Comprehensive Analysis of Arabinogalactan Protein-Encoding Genes Reveals the Involvement of Three BrFLA Genes in Pollen Germination in Brassica rapa
Abstract
:1. Introduction
2. Results
2.1. Comprehensive Analysis of Putative AGP Genes in B. rapa
2.2. Phylogenetic Analysis of BrAGPs and AtAGPs
2.3. Chromosomal Distribution of BrAGP Genes and Gene Duplication
2.4. BrAGP Genes Are Developmentally Regulated and Male Fertility-Related
2.5. Expression of Three BrFLA Genes Is Tissue-Specific and Developmentally Controlled
2.6. BrFLA2, BrFLA28 and BrFLA32 Proteins Are Localized at the Plasma Membrane and in the Hechtian Strands
2.7. Suppression of BrFLA2, BrFLA28 and BrFLA32 Genes’ Expression Promotes Pollen Grain Germination under High Humidity
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Identification of BrAGP Genes and Bioinformatics Analysis
4.3. Phylogenetic Analysis
4.4. Chromosomal Localization
4.5. Expression Analysis of BrAGP Genes
4.6. Amplification of Three BrFLA Genes
4.7. Expression Analysis of BrFLA2, BrFLA28 and BrFLA32
4.8. Construction of RNAi Recombinant Vector and Plant Transformation
4.9. Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreuger, M.; van Holst, G.J. Arabinogalactan Proteins and Plant Differentiation. Plant Mol. Biol. 1996, 30, 1077–1086. [Google Scholar] [CrossRef]
- Showalter, A.M. Structure and Function of Plant Cell Wall Proteins. Plant Cell 1993, 5, 9–23. [Google Scholar]
- Schultz, C.J.; Rumsewicz, M.P.; Johnson, K.L.; Jones, B.J.; Gaspar, Y.M.; Bacic, A. Using Genomic Resources to Guide Research Directions. The Arabinogalactan Protein Gene Family as a Test Case. Plant Physiol. 2002, 129, 1448–1463. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.L.; Jones, B.J.; Bacic, A.; Schultz, C.J. The Fasciclin-like Arabinogalactan Proteins of Arabidopsis. A Multigene Family of Putative Cell Adhesion Molecules. Plant Physiol. 2003, 133, 1911–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Zhao, J. Genome-Wide Identification, Classification, and Expression Analysis of the Arabinogalactan Protein Gene Family in Rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 2647–2668. [Google Scholar] [CrossRef]
- Showalter, A.M.; Keppler, B.D.; Lichtenberg, J.; Gu, D.; Welch, L.R. A Bioinformatics Approach to the Identification, Classi-fication, and Analysis of Hydroxyproline-Rich Glycoproteins. Plant Physiol. 2010, 153, 485–513. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Motose, H.; Iwamoto, K.; Fukuda, H. Expression and Genome-Wide Analysis of the Xylogen-Type Gene Family. Plant Cell Physiol. 2011, 52, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhao, H.; Liu, Z.; Zhao, J. The Phytocyanin Gene Family in Rice (Oryza sativa L.): Genome-Wide Identification, Clas-sification and Transcriptional Analysis. PLoS ONE 2011, 6, e25184. [Google Scholar] [CrossRef]
- Ma, T.; Ma, H.; Zhao, H.; Qi, H.; Zhao, J. Identification, Characterization, and Transcription Analysis of Xylogen-like Arabi-nogalactan Proteins in Rice (Oryza sativa L.). BMC Plant Biol. 2014, 14, 299. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yan, C.; Li, H.; Wu, W.; Liu, Y.; Wang, Y.; Chen, Q.; Ma, H. Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. Front. Plant Sci. 2017, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Dong, F.; Luan, D.; Hu, H.; Zhao, J. Gene Expression and Localization of Arabinogalactan Proteins during the De-velopment of Anther, Ovule, and Embryo in Rice. Protoplasma 2019, 256, 909–922. [Google Scholar] [CrossRef]
- Schultz, C.J.; Johnson, K.L.; Currie, G.; Bacic, A. The Classical Arabinogalactan Protein Gene Family of Arabidopsis. Plant Cell 2000, 12, 1751–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Xu, J.; Yang, J.; Kieliszewski, M.J.; Showalter, A.M. The Lysine-Rich Arabinogalactan-Protein Subfamily in Arabidopsis: Gene Expression, Glycoprotein Purification and Biochemical Characterization. Plant Cell Physiol. 2005, 46, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, Y.; Johnson, K.L.; McKenna, J.A.; Bacic, A.; Schultz, C.J. The Complex Structures of Arabinogalactan-Proteins and the Journey towards Understanding Function. Plant Mol. Biol. 2001, 47, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Motose, H.; Sugiyama, M.; Fukuda, H. A Proteoglycan Mediates Inductive Interaction during Plant Vascular Development. Nature 2004, 429, 873–878. [Google Scholar] [CrossRef]
- Mashiguchi, K.; Asami, T.; Suzuki, Y. Genome-Wide Identification, Structure and Expression Studies, and Mutant Collection of 22 Early Nodulin-like Protein Genes in Arabidopsis. Biosci. Biotechol. Biochem. 2009, 73, 2452–2459. [Google Scholar] [CrossRef] [Green Version]
- Nothnagel, E.A. Proteoglycans and Related Components in Plant Cells. Int. Rev. Cytol. 1997, 174, 195–291. [Google Scholar] [PubMed]
- Showalter, A.M. Arabinogalactan-Proteins: Structure, Expression and Function. Cell Mol. Life Sci. 2001, 58, 1399–1417. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.J.; Roberts, K. The Biology of Arabinogalactan Proteins. Annu. Rev. Plant Biol. 2007, 58, 137–161. [Google Scholar] [CrossRef]
- Knoch, E.; Dilokpimol, A.; Geshi, N. Arabinogalactan Proteins: Focus on Carbohydrate Active Enzymes. Front. Plant Sci. 2014, 5, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.; Showalter, A.M. Immunolocalization of LeAGP-1, a Modular Arabinogalactan-Protein, Reveals Its Developmentally Regulated Expression in Tomato. Planta 2000, 210, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, D.; Zhao, J. Localization of Arabinogalactan Proteins in Anther, Pollen, and Pollen Tube of Nicotiana tabacum L. Protoplasma 2007, 231, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Feng, H.; Xu, M.; Lee, J.; Kim, Y.K.; Lim, Y.P.; Piao, Z.; Park, Y.D.; Ma, H.; Hur, Y. Comprehensive Analysis of Genic Male Sterility-Related Genes in Brassica rapa Using a Newly Developed Br300K Oligomeric Chip. PLoS ONE 2013, 8, e72178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.P.; Nguema-Ona, E.E.; Vicré-Gibouin, M.; Sørensen, I.; Willats, W.G.T.; Driouich, A.; Farrant, J.M. Arabinose-Rich Polymers as an Evolutionary Strategy to Plasticize Resurrection Plant Cell Walls against Desiccation. Planta 2013, 237, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Zheng, T.; Chu, Y.; Ding, C.; Zhang, W.; Huang, Q.; Su, X. Genome-Wide Analysis of the Fasciclin-like Arabinoga-lactan Protein Gene Family Reveals Differential Expression Patterns, Localization, and Salt Stress Response in Populus. Front. Plant Sci. 2015, 6, 1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hervé, C.; Siméon, A.; Jam, M.; Cassin, A.; Johnson, K.L.; Salmeán, A.A.; Willats, W.G.T.; Doblin, M.S.; Bacic, A.; Kloareg, B. Arabinogalactan Proteins Have Deep Roots in Eukaryotes: Identification of Genes and Epitopes in Brown Algae and Their Role in Fucus Serratus Embryo Development. New Phytol. 2016, 209, 1428–1441. [Google Scholar] [CrossRef] [PubMed]
- Bartels, D.; Baumann, A.; Maeder, M.; Geske, T.; Heise, E.M.; von Schwartzenberg, K.; Classen, B. Evolution of Plant Cell Wall: Arabinogalactan-Proteins from Three Moss Genera Show Structural Differences Compared to Seed Plants. Carbohydr. Polym. 2017, 163, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Van Holst, G.J.; Clarke, A.E. Quantification of Arabinogalactan-Protein in Plant Extracts by Single Radial Gel Diffusion. Anal. Biochem. 1985, 148, 446–450. [Google Scholar] [CrossRef]
- Mollet, J.C.; Kim, S.; Jauh, G.Y.; Lord, E.M. Arabinogalactan Proteins, Pollen Tube Growth, and the Reversible Effects of Yariv Phenylglycoside. Protoplasma 2002, 219, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Brown, G.; Whetten, R.; Loopstra, C.A.; Neale, D.; Kieliszewski, M.J.; Sederoff, R.R. An Arabinogalactan Protein Associated with Secondary Cell Wall Formation in Differentiating Xylem of Loblolly Pine. Plant Mol. Biol. 2003, 52, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Abreu, I.; Oliveira, M. Immunolocalisation of Arabinogalactan Proteins and Pectins in Actinidia deliciosa Pollen. Protoplasma 2004, 224, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Lalanne, E.; Honys, D.; Johnson, A.; Borner, G.H.H.; Lilley, K.S.; Dupree, P.; Grossniklaus, U.; Twell, D. SETH1 and SETH2, Two Components of the Glycosylphosphatidylinositol Anchor Biosynthetic Pathway, Are Required for Pollen Germination and Tube Growth in Arabidopsis. Plant Cell 2004, 16, 229–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Kieliszewski, M.J.; Showalter, A.M. Overexpression of Tomato LeAGP-1 Arabinogalactan-Protein Promotes Lateral Branching and Hampers Reproductive Development. Plant J. 2004, 40, 870–881. [Google Scholar] [CrossRef]
- Coimbra, S.; Almeida, J.; Junqueira, V.; Costa, M.L.; Pereira, L.G. Arabinogalactan Proteins as Molecular Markers in Arabidopsis Thaliana Sexual Reproduction. J. Exp. Bot. 2007, 58, 4027–4035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Yu, M.; Geng, L.L.; Zhao, J. The Fasciclin-like Arabinogalactan Protein Gene, FLA3, Is Involved in Microspore Development of Arabidopsis. Plant J. 2010, 64, 482–497. [Google Scholar] [CrossRef]
- Kitazawa, K.; Tryfona, T.; Yoshimi, Y.; Hayashi, Y.; Kawauchi, S.; Antonov, L.; Tanaka, H.; Takahashi, T.; Kaneko, S.; Dupree, P.; et al. β-Galactosyl Yariv Reagent Binds to the β-1,3-Galactan of Arabinogalactan Proteins. Plant Physiol. 2013, 161, 1117–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Dong, H.; Zhang, F.; Qiu, L.; Wang, F.; Cao, J.; Huang, L. BcMF8, a Putative Arabinogalactan Protein-Encoding Gene, Contributes to Pollen Wall Development, Aperture Formation and Pollen Tube Growth in Brassica campestris. Ann. Bot. 2014, 113, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Nobre, M.S.; Pinto, S.C.; Lopes, A.L.; Costa, M.L.; Masiero, S.; Coimbra, S. “Love Is Strong, and You’re so Sweet”: JAGGER Is Essential for Persistent Synergid Degeneration and Polytubey Block in Arabidopsis thaliana. Mol. Plant 2016, 9, 601–614. [Google Scholar] [CrossRef]
- Coimbra, S.; Costa, M.; Jones, B.; Mendes, M.A.; Pereira, L.G. Pollen Grain Development Is Compromised in Arabidopsis Agp6 Agp11 Null Mutants. J. Exp. Bot. 2009, 60, 3133–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coimbra, S.; Costa, M.; Mendes, M.A.; Pereira, A.M.; Pinto, J.; Pereira, L.G. Early Germination of Arabidopsis Pollen in a Double Null Mutant for the Arabinogalactan Protein Genes AGP6 and AGP11. Sex. Plant Reprod. 2010, 23, 199–205. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, C.; Wang, C.; Yang, Y.; Yang, L.; Gao, X.; Zhang, H. Antisense Expression of the Fasciclin-like Arabinogalactan Protein FLA6 Gene in Populus Inhibits Expression of Its Homologous Genes and Alters Stem Biomechanics and Cell-Wall Composition in Transgenic Trees. J. Exp. Bot. 2015, 66, 1291–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, D.; Tian, L.; Debrosse, T.; Poirier, E.; Emch, K.; Herock, H.; Travers, A.; Showalter, A.M. Glycosylation of a Fasciclin-like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-like Kinase (FEI1/FEI2) Pathway in Arabidopsis. PLoS ONE 2016, 11, e0145092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Shi, J.; Yang, X. Role of Lipid Metabolism in Plant Pollen Exine Development. Subcell. Biochem. 2016, 86, 315–337. [Google Scholar]
- Lin, S.; Yue, X.; Miao, Y.; Yu, Y.; Dong, H.; Huang, L.; Cao, J. The Distinct Functions of Two Classical Arabinogalactan Proteins BcMF8 and BcMF18 during Pollen Wall Development in Brassica campestris. Plant J. 2018, 94, 60–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Pereira, A.M.; Pinto, S.C.; Silva, J.; Pereira, L.G.; Coimbra, S. In Silico and Expression Analyses of Fasciclin-like Arabinogalactan Proteins Reveal Functional Conservation during Embryo and Seed Development. Plant Reprod. 2019, 32, 353–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borassi, C.; Gloazzo Dorosz, J.; Ricardi, M.M.; Carignani Sardoy, M.; Pol Fachin, L.; Marzol, E.; Mangano, S.; Rodríguez Garcia, D.R.; Martínez Pacheco, J.; Rondón Guerrero, Y.d.C.; et al. A Cell Surface Arabinogalactan-peptide Influences Root Hair Cell Fate. N. Phytol. 2020, 227, 732–743. [Google Scholar] [CrossRef]
- Liu, E.; MacMillan, C.P.; Shafee, T.; Ma, Y.; Ratcliffe, J.; van de Meene, A.; Bacic, A.; Humphries, J.; Johnson, K.L. Fasciclin-Like Arabinogalactan-Protein 16 (FLA16) Is Required for Stem Development in Arabidopsis. Front. Plant Sci. 2020, 11, 615392. [Google Scholar] [CrossRef] [PubMed]
- Ashagre, H.A.; Zaltzman, D.; Idan-Molakandov, A.; Romano, H.; Tzfadia, O.; Harpaz-Saad, S. FASCICLIN-LIKE 18 Is a New Player Regulating Root Elongation in Arabidopsis Thaliana. Front. Plant Sci. 2021, 12, 645286. [Google Scholar] [CrossRef] [PubMed]
- Mignone, M.M.; Basile, D.V. Evidence for the interrelated actions of auxin, ethylene, and arabinogalactan-proteins on the transition from non-apical to apical growth of Physcomitrella patens Hedw. (Funariaceae). In Cell and Developmental Biology of Arabinogalactan-Proteins; Nothnagel, E.A., Bacic, A., Clarke, A.E., Eds.; Springer: Boston, MA, USA, 2000; pp. 205–219. [Google Scholar]
- Suzuki, Y.; Kitagawa, M.; Knox, J.P.; Yamaguchi, I. A Role for Arabinogalactan Proteins in Gibberellin-induced A-amylase Production in Barley Aleurone Cells. Plant J. 2002, 29, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, G.; Zhang, T.; Wu, X. The Putative Phytocyanin Genes in Chinese Cabbage (Brassica rapa L.): Genome-Wide Iden-tification, Classification and Expression Analysis. Mol. Genet Genom. 2013, 288, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cui, H.M.; Huang, T.H.; Liu, T.K.; Hou, X.L.; Li, Y. Identification and Validation of Reference Genes for RT-QPCR Analysis in Non-Heading Chinese Cabbage Flowers. Front. Plant Sci. 2016, 7, 811. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Cao, J.; Ye, W.; Liu, T.; Jiang, L.; Ye, Y. Transcriptional Differences between the Male-Sterile Mutant Bcms and Wild-Type Brassica Campestris Ssp. Chinensis Reveal Genes Related to Pollen Development. Plant Biol. 2008, 10, 342–355. [Google Scholar] [CrossRef]
- Shen, X.; Xu, L.; Liu, Y.; Dong, H.; Zhou, D.; Zhang, Y.; Lin, S.; Cao, J.; Huang, L. Comparative Transcriptome Analysis and ChIP-Sequencing Reveals Stage-Specific Gene Expression and Regulation Profiles Associated with Pollen Wall Formation in Brassica rapa. BMC Genom. 2019, 20, 264. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Dong, H.; Cui, J.; Li, M.; Lin, S.; Cao, J.; Huang, L. Genomic, Molecular Evolution, and Expression Analysis of Genes Encoding Putative Classical AGPs, Lysine-Rich AGPs, and AG Peptides in Brassica rapa. Front. Plant Sci. 2017, 8, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wu, X. Genome-Wide Identification, Classification and Expression Analysis of Genes Encoding Putative Fasciclin-like Arabinogalactan Proteins in Chinese Cabbage (Brassica rapa L.). Mol. Biol. Rep. 2012, 39, 10541–10555. [Google Scholar]
- Borner, G.H.H.; Lilley, K.S.; Stevens, T.J.; Dupree, P. Identification of Glycosylphosphatidylinositol-Anchored Proteins in Ar-abidopsis. A Proteomic and Genomic Analysis. Plant Physiol. 2003, 132, 568–577. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Wu, J.; Fang, L.; Wang, X. Syntenic Gene Analysis between Brassica rapa and Other Brassicaceae Species. Front. Plant Sci. 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguema-Ona, E.; Coimbra, S.; Vicré-Gibouin, M.; Mollet, J.C.; Driouich, A. Arabinogalactan Proteins in Root and Pollen-Tube Cells: Distribution and Functional Aspects. Ann. Bot. 2012, 110, 383–404. [Google Scholar] [CrossRef] [Green Version]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The Roles of Segmental and Tandem Gene Duplication in the Evolution of Large Gene Families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Majewska-Sawka, A.; Nothnagel, E.A. The Multiple Roles of Arabinogalactan Proteins in Plant Development. Plant Physiol. 2000, 122, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Rumyantseva, N.I. Arabinogalactan Proteins: Involvement in Plant Growth and Morphogenesis. Biochemistry 2005, 70, 1073–1085. [Google Scholar] [CrossRef]
- Ellis, M.; Egelund, J.; Schultz, C.J.; Bacic, A. Arabinogalactan-Proteins: Key Regulators at the Cell Surface? Plant Physiol. 2010, 153, 403–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguema-Ona, E.; Vicré-Gibouin, M.; Cannesan, M.A.; Driouich, A. Arabinogalactan Proteins in Root–Microbe Interactions. Trends Plant Sci. 2013, 18, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.L.; Yu, L.; Liang, R.H.; Zhao, J. Functional Studies of Arabinogalactan Proteins in Higher Plants. Sci. Sin. Vitae 2015, 45, 113–123. [Google Scholar]
- Pereira, A.M.; Pereira, L.G.; Coimbra, S. Arabinogalactan Proteins: Rising Attention from Plant Biologists. Plant Reprod. 2015, 28, 1–15. [Google Scholar] [CrossRef]
- Pereira, A.M.; Lopes, A.L.; Coimbra, S. Arabinogalactan Proteins as Interactors along the Crosstalk between the Pollen Tube and the Female Tissues. Front. Plant Sci. 2016, 7, 1895. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Higashiyama, T. Arabinogalactan Proteins and Their Sugar Chains: Functions in Plant Reproduction, Research Methods, and Biosynthesis. Plant Reprod. 2018, 31, 67–75. [Google Scholar] [CrossRef]
- Mareri, L.; Romi, M.; Cai, G. Arabinogalactan Proteins: Actors or Spectators during Abiotic and Biotic Stress in Plants? Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2019, 153, 173–185. [Google Scholar] [CrossRef]
- Leszczuk, A.; Szczuka, E.; Zdunek, A. Arabinogalactan Proteins: Distribution during the Development of Male and Female Gametophytes. Plant Physiol. Biochem. 2019, 135, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hafidh, S.; Fíla, J.; Honys, D. Male Gametophyte Development and Function in Angiosperms: A General Concept. Plant Reprod. 2016, 29, 31–51. [Google Scholar] [CrossRef]
- Miao, Y.; Cao, J.; Huang, L.; Yu, Y.; Lin, S. FLA14 Is Required for Pollen Development and Preventing Premature Pollen Germination under High Humidity in Arabidopsis. BMC Plant Biol. 2021, 21, 254. [Google Scholar] [CrossRef]
- Levitin, B.; Richter, D.; Markovich, I.; Zik, M. Arabinogalactan Proteins 6 and 11 Are Required for Stamen and Pollen Function in Arabidopsis. Plant J. 2008, 56, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Kim, J.S.; Kim, S.H.; Park, Y.D. Characterization of a Pollen-Preferential Gene, BAN102, from Chinese Cabbage. Plant Cell Rep. 2005, 24, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Liang, W.; Hu, J.; Zhang, D. MTR1 Encodes a Secretory Fasciclin Glycoprotein Required for Male Reproductive Development in Rice. Dev. Cell 2012, 22, 1127–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faik, A.; Abouzouhair, J.; Sarhan, F. Putative Fasciclin-like Arabinogalactan-Proteins (FLA) in Wheat (Triticum aestivum) and Rice (Oryza sativa): Identification and Bioinformatic Analyses. Mol. Genet. Genom. 2006, 276, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Quevillon, E.; Silventoinen, V.; Pillai, S.; Harte, N.; Mulder, N.; Apweiler, R.; Lopez, R. InterProScan: Protein Domains Identifier. Nucleic Acids Res. 2005, 33, W116–W120. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Mistry, J.; Schuster-Böckler, B.; Griffiths-Jones, S.; Hollich, V.; Lassmann, T.; Moxon, S.; Marshall, M.; Khanna, A.; Durbin, R.; et al. Pfam: Clans, Web Tools and Services. Nucleic Acids Res. 2006, 34, D247–D251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent Updates to the Protein Domain Annotation Resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Leykam, J.F.; Kieliszewski, M.J. Glycosylation Motifs That Direct Arabinogalactan Addition to Arabinogalac-tan-Proteins. Plant Physiol. 2003, 132, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Mandáková, T.; Wu, J.; Xie, Q.; Lysak, M.A.; Wang, X. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa. Plant Cell 2013, 25, 1541–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.; Choi, J.-P.; Park, I.; Yang, K.; Kim, M.; Lee, Y.; Nou, I.-S.; Kim, D.-S.; Min, S.; et al. Functional Innovations of Three Chronological Mesohexaploid Brassica rapa Genomes. BMC Genom. 2014, 15, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, H.; Wang, J.; Sun, R.; Wu, J.; Liu, S.; Bai, Y.; Mun, J.-H.; Bancroft, I.; Cheng, F.; et al. The Genome of the Mesopolyploid Crop Species Brassica rapa. Nat. Genet. 2011, 43, 1035–1039. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, B.A.; Martinez, J.P. Restriction Fragment Length Polymorphisms in Septoria Tritici Occur at a High Frequency. Curr. Genet. 1990, 17, 133–138. [Google Scholar] [CrossRef]
- Zhang, X.; Henriques, R.; Lin, S.S.; Niu, Q.W.; Chua, N.H. Agrobacterium-Mediated Transformation of Arabidopsis thaliana Using the Floral Dip Method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef]
- Huang, L.; Dong, H.; Zhou, D.; Li, M.; Liu, Y.; Zhang, F.; Feng, Y.; Yu, D.; Lin, S.; Cao, J. Systematic Identification of Long Non-Coding RNAs during Pollen Development and Fertilization in Brassica rapa. Plant J. 2018, 96, 203–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Gan, C. Gene Gun Accelerates DNA-Coated Particles to Transform Intact Cells. Scientist 1989, 3, 25. [Google Scholar]
- Yu, X.; Cao, J.; Ye, W.; Wang, Y. Construction of an Antisense CYP86MF Gene Plasmid Vector and Production of a Male-Sterile Chinese Cabbage Transformant by the Pollen-Tube Method. J. Hortic. Sci. Biotech. 2004, 79, 833–839. [Google Scholar] [CrossRef]
- Alexander, M.P. Differential Staining of Aborted and Non-Aborted Pollen. Stain Technol. 1969, 44, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Regan, S.M.; Moffatt, B.A. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant. Plant Cell 1990, 2, 877–889. [Google Scholar] [CrossRef]
- Mohebali, M.; Mirbakhsh, M.; Keshavarz, H. Rapid Detection of Pneumocystis Carini in Spiratory Specimens of Rats by Calcofluor White Staining. Iran. J. Public Health 2002, 31, 108–110. [Google Scholar]
Subfamily | Gene Name | BRAD Locus | DEGs ID in [54] | BS1/AS1 | BS2/AS2 | BS3/AS3 | BS4/AS4 | BS5/AS5 |
---|---|---|---|---|---|---|---|---|
AG-peptide | BrAGP12.2 | Bra039397 | c42093.graph_c0 | . | . | . | −3.2 | 1.4 |
AG-peptide | BrAGP16.1 | Bra004546 | c59251.graph_c1 | . | . | . | −2.2 | . |
AG-peptide | BrAGP16.2 | Bra000419 | c65782.graph_c0 | 1.2 | . | 1.9 | 1.1 | 2.8 |
AG-peptide | BrAGP22.1 | Bra003071 | c48812.graph_c0 | . | . | . | −2.7 | 2.7 |
AG-peptide | BrAGP23.2 | Bra014611 | c27422.graph_c1 | 1.5 | . | F | 9.0 | F |
AG-peptide | BrAGP24 | Bra025551 | c49943.graph_c0 | F | F | F | 4.5 | 3.4 |
AG-peptide | BrAGP40.2 | Bra023919 | c42971.graph_c0 | 1.1 | F | F | 5.8 | F |
AG-peptide | BrAGP46 | Bra008765 | c37395.graph_c0 | F | F | 2.5 | 2.6 | F |
Classical | BrAGP1.1 | Bra024284 | c48286.graph_c0 | . | −1.0 | −1.1 | . | −2.4 |
Classical | BrAGP1.2 | Bra031924 | c64744.graph_c0 | . | . | . | −1.3 | −2.3 |
Classical | BrAGP2.1 | Bra038521 | c26555.graph_c0 | −1.3 | . | . | 1.2 | −1.5 |
Classical | BrAGP6 | Bra008762 | c23263.graph_c0 | . | F | F | 2.6 | 6.7 |
Classical | BrAGP10.2 | Bra000670 | c42352.graph_c0 | . | . | . | −1.8 | −3.1 |
Classical | BrAGP11.2 | Bra040548 | c24412.graph_c1 | 1.1 | S | . | 7.5 | 9.4 |
Classical | BrAGP27 | Bra040224 | c23415.graph_c0 | . | 1.4 | . | 2.3 | −2.0 |
Classical | BrAGP50.3 | Bra012505 | c54741.graph_c0 | . | . | S | . | F |
Classical | BrAGP54.1 | Bra011948 | c46468.graph_c0 | . | . | 1.6 | F | F |
Lys-rich | BrAGP17 | Bra039184 | c44058.graph_c0 | 1.7 | . | 2.6 | 5.6 | . |
Non-classical | BrAGP58.1 | Bra040103 | c50741.graph_c1 | . | . | . | 1.8 | −1.8 |
Non-classical | BrAGP58.2 | Bra021074 | c48178.graph_c0 | . | . | . | 1.0 | −2.0 |
FLA | BrFLA1 | Bra000566 | c48483.graph_c1 | . | . | F | 1.4 | 8.7 |
FLA | BrFLA2 | Bra001464 | c51893.graph_c0 | F | F | F | 6.5 | 12.1 |
FLA | BrFLA8 | Bra005920 | c62616.graph_c0 | 1.1 | F | F | . | S |
FLA | BrFLA13 | Bra010241 | c28700.graph_c0 | F | F | 6.1 | F | F |
FLA | BrFLA19 | Bra025535 | c23062.graph_c0 | . | 1.7 | . | . | . |
FLA | BrFLA24 | Bra029925 | c47364.graph_c0 | . | . | 1.1 | . | −2.2 |
FLA | BrFLA25 | Bra032093 | c48483.graph_c0 | . | S | F | F | F |
FLA | BrFLA28 | Bra034746 | c56550.graph_c0 | . | . | 8.2 | 8.4 | 11.4 |
FLA | BrFLA32 | Bra038741 | c56550.graph_c0 | . | . | 8.2 | 8.4 | 11.4 |
FLA | BrFLA36 | Bra023589 | c28344.graph_c0 | −2.9 | 2.2 | . | −3.6 | 1.5 |
PLA | BrENODL3 | Bra001712 | c42235.graph_c0 | F | 1.1 | 8.9 | F | F |
PLA | BrENODL7 | Bra003532 | c57139.graph_c0 | S | . | 3.3 | 6.0 | . |
PLA | BrENODL28 | Bra022335 | c27217.graph_c0 | F | F | F | F | F |
PLA | BrENODL32 | Bra023981 | c26115.graph_c0 | . | . | . | . | −3.7 |
PLA | BrENODL42 | Bra032131 | c23242.graph_c0 | S | 5.6 | −4.3 | F | S |
PLA | BrENODL43 | Bra033326 | c59532.graph_c0 | . | 1.0 | −4.0 | F | F |
PLA | BrENODL49 | Bra037575 | c40690.graph_c0 | F | F | F | F | F |
PLA | BrSCL1 | Bra002283 | c25660.graph_c0 | −1.4 | −1.7 | . | −1.7 | 6.3 |
PLA | BrSCL5 | Bra020092 | c48577.graph_c1 | F | F | F | 3.4 | F |
PLA | BrUCL1 | Bra000364 | c40349.graph_c0 | −2.4 | . | −2.2 | −4.7 | −3.9 |
PLA | BrUCL7 | Bra009259 | c37087.graph_c0 | 2.3 | −1.9 | F | S | S |
PLA | / | Bra019044 | c24852.graph_c0 | . | . | . | −2.3 | . |
XYLP | BrXYLP3 | Bra013135 | c53024.graph_c0 | . | −1.4 | . | 2.0 | −2.1 |
XYLP | BrXYLP5 | Bra000652 | c27389.graph_c0 | F | 2.3 | F | 7.1 | 8.9 |
XYLP | BrXYLP9 | Bra036905 | c24892.graph_c0 | 1.1 | F | 1.9 | . | −5.7 |
XYLP | BrXYLP13 | Bra001874 | c46072.graph_c1 | F | F | S | S | S |
XYLP | BrXYLP15 | Bra025919 | c28506.graph_c0 | F | 2.5 | 7.7 | 7.4 | F |
XYLP | BrXYLP16 | Bra016563 | c64352.graph_c0 | . | 2.7 | . | 10.4 | 10.5 |
XYLP | BrXYLP17 | Bra031024 | c41112.graph_c0 | F | F | F | F | 10.4 |
XYLP | BrXYLP21 | Bra032857 | c64539.graph_c0 | . | . | . | −3.3 | 1.9 |
XYLP | BrXYLP23 | Bra021455 | c51308.graph_c0 | . | 4.8 | −7.0 | −1.7 | −3.0 |
XYLP | BrXYLP25 | Bra001875 | c36844.graph_c0 | F | 1.7 | . | −6.0 | −5.2 |
XYLP | BrXYLP27 | Bra032462 | c64575.graph_c0 | F | F | 3.0 | −3.9 | −2.2 |
XYLP | BrXYLP29 | Bra025907 | c23808.graph_c0 | . | −1.8 | F | 1.6 | 2.0 |
CAGP | BrCAGP2 | Bra039574 | c59222.graph_c0 | F | F | F | F | F |
CAGP | BrCAGP7 | Bra014398 | c54415.graph_c0 | F | 2.7 | −2.0 | 1.0 | S |
CAGP | BrCAGP9 | Bra001983 | c55708.graph_c0 | . | 1.1 | −2.4 | 1.0 | −1.2 |
CAGP | BrCAGP13 | Bra010330 | c62315.graph_c3 | . | . | . | 1.4 | 1.7 |
CAGP | BrCAGP24 | Bra040283 | c67220.graph_c0 | F | 1.1 | −2.4 | F | 8.7 |
CAGP | BrCAGP28 | Bra036815 | c9352.graph_c0 | F | F | F | F | F |
CAGP | BrCAGP33 | Bra039561 | c60389.graph_c0 | . | . | 1.5 | 1.4 | 3.7 |
CAGP | BrCAGP37 | Bra037087 | c53995.graph_c0 | S | F | F | . | 7.2 |
CAGP | BrCAGP55 | Bra011048 | c56297.graph_c0 | 2.1 | 3.7 | S | −2.5 | 2.3 |
CAGP | BrCAGP67 | Bra022410 | c58601.graph_c0 | . | 2.1 | . | . | . |
CAGP | BrCAGP71 | Bra035635 | c50787.graph_c0 | 1.6 | . | 1.2 | −2.6 | 2.9 |
CAGP | BrCAGP73 | Bra021861 | c52042.graph_c0 | . | . | . | −1.9 | −1.7 |
CAGP | BrCAGP81 | Bra026880 | c47549.graph_c0 | . | F | . | −1.8 | −2.6 |
CAGP | BrCAGP88 | Bra036147 | c55619.graph_c0 | F | F | F | 5.1 | 4.1 |
CAGP | BrCAGP92 | Bra001249 | c53604.graph_c0 | . | . | 1.3 | 1.6 | . |
CAGP | BrCAGP94 | Bra006651 | c55481.graph_c0 | 2.0 | . | −3.4 | . | −1.7 |
CHAE | BrCHAE1 | Bra013339 | c43369.graph_c0 | . | 1.3 | 1.4 | . | . |
HAE | BrHAE1 | Bra030020 | c64968.graph_c0 | S | F | 2.2 | 1.0 | F |
HAE | BrHAE3 | Bra014023 | c56215.graph_c0 | −1.5 | 3.1 | 1.7 | 5.1 | . |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Miao, Y.; Zhang, Y.; Huang, L.; Cao, J.; Lin, S. Comprehensive Analysis of Arabinogalactan Protein-Encoding Genes Reveals the Involvement of Three BrFLA Genes in Pollen Germination in Brassica rapa. Int. J. Mol. Sci. 2021, 22, 13142. https://doi.org/10.3390/ijms222313142
Huang H, Miao Y, Zhang Y, Huang L, Cao J, Lin S. Comprehensive Analysis of Arabinogalactan Protein-Encoding Genes Reveals the Involvement of Three BrFLA Genes in Pollen Germination in Brassica rapa. International Journal of Molecular Sciences. 2021; 22(23):13142. https://doi.org/10.3390/ijms222313142
Chicago/Turabian StyleHuang, Huiting, Yingjing Miao, Yuting Zhang, Li Huang, Jiashu Cao, and Sue Lin. 2021. "Comprehensive Analysis of Arabinogalactan Protein-Encoding Genes Reveals the Involvement of Three BrFLA Genes in Pollen Germination in Brassica rapa" International Journal of Molecular Sciences 22, no. 23: 13142. https://doi.org/10.3390/ijms222313142
APA StyleHuang, H., Miao, Y., Zhang, Y., Huang, L., Cao, J., & Lin, S. (2021). Comprehensive Analysis of Arabinogalactan Protein-Encoding Genes Reveals the Involvement of Three BrFLA Genes in Pollen Germination in Brassica rapa. International Journal of Molecular Sciences, 22(23), 13142. https://doi.org/10.3390/ijms222313142