kumar, A.; Nunez, R.; Lopez-Casado, G.; van der Knaap, E.; Rose, J.C.K.; et al. Multiple features that distinguish unilateral incongruity and self-incompatibility in the tomato clade. Plant J. 2010, 64, 367–378. [Google Scholar] [CrossRef]
- Tovar-Mendez, A.; Lu, L.; McClure, B. HT proteins contribute to S-RNase-independent pollen rejection in Solanum. Plant J. 2017, 89, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Li, W.; Liu, Y.; Tan, M.; Ganal, M.; Chetelat, R.T. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. Plant J. 2018, 93, 417–430. [Google Scholar] [CrossRef]
- Qin, X.; Chetelat, R.T. Ornithine decarboxylase genes contribute to S-RNase-independent pollen rejection. Plant Physiol. 2021, 186, 452–468. [Google Scholar] [CrossRef]
- Pease, J.B.; Guerrero, R.F.; Sherman, N.A.; Hahn, M.W.; Moyle, L.C. Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Mol. Ecol. 2016, 25, 2592–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberle, C.A.; Anderson, N.O.; Clasen, B.M.; Hegeman, A.D.; Smith, A.G. PELPIII: The class III pistil- specific Extensin-like Nicotiana tabacum proteins are essential for interspecific incompatibility. Plant J. 2013, 74, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Simpson, R.J.; Clarke, A.E.; Bacic, A. Molecular characterization of a stigma-specific gene encoding an arabinogalactan-protein (AGP) from Nicotiana alata. Plant J. 1996, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Noyszewski, A.K.; Liu, Y.C.; Tamura, K.; Smith, A.G. Polymorphism and structure of style–specific arabinogalactan proteins as determinants of pollen tube growth in Nicotiana. BMC Evol. Biol. 2017, 17, 186. [Google Scholar] [CrossRef] [Green Version]
- Lind, J.L.; Bacic, A.; Clarke, A.E.; Anderson, M.A. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J. 1994, 6, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Lind, J.L.; Bönig, I.; Clarke, A.E.; Anderson, M.A. A style-specific 120 kDA glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex Plant Reprod. 1996, 9, 75–86. [Google Scholar] [CrossRef]
- Wu, H.; Wang, H.; Cheung, A.Y. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 1995, 83, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.Y.; Wang, H.; Wu, H. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 1995, 82, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zhang, Y.; Yao, S.; Wei, Y. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS ONE 2014, 9, e98282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pease, J.B.; Haak, D.C.; Hahn, M.W.; Moyle, L.C. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 2016, 14, e1002379. [Google Scholar] [CrossRef]
- Nakazato, T.; Warren, D.L.; Moyle, L.C. Ecological and geographic modes of species divergence in wild tomatoes. Am. J. Bot. 2010, 97, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.; Scossa, F.; Bolger, M.E.; Lanz, C.; Maumus, F.; Tohge, T.; Quesneville, H.; Alseekh, S.; Sorensen, I.; Lichtenstein, G.; et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat. Genet. 2014, 46, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Kubo Ki Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2016, 2, 16130. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Cornish, E.C.; Mau, S.-L.; Williams, E.G.; Hoggart, R.; Atkinson, A.; Bonig, I.; Grego, B.; Simpson, R.; Roche, P.J.; et al. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 1986, 321, 38–44. [Google Scholar] [CrossRef]
- Bosch, M.; Hepler, P.K. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 2005, 17, 3219–3226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, B.; Chen, Z.; Zhang, D.; Zhang, H.; Wang, H.; Zhang, Y.; Cai, D.; Liu, J.; Xiao, S.; et al. A Pectin Methylesterase gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat. Commun. 2018, 9, 3678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran Lauter, A.N.; Muszynski, M.G.; Huffman, R.D.; Scott, M.P. A pectin metethylesterase ZmPme3 is expressed in gametophyte factor1-s (Ga1-s) silks and maps to that locus in maize (Zea mays L.). Front. Plant Sci. 2017, 8, 1926. [Google Scholar] [CrossRef]
- Lu, Y.; Hokin, S.A.; Kermicle, J.L.; Hartwig, T.; Evans, M.M.S. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays. Nat. Commun. 2019, 10, 2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Garcia, F.; Hancock, C.N.; Kim, D.; McClure, B. Stylar glycoproteins bind to S-RNase in vitro. Plant J. 2005, 42, 295–304. [Google Scholar] [CrossRef]
- Lee, C.B.; Swatek, K.N.; McClure, B. Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins. J. Biol. Chem. 2008, 283, 26965–26973. [Google Scholar] [CrossRef] [Green Version]
- Champigny, M.J.; Isaacs, M.; Carella, P.; Faubert, J.; Fobert, P.; Cameron, R.K. Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. Front. Plant Sci. 2013, 4, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bircheneder, S.; Dresselhaus, T. Why cellular communication during plant reproduction is particularly mediated by CRP signaling. J. Exp. Bot. 2016, 67, 4849–4861. [Google Scholar] [CrossRef] [Green Version]
- Higashiyama, T. Peptide signaling in pollen-pistil interactions. Plant Cell Physiol. 2010, 51, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broz, A.; Randle, A.; Sianta, S.; Tovar-Mendez, A.; McClure, B.A.; Bedinger, P. Mating system transitions in Solanum habrochaites impact interactions between populations and species. New Phytol. 2016, 213, 440–454. [Google Scholar] [CrossRef] [PubMed]
- Eshed, Y.; Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141, 1147–1162. [Google Scholar] [CrossRef]
- Kondo, K.; Yamamoto, M.; Matton, D.P.; Sato, T.; Hirai, M.; Norioka, S.; Hattori, T.; Kowyama, Y. Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self-incompatibility. Plant J. 2002, 29, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Mateos, M.A.; Vejnar, C.E.; Beaudoin, J.D.; Fernandez, J.P.; Mis, E.K.; Khokha, M.K.; Giraldez, A.J. CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 2015, 12, 982–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labelling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Schagger, H.; von Jagow, G. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef]
Candidate Gene | Expected Position of Mutation/CDS Length (bp) | Transgenic Line | Indel (bp) † | Predicted Change in Protein Sequence ‡ |
---|---|---|---|---|
SpAGP3 | 157/486 | spagp3-1 | −2 | S53I/fs/*59 |
spagp3-2 | −4 | S53Q/fs/*88 | ||
spagp3-3 | −43 | P51D/fs/*75 | ||
SpDIR1L | 90/315 | spdir1l-1 | +1 | L30F/fs/*37 |
spdir1l -2 | +2 | L30F/fs/*34 | ||
spdir1l -3 | −5 | S29V/fs/*35 | ||
Sp120K | 149/1446 | sp120k-1 | −2 | G50V/fs/*57 |
sp120k-2 | −7 | G52D/fs/*242 | ||
sp120k-3 | −91 | L31A/fs/*216 | ||
SpTTSL | 136/792 | spttsl-1 | −1 | P46L/fs/*85 |
spttsl-2 | −8 | P46S/fs/*48 | ||
spttsl-3 | −13 | P46L/fs/*81 | ||
SpTTSR | 393/756 | spttsr-1 | −1 | K132N/fs/*139 |
spttsr-2 | −2 | K132T/fs/*151 | ||
SpPEP2 | 112/576 | sppep2-1 | +1 | N38K/fs/*42 |
sppep2-2 | −8 | P36C/fs/*39 | ||
SpPELPIII | 152/1158 | sppelpIII-1 | +2 | D51V/fs/*106 |
SpPUR | 80/240 | sppur-1 | −32 | M23N/fs/*36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Sanz, J.V.; Tovar-Méndez, A.; Lu, L.; Dai, R.; McClure, B. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (Solanum Section Lycopersicon) Clade. Int. J. Mol. Sci. 2021, 22, 13067. https://doi.org/10.3390/ijms222313067
Muñoz-Sanz JV, Tovar-Méndez A, Lu L, Dai R, McClure B. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (Solanum Section Lycopersicon) Clade. International Journal of Molecular Sciences. 2021; 22(23):13067. https://doi.org/10.3390/ijms222313067
Chicago/Turabian StyleMuñoz-Sanz, Juan Vicente, Alejandro Tovar-Méndez, Lu Lu, Ru Dai, and Bruce McClure. 2021. "A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (Solanum Section Lycopersicon) Clade" International Journal of Molecular Sciences 22, no. 23: 13067. https://doi.org/10.3390/ijms222313067
APA StyleMuñoz-Sanz, J. V., Tovar-Méndez, A., Lu, L., Dai, R., & McClure, B. (2021). A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (Solanum Section Lycopersicon) Clade. International Journal of Molecular Sciences, 22(23), 13067. https://doi.org/10.3390/ijms222313067