The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions
Abstract
:1. Introduction
2. Results
2.1. NF-κB-Dependent DD-tdTomato Expression after Exposure to Heavy Ions
2.2. Effect of Fluence on NF-κB-Dependent DD-tdTomato Expression
2.3. Effect of Shield-1 on NF-κB-Dependent DD-tdTomato Expression after Heavy Ion Exposure
2.4. Induction of NF-κB-Dependent DD-tdTomato Expression by a Single Particle Hit
2.5. Fold Induction of NF-κB-Dependent Promoter Activity
3. Discussion
3.1. NF-κB-Dependent DD-tdTomato Expression after Exposure to Heavy Ions
3.2. Effect of Fluence on NF-κB-Dependent DD-tdTomato Expression
3.3. Induction of NF-κB-Dependent DD-tdTomato Expression by a Single Particle Hit
3.4. Fold Induction of NF-κB-Dependent Promoter Activity
4. Materials and Methods
4.1. Cell Strains and Culture Conditions
4.2. Exposure to X-rays
4.3. Exposure to Accelerated Heavy Ions
4.4. Treatment with Shield-1
4.5. Formaldehyde Fixation
4.6. Flow Cytometry
4.7. Calculations
4.7.1. Average Hits of Heavy Ions per Cell Nucleus
4.7.2. Fold Induction of Promoter Activity
4.7.3. Calculation of Relative Biological Effectiveness for NF-κB Activation
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Mani, A.M.; Wu, Z.-H. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J. Cancer Metastasis Treat. 2017, 3, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Christmann, M.; Kaina, B. Transcriptional regulation of human DNA repair genes following genotoxic stress: Trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res. 2013, 41, 8403–8420. [Google Scholar] [CrossRef] [Green Version]
- Medunjanin, S.; Putzier, M.; Nöthen, T.; Weinert, S.; Kähne, T.; Luani, B.; Zuschratter, W.; Braun-Dullaeus, R.C. DNA-PK: Gatekeeper for IKKγ/NEMO nucleocytoplasmic shuttling in genotoxic stress-induced NF-kappaB activation. Cell Mol. Life Sci. 2020, 77, 4133–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Investig. 2001, 107, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.M.; Li, J.J. NF-κB-mediated adaptive resistance to ionizing radiation. Free Radic. Biol. Med. 2008, 44, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem. 2015, 22, 264–289. [Google Scholar] [CrossRef]
- Hellweg, C.E.; Spitta, L.F.; Henschenmacher, B.; Diegeler, S.; Baumstark-Khan, C. Transcription factors in the cellular response to charged particle exposure. Front. Oncol. 2016, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Hellweg, C.E.; Baumstark-Khan, C.; Schmitz, C.; Lau, P.; Meier, M.M.; Testard, I.; Berger, T.; Reitz, G. Carbon-ion-induced activation of the NF-κB pathway. Radiat. Res. 2011, 175, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Chishti, A.A.; Baumstark-Khan, C.; Hellweg, C.E.; Reitz, G. Imaging of nuclear factor κB activation induced by ionizing radiation in human embryonic kidney (HEK) cells. Radiat. Environ. Biophys. 2014, 53, 599–610. [Google Scholar] [CrossRef]
- Mortensen, O.V.; Larsen, M.B.; Amara, S.G. MAP Kinase Phosphatase 3 (MKP3) Preserves Norepinephrine Transporter Activity by Modulating ERK1/2 Kinase-Mediated Gene Expression. Front. Cell Neurosci. 2017, 11, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sybirna, A.; Tang, W.W.C.; Pierson Smela, M.; Dietmann, S.; Gruhn, W.H.; Brosh, R.; Surani, M.A. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat. Commun. 2020, 11, 1282. [Google Scholar] [CrossRef]
- Pierson Smela, M.; Sybirna, A.; Wong, F.C.K.; Surani, M.A. Testing the role of SOX15 in human primordial germ cell fate. Wellcome Open Res. 2019, 4, 122. [Google Scholar] [CrossRef]
- Baumstark-Khan, C.; Hellweg, C.E.; Reitz, G. Cytotoxicity and genotoxicity reporter systems based on the use of mammalian cells. In Whole Cell Sensing System II; Springer: Berlin/Heidelberg, Germany, 2010; pp. 113–151. [Google Scholar] [CrossRef]
- Andreatta, C.; Nahreini, P.; Hovland, A.R.; Kumar, B.; Edwards-Prasad, J.; Prasad, K.N. Use of short-lived green fluorescent protein for the detection of proteasome inhibition. BioTechniques 2001, 30, 656–660. [Google Scholar] [CrossRef]
- Hellweg, C.E. The Nuclear Factor κB pathway: A link to the immune system in the radiation response. Cancer Lett. 2015, 368, 275–289. [Google Scholar] [CrossRef]
- Baumstark-Khan, C.; Hellweg, C.E.; Arenz, A.; Meier, M.M. Cellular monitoring of the nuclear factor κB pathway for assessment of space environmental radiation. Radiat. Res. 2005, 164, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Hellweg, C.E.; Baumstark-Khan, C.; Schmitz, C.; Lau, P.; Meier, M.M.; Testard, I.; Berger, T.; Reitz, G. Activation of the nuclear factor κB pathway by heavy ion beams of different linear energy transfer. Int. J. Radiat. Biol. 2011, 87, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Chishti, A.A.; Baumstark-Khan, C.; Koch, K.; Kolanus, W.; Feles, S.; Konda, B.; Azhar, A.; Spitta, L.F.; Henschenmacher, B.; Diegeler, S.; et al. Linear energy transfer modulates radiation-induced NF-kappa B activation and expression of its downstream target genes. Radiat. Res. 2018, 189, 354–370. [Google Scholar] [CrossRef]
- Burkart, W.; Jung, T.; Frasch, G. Damage pattern as a function of radiation quality and other factors. Comptes Rendus Acad. Sci. Ser. III Sci. Vie 1999, 322, 89–101. [Google Scholar] [CrossRef]
- Nikitaki, Z.; Hellweg, C.E.; Georgakilas, A.G.; Ravanat, J.-L. Stress-induced DNA damage biomarkers: Applications and limitations. Front. Chem. 2015, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Karin, M. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc. Natl. Acad. Sci. USA 1998, 95, 13012–13017. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Zhang, Y.; Kim, B.Y.; Jeong, S.J.; Lee, S.A.; Kim, G.D.; Dritschilo, A.; Jung, M. The p65 subunit of nuclear factor-kappaB is a molecular target for radiation sensitization of human squamous carcinoma cells. Mol. Cancer Ther. 2004, 3, 693–698. [Google Scholar] [PubMed]
- Veuger, S.J.; Hunter, J.E.; Durkacz, B.W. Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene 2009, 28, 832–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Dimtchev, A.; Lavin, M.F.; Dritschilo, A.; Jung, M. A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-kappaB. Oncogene 1998, 17, 1821–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzam, E.I.; De Toledo, S.M.; Gooding, T.; Little, J.B. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat. Res. 1998, 150, 497–504. [Google Scholar] [CrossRef]
- Varès, G.; Wang, B.; Tanaka, K.; Kakimoto, A.; Eguchi-Kasai, K.; Nenoi, M. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to X-rays. Mutat. Res. 2011, 706, 46–52. [Google Scholar] [CrossRef]
- Suzuki, M.; Uchihori, Y.; Kitamura, H.; Oikawa, M.; Konishi, T. Biologic Impact of Different Ultra-Low-Fluence Irradiations in Human Fibroblasts. Life 2020, 10, 154. [Google Scholar] [CrossRef]
- Banaszynski, L.A.; Chen, L.C.; Maynard-Smith, L.A.; Ooi, A.G.; Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 2006, 126, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Maynard-Smith, L.A.; Chen, L.-c.; Banaszynski, L.A.; Ooi, A.L.; Wandless, T.J. A directed approach for engineering conditional protein stability using biologically silent small molecules. J. Biol. Chem. 2007, 282, 24866–24872. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.F. Biochemistry of DNA lesions. Radiat. Res. Suppl. 1985, 8, S103–S111. [Google Scholar] [CrossRef]
- Brenner, D.J.; Ward, J.F. Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks. Int. J. Radiat. Biol. 1992, 61, 737–748. [Google Scholar] [CrossRef]
- Ward, J.F. The complexity of DNA damage: Relevance to biological consequences. Int. J. Radiat. Biol. 1994, 66, 427–432. [Google Scholar] [CrossRef]
- Nikjoo, H.; O’Neill, P.; Wilson, W.E.; Goodhead, D.T. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res. 2001, 156, 577–583. [Google Scholar] [CrossRef]
- Kalospyros, S.A.; Nikitaki, Z.; Kyriakou, I.; Kokkoris, M.; Emfietzoglou, D.; Georgakilas, A.G. A Mathematical Radiobiological Model (MRM) to Predict Complex DNA Damage and Cell Survival for Ionizing Particle Radiations of Varying Quality. Molecules 2021, 26, 840. [Google Scholar] [CrossRef] [PubMed]
- Durantel, F.; Balanzat, E.; Cassimi, A.; Chevalier, F.; Ngono-Ravache, Y.; Madi, T.; Poully, J.-C.; Ramillon, J.-M.; Rothard, H.; Ropars, F.; et al. Dosimetry for radiobiology experiments at GANIL. Nucl. Instrum. Mehods Phys. Res. Sect. A 2016, 816, 70–77. [Google Scholar] [CrossRef]
- Hellweg, C.; Spitta, L.; Arenz, A.; Bogner, S.; Ruscher, R.; Baumstark-Khan, C.; Greif, K.-D.; Giesen, U. Transcriptional response of human cells to microbeam irradiation with 2.1 MeV α-particles. Adv. Space Res. 2007, 39, 1056–1065. [Google Scholar] [CrossRef]
Radiation Quality | Energy (MeV/n) | Energy on Target (MeV/n) 1 | LET in H2O (keV/µm) | Particles/cm2 for 2× NF-κB Activation | Dose for 2× NF-κB Activation 2 | Average Hits for 2× NF-κB Activation 3 | RBENF-κB 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
- 4 | Shield-1 | - | Shield-1 | - | Shield-1 | - | Shield-1 | ||||
X-rays | 200 kV | 0.3–3 | 5 | 5 | ~8 | ~4 | 5 | 5 | 1 | 1 | |
16O | 95 | 90.6 | 51 | 5.00 × 107 | N.D. 6 | ~2 | N.D. | ~44 | N.D. | 4 | N.D. |
12C | 95 | 28.6 | 73 | 3.20 × 107 | 1.60 × 107 | ~4 | ~2 | ~45 | ~22 | 2 | 2 |
36Ar | 95 | 83.8 | 272 | 2.50 × 106 | 6.25 × 105 | ~1 | ~0.25 | ~3 | ~1 | 8 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chishti, A.A.; Baumstark-Khan, C.; Nisar, H.; Hu, Y.; Konda, B.; Henschenmacher, B.; Spitta, L.F.; Schmitz, C.; Feles, S.; Hellweg, C.E. The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions. Int. J. Mol. Sci. 2021, 22, 13530. https://doi.org/10.3390/ijms222413530
Chishti AA, Baumstark-Khan C, Nisar H, Hu Y, Konda B, Henschenmacher B, Spitta LF, Schmitz C, Feles S, Hellweg CE. The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions. International Journal of Molecular Sciences. 2021; 22(24):13530. https://doi.org/10.3390/ijms222413530
Chicago/Turabian StyleChishti, Arif Ali, Christa Baumstark-Khan, Hasan Nisar, Yueyuan Hu, Bikash Konda, Bernd Henschenmacher, Luis F. Spitta, Claudia Schmitz, Sebastian Feles, and Christine E. Hellweg. 2021. "The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions" International Journal of Molecular Sciences 22, no. 24: 13530. https://doi.org/10.3390/ijms222413530
APA StyleChishti, A. A., Baumstark-Khan, C., Nisar, H., Hu, Y., Konda, B., Henschenmacher, B., Spitta, L. F., Schmitz, C., Feles, S., & Hellweg, C. E. (2021). The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions. International Journal of Molecular Sciences, 22(24), 13530. https://doi.org/10.3390/ijms222413530