Non-Opioid Peptides Targeting Opioid Effects
Abstract
:1. Introduction
2. Neuropeptide FF (NPFF)
3. Oxytocin (OT)
4. Tyr-MIF-1 Family Peptides
5. Ghrelin
6. Cholecystokinin (CCK)
7. Nociceptin/Orphanin FQ (N/OFQ)
8. Endothelin
9. Venom Peptides
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Iwaszkiewicz, K.S.; Schneider, J.J.; Hua, S. Targeting Peripheral Opioid Receptors to Promote Analgesic and Anti-Inflammatory Actions. Front. Pharmacol. 2013, 4, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machelska, H.; Celik, M.Ö. Advances in Achieving Opioid Analgesia Without Side Effects. Front. Pharmacol. 2018, 9, 1388. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.; Küchler, S. Non-Analgesic Effects of Opioids: Peripheral Opioid Effects on Inflammation and Wound Healing. Curr. Pharm. Des. 2012, 18, 6053–6069. [Google Scholar] [CrossRef]
- Degenhardt, L.; Grebely, J.; Stone, J.; Hickman, M.; Vickerman, P.; Marshall, B.D.L.; Bruneau, J.; Altice, F.L.; Henderson, G.; Rahimi-Movaghar, A.; et al. Global Patterns of Opioid Use and Dependence: Harms to Populations, Interventions, and Future Action. Lancet 2019, 394, 1560–1579. [Google Scholar] [CrossRef]
- Liu, S.; Kim, D.-I.; Oh, T.G.; Pao, G.M.; Kim, J.-H.; Palmiter, R.D.; Banghart, M.R.; Lee, K.-F.; Evans, R.M.; Han, S. Neural Basis of Opioid-Induced Respiratory Depression and Its Rescue. Proc. Natl. Acad. Sci. USA 2021, 118, e2022134118. [Google Scholar] [CrossRef] [PubMed]
- Pattinson, K.T.S. Opioids and the Control of Respiration. Br. J. Anaesth. 2008, 100, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Gomes, I.; Sierra, S.; Lueptow, L.; Gupta, A.; Gouty, S.; Margolis, E.B.; Cox, B.M.; Devi, L.A. Biased Signaling by Endogenous Opioid Peptides. Proc. Natl. Acad. Sci. USA 2020, 117, 11820–11828. [Google Scholar] [CrossRef]
- Chalhoub, R.M.; Kalivas, P.W. Non-Opioid Treatments for Opioid Use Disorder: Rationales and Data to Date. Drugs 2020, 80, 1509–1524. [Google Scholar] [CrossRef] [PubMed]
- Cesselin, F. Opioid and Anti-Opioid Peptides. Fundam. Clin. Pharmacol. 1995, 9, 409–433. [Google Scholar] [CrossRef]
- Mollereau, C.; Roumy, M.; Zajac, J.-M. Opioid-Modulating Peptides: Mechanisms of Action. Curr. Top. Med. Chem. 2005, 5, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S.; Grisel, J.E.; Reinscheid, R.K.; Civelli, O.; Belknap, J.K.; Grandy, D.K. Orphanin FQ Is a Functional Anti-Opioid Peptide. Neuroscience 1996, 75, 333–337. [Google Scholar] [CrossRef]
- Han, T.; Teichert, R.; Olivera, B.; Bulaj, G. Conus Venoms—A Rich Source of Peptide-Based Therapeutics. CPD 2008, 14, 2462–2479. [Google Scholar] [CrossRef] [PubMed]
- Krantz, M.J.; Palmer, R.B.; Haigney, M.C.P. Cardiovascular Complications of Opioid Use: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Etaee, F.; Tobin, M.; Vuppala, S.; Komaki, A.; Delisle, B.P.; Di Biase, L.; Catanzaro, J.N.; Natale, A.; Elayi, C.S. Effects of Opioid Receptor Agonist and Antagonist Medications on Electrocardiogram Changes and Presentation of Cardiac Arrhythmia: Review Article. J. Interv. Card Electrophysiol. 2021. [Google Scholar] [CrossRef]
- Elhabazi, K.; Humbert, J.-P.; Bertin, I.; Schmitt, M.; Bihel, F.; Bourguignon, J.-J.; Bucher, B.; Becker, J.A.J.; Sorg, T.; Meziane, H.; et al. Endogenous Mammalian RF-Amide Peptides, Including PrRP, Kisspeptin and 26RFa, Modulate Nociception and Morphine Analgesia via NPFF Receptors. Neuropharmacology 2013, 75, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Ayachi, S.; Simonin, F. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents. Front. Endocrinol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibula-Tarlowska, E.; Kotlinska, J.H. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020, 10, 1376. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, P.; Andrzejewski, K.; Kaczyńska, K. Intracerebroventricular Neuropeptide FF Diminishes the Number of Apneas and Cardiovascular Effects Produced by Opioid Receptors’ Activation. Int. J. Mol. Sci. 2020, 21, 8931. [Google Scholar] [CrossRef]
- Malin, D.H.; Henceroth, M.M.; Izygon, J.J.; Nghiem, D.M.; Moon, W.D.; Anderson, A.P.; Madison, C.A.; Goyarzu, P.; Ma, J.-N.; Burstein, E.S. Reversal of Morphine Tolerance by a Compound with NPFF Receptor Subtype-Selective Actions. Neurosci. Lett. 2015, 584, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.T.; Kao, S.C.; Day, Y.J.; Chang, C.C.; Chen, J.C. Altered Nociception and Morphine Tolerance in Neuropeptide FF Receptor Type 2 Over-Expressing Mice. Eur. J. Pain 2016, 20, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Malin, D.H.; Henceroth, M.M.; Elayoubi, J.; Campbell, J.R.; Anderson, A.; Goyarzu, P.; Izygon, J.; Madison, C.A.; Ward, C.P.; Burstein, E.S. A Subtype-Specific Neuropeptide FF Receptor Antagonist Attenuates Morphine and Nicotine Withdrawal Syndrome in the Rat. Neurosci. Lett. 2018, 684, 98–103. [Google Scholar] [CrossRef]
- Rash, J.A.; Aguirre-Camacho, A.; Campbell, T.S. Oxytocin and Pain: A Systematic Review and Synthesis of Findings. Clin. J. Pain 2014, 30, 453–462. [Google Scholar] [CrossRef]
- Yang, J.; Liang, J.-Y.; Li, P.; Pan, Y.-J.; Qiu, P.-Y.; Zhang, J.; Hao, F.; Wang, D.-X. Oxytocin in the Periaqueductal Gray Participates in Pain Modulation in the Rat by Influencing Endogenous Opiate Peptides. Peptides 2011, 32, 1255–1261. [Google Scholar] [CrossRef]
- Meguro, Y.; Miyano, K.; Hirayama, S.; Yoshida, Y.; Ishibashi, N.; Ogino, T.; Fujii, Y.; Manabe, S.; Eto, M.; Nonaka, M.; et al. Neuropeptide Oxytocin Enhances μ Opioid Receptor Signaling as a Positive Allosteric Modulator. J. Pharmacol. Sci. 2018, 137, 67–75. [Google Scholar] [CrossRef]
- Brackley, A.D.; Toney, G.M. Oxytocin Receptor Activation Rescues Opioid-Induced Respiratory Depression by Systemic Fentanyl in the Rat. J. Pharmacol. Exp. Ther. 2021, 378, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhi, X.; Wang, X.-L.; Zeng, P.; Zou, T.; Yang, B.; Wang, J.-L. In Vivo Characterization of the Effects of Ghrelin on the Modulation of Acute Pain at the Supraspinal Level in Mice. Peptides 2013, 43, 76–82. [Google Scholar] [CrossRef]
- Liu, F.-Y.; Zhang, M.-M.; Zeng, P.; Liu, W.-W.; Wang, J.-L.; Yang, B.; Dai, Q.; Wei, J. Study on the Molecular Mechanism of Antinociception Induced by Ghrelin in Acute Pain in Mice. Peptides 2016, 83, 1–7. [Google Scholar] [CrossRef]
- Faris, P.L.; Komisaruk, B.R.; Watkins, L.R.; Mayer, D.J. Evidence for the Neuropeptide Cholecystokinin as an Antagonist of Opiate Analgesia. Science 1983, 219, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Ding, X.Z.; Fan, S.G. Is Cholecystokinin Octapeptide (CCK-8) a Candidate for Endogenous Anti-Opioid Substrates? Neuropeptides 1985, 5, 399–402. [Google Scholar] [CrossRef]
- Tseng, L.F.; Collins, K.A. Cholecystokinin Administered Intrathecally Selectively Antagonizes Intracerebroventricular Beta-Endorphin-Induced Tail-Flick Inhibition in the Mouse. J. Pharmacol. Exp. Ther. 1992, 260, 1086–1092. [Google Scholar]
- Pu, S.F.; Zhuang, H.X.; Han, J.S. Cholecystokinin Octapeptide (CCK-8) Antagonizes Morphine Analgesia in Nucleus Accumbens of the Rat via the CCK-B Receptor. Brain Res. 1994, 657, 159–164. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; He, Q.-H.; Han, J.-S.; Su, L.; Wan, Y. Heteromerization of μ-Opioid Receptor and Cholecystokinin B Receptor through the Third Transmembrane Domain of the μ-Opioid Receptor Contributes to the Anti-Opioid Effects of Cholecystokinin Octapeptide. Exp. Mol. Med. 2018, 50, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calò, G.; Rizzi, A.; Marzola, G.; Guerrini, R.; Salvadori, S.; Beani, L.; Regoli, D.; Bianchi, C. Pharmacological Characterization of the Nociceptin Receptor Mediating Hyperalgesia in the Mouse Tail Withdrawal Assay: Pharmacology of Central Nociceptin Receptors. Br. J. Pharmacol. 1998, 125, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogil, J.S.; Grisel, J.E.; Zhangs, G.; Belknap, J.K.; Grandy, D.K. Functional Antagonism of Mu-, Delta- and Kappa-Opioid Antinociception by Orphanin FQ. NeuroSci. Lett. 1996, 214, 131–134. [Google Scholar] [CrossRef]
- Bhalla, S.; Matwyshyn, G.; Gulati, A. Potentiation of Morphine Analgesia by BQ123, an Endothelin Antagonist. Peptides 2002, 23, 1837–1845. [Google Scholar] [CrossRef]
- Tonello, R.; Trevisan, G.; Luckemeyer, D.; Castro-Junior, C.J.; Gomez, M.V.; Ferreira, J. Phα1β, a Dual Blocker of TRPA1 and Cav2.2, as an Adjuvant Drug in Opioid Therapy for Postoperative Pain. Toxicon 2020, 188, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Tonello, R.; Rigo, F.; Gewehr, C.; Trevisan, G.; Pereira, E.M.R.; Gomez, M.V.; Ferreira, J. Action of Phα1β, a Peptide From the Venom of the Spider Phoneutria Nigriventer, on the Analgesic and Adverse Effects Caused by Morphine in Mice. J. Pain 2014, 15, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Gouardères, C.; Sutak, M.; Zajac, J.-M.; Jhamandas, K. Antinociceptive Effects of Intrathecally Administered F8Famide and FMRFamide in the Rat. Eur. J. Pharmacol. 1993, 237, 73–81. [Google Scholar] [CrossRef]
- Yang, H.Y.; Fratta, W.; Majane, E.A.; Costa, E. Isolation, Sequencing, Synthesis, and Pharmacological Characterization of Two Brain Neuropeptides That Modulate the Action of Morphine. Proc. Natl. Acad. Sci. USA 1985, 82, 7757–7761. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Marusich, J.; Li, J.-X.; Zhang, Y. Neuropeptide FF and Its Receptors: Therapeutic Applications and Ligand Development. J. Med. Chem. 2020, 63, 12387–12402. [Google Scholar] [CrossRef] [PubMed]
- Higo, S.; Kanaya, M.; Ozawa, H. Expression Analysis of Neuropeptide FF Receptors on Neuroendocrine-Related Neurons in the Rat Brain Using Highly Sensitive in Situ Hybridization. HistoChem. Cell. Biol. 2021, 155, 465–475. [Google Scholar] [CrossRef]
- Yang, H.-Y.T.; Tao, T.; Iadarola, M.J. Modulatory Role of Neuropeptide FF System in Nociception and Opiate Analgesia. Neuropeptides 2008, 42, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gouardères, C.; Jhamandas, K.; Sutak, M.; Zajac, J.M. Role of Opioid Receptors in the Spinal Antinociceptive Effects of Neuropeptide FF Analogues. Br. J. Pharmacol. 1996, 117, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Jiang, T.; Li, N.; Han, Z.; Wang, R. Central Administration of Neuropeptide FF and Related Peptides Attenuate Systemic Morphine Analgesia in Mice. Protein Pept. Lett. 2011, 18, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Jhamandas, J.H.; Goncharuk, V. Role of Neuropeptide FF in Central Cardiovascular and Neuroendocrine Regulation. Front. Endocrinol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xu, B.; Jiang, C.; Zhang, T.; Zhang, M.; Li, N.; Zhang, Q.; Xu, K.; Chen, D.; Xiao, J.; et al. Spinal DN-9, a Peptidic Multifunctional Opioid/Neuropeptide FF Agonist Produced Potent Nontolerance Forming Analgesia with Limited Side Effects. J. Pain 2020, 21, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Gimpl, G.; Fahrenholz, F. The Oxytocin Receptor System: Structure, Function, and Regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Cabiale, Z.; Narváez, J.A.; Garrido, R.; Petersson, M.; Uvnäs-Moberg, K.; Fuxe, K. Antagonistic Oxytocin/Alpha2-Adrenoreceptor Interactions in the Nucleus Tractus Solitarii: Relevance for Central Cardiovascular Control. J. Neuroendocrinol. 2000, 12, 1167–1173. [Google Scholar] [CrossRef]
- Vela, C.; Diaz-Cabiale, Z.; Parrado, C.; Narvaez, M.; Covenas, R.; Narvaez, J.A. Involvement of Oxytocin in the Nucleus Tractus Solitarii on Central Cardiovascular Control: Interactions with Glutamate. J. Physiol. Pharmacol. 2010, 61, 59–65. [Google Scholar] [PubMed]
- Henry, J.L.; Sessle, B.J. Vasopressin and Oxytocin Express Excitatory Effects on Respiratory and Respiration-Related Neurones in the Nuclei of the Tractus Solitarius in the Cat. Brain Res. 1989, 491, 150–155. [Google Scholar] [CrossRef]
- Mack, S.O.; Wu, M.; Kc, P.; Haxhiu, M.A. Stimulation of the Hypothalamic Paraventricular Nucleus Modulates Cardiorespiratory Responses via Oxytocinergic Innervation of Neurons in Pre-Bötzinger Complex. J. Appl. Physiol. 2007, 102, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Kimbro, S.; Kowalik, G.; Milojevic, I.; Maritza Dowling, N.; Hunley, A.L.; Hauser, K.; Andrade, D.C.; Del Rio, R.; Kay, M.W.; et al. Intranasal Oxytocin Increases Respiratory Rate and Reduces Obstructive Event Duration and Oxygen Desaturation in Obstructive Sleep Apnea Patients: A Randomized Double Blinded Placebo Controlled Study. Sleep Med. 2020, 74, 242–247. [Google Scholar] [CrossRef]
- Datta, P.C.; Sandman, C.A.; Hoehler, F.K. Attenuation of Morphine Analgesia by Alpha-MSH, MIF-I, Melatonin and Naloxone in the Rat. Peptides 1982, 3, 433–437. [Google Scholar] [CrossRef]
- Székely, J.I.; Miglécz, E.; Dunai-Kovács, Z.; Tarnawa, I.; Rónai, A.Z.; Gráf, L.; Bajusz, S. Attenuation of Morphine Tolerance and Dependence by Alpha-Melanocyte Stimulating Hormone(Alpha-MSH). Life Sci. 1979, 24, 1931–1938. [Google Scholar] [CrossRef]
- Pan, W.; Kastin, A.J. From MIF-1 to Endomorphin: The Tyr-MIF-1 Family of Peptides. Peptides 2007, 28, 2411–2434. [Google Scholar] [CrossRef]
- Gergen, K.A.; Zadina, J.E.; Paul, D. Analgesic Effects of Tyr-W-MIF-1: A Mixed Mu2-Opioid Receptor Agonist/Mu1-Opioid Receptor Antagonist. Eur. J. Pharmacol. 1996, 316, 33–38. [Google Scholar] [CrossRef]
- Zadina, J.E.; Kastin, A.J.; Kenigs, V.; Bruno, C.; Hackler, L. Prolonged Analgesia after Intracerebroventricular Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2). NeuroSci. Lett. 1993, 155, 220–222. [Google Scholar] [CrossRef]
- Zamfirova, R.; Bocheva, A.; Dobrinova, Y.; Todorov, S. Study on the Antinociceptive Action of Tyr-K-MIF-1, a Peptide from the MIF Family. Auton. Autacoid Pharmacol. 2007, 27, 93–98. [Google Scholar] [CrossRef]
- Bocheva, A.; Dzambazova-Maximova, E. Antiopioid Properties of the TYR-MIF-1 Family. Methods Find. Exp. Clin. Pharmacol. 2004, 26, 673–677. [Google Scholar] [CrossRef]
- De Souza, A.H.; Lima, M.C.; Drewes, C.C.; da Silva, J.F.; Torres, K.C.L.; Pereira, E.M.R.; de Castro, C.J.; Vieira, L.B.; Cordeiro, M.N.; Richardson, M.; et al. Antiallodynic Effect and Side Effects of Phα1β, a Neurotoxin from the Spider Phoneutria Nigriventer: Comparison with ω-Conotoxin MVIIA and Morphine. Toxicon 2011, 58, 626–633. [Google Scholar] [CrossRef]
- Fukunaga, H.; Takahashi, M.; Kaneto, H.; Yoshikawa, M. Effects of Tyr-MIF-1 on Stress-Induced Analgesia and the Blockade of Development of Morphine Tolerance by Stress in Mice. Jpn. J. Pharmacol. 1999, 79, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.L.; Vaccarino, A.L.; Olson, R.D.; Olson, G.A.; Nores, W.L.; Cambre, J.G.; Zadina, J.E.; Kastin, A.J. Tolerance and Morphine-Induced Cross-Tolerance Are Not Shown to Tyr-W-MIF-1 Analgesia. Peptides 1999, 20, 971–978. [Google Scholar] [CrossRef]
- Rigo, F.K.; Rossato, M.F.; Borges, V.; da Silva, J.F.; Pereira, E.M.R.; de Ávila, R.A.M.; Trevisan, G.; dos Santos, D.C.; Diniz, D.M.; Silva, M.A.R.; et al. Analgesic and Side Effects of Intravenous Recombinant Phα1β. J. Venom. Anim. Toxins Trop. Dis. 2020, 26, e20190070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadina, J.E.; Kastin, A.J. Interactions of Tyr-MIF-1 at Opiate Receptor Sites. Pharmacol. BioChem. Behav. 1986, 25, 1303–1305. [Google Scholar] [CrossRef]
- Sander, G.E.; Kastin, A.J.; Giles, T.D. MIF-1 Does Not Act like Naloxone in Antagonizing the Cardiovascular Activity of Leucine-Enkephalin in the Conscious Dog. Pharmacol. Biochem. Behav. 1982, 17, 1301–1303. [Google Scholar] [CrossRef]
- Das, S.; Bhargava, H.N. Effect of Prolyl-Leucyl-Glycinamide on Blood Pressure, Heart Rate and Angiotensin Converting Enzyme Activity in Spontaneously Hypertensive and Wistar-Kyoto Normotensive Rats. Gen. Pharmacol. Vasc. Syst. 1985, 16, 341–345. [Google Scholar] [CrossRef]
- Petersson, M.; Uvnäs-Moberg, K. Prolyl-Leucyl-Glycinamide Shares Some Effects with Oxytocin but Decreases Oxytocin Levels. Physiol. Behav. 2004, 83, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Akalu, Y.; Molla, M.D.; Dessie, G.; Ayelign, B. Physiological Effect of Ghrelin on Body Systems. Int. J. Endocrinol. 2020, 2020. [Google Scholar] [CrossRef]
- Sato, T.; Nakamura, Y.; Shiimura, Y.; Ohgusu, H.; Kangawa, K.; Kojima, M. Structure, Regulation and Function of Ghrelin. J. BioChem. 2012, 151, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Chen, J.-X.; Yang, B.; Zhi, X.; Guo, F.-X.; Sun, M.-L.; Wang, J.-L.; Wei, J. Attenuation of Systemic Morphine-Induced Analgesia by Central Administration of Ghrelin and Related Peptides in Mice. Peptides 2013, 50, 42–49. [Google Scholar] [CrossRef]
- Sibilia, V.; Lattuada, N.; Rapetti, D.; Pagani, F.; Vincenza, D.; Bulgarelli, I.; Locatelli, V.; Guidobono, F.; Netti, C. Ghrelin Inhibits Inflammatory Pain in Rats: Involvement of the Opioid System. Neuropharmacology 2006, 51, 497–505. [Google Scholar] [CrossRef]
- Okumura, T.; Nozu, T.; Kumei, S.; Takakusaki, K.; Ohhira, M. Ghrelin Acts Centrally to Induce an Antinociceptive Action during Colonic Distension through the Orexinergic, Dopaminergic and Opioid Systems in Conscious Rats. Brain Res. 2018, 1686, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, Y.; Liu, F.; Deng, Q.; Wang, J.; Han, R.; Zhang, D.; Chen, J.; Wei, J. The Antinociceptive Effects and Molecular Mechanisms of Ghrelin(1-7)-NH2 at the Supraspinal Level in Acute Pain in Mice. Brain Res. Bull. 2019, 146, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Baser, T.; Ozdemir, E.; Filiz, A.K.; Taskiran, A.S.; Gursoy, S. Ghrelin Receptor Agonist Hexarelin Attenuates Antinociceptive Tolerance to Morphine in Rats. Can. J. Physiol. Pharmacol. 2021, 99, 461–467. [Google Scholar] [CrossRef]
- Zeng, P.; Li, S.; Zheng, Y.; Liu, F.-Y.; Wang, J.; Zhang, D.; Wei, J. Ghrelin Receptor Agonist, GHRP-2, Produces Antinociceptive Effects at the Supraspinal Level via the Opioid Receptor in Mice. Peptides 2014, 55, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lipták, N.; Dochnal, R.; Csabafi, K.; Szakács, J.; Szabó, G. Obestatin Prevents Analgesic Tolerance to Morphine and Reverses the Effects of Mild Morphine Withdrawal in Mice. Regul. Pept. 2013, 186, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maric, T.; Sedki, F.; Ronfard, B.; Chafetz, D.; Shalev, U. A Limited Role for Ghrelin in Heroin Self-Administration and Food Deprivation-Induced Reinstatement of Heroin Seeking in Rats. Addict. Biol. 2012, 17, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.A.; Nylander, I.; Jerlhag, E. A Ghrelin Receptor (GHS-R1A) Antagonist Attenuates the Rewarding Properties of Morphine and Increases Opioid Peptide Levels in Reward Areas in Mice. Eur. Neuropsychopharmacol. 2015, 25, 2364–2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sustkova-Fiserova, M.; Jerabek, P.; Havlickova, T.; Kacer, P.; Krsiak, M. Ghrelin Receptor Antagonism of Morphine-Induced Accumbens Dopamine Release and Behavioral Stimulation in Rats. Psychopharmacology 2014, 231, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, M.; Seva, C.; Fourmy, D. Cholecystokinin and Gastrin Receptors. Physiol. Rev. 2006, 86, 805–847. [Google Scholar] [CrossRef] [Green Version]
- Reeve, J.R.; Liddle, R.A.; McVey, D.C.; Vigna, S.R.; Solomon, T.E.; Keire, D.A.; Rosenquist, G.; Shively, J.E.; Lee, T.D.; Chew, P.; et al. Identification of Nonsulfated Cholecystokinin-58 in Canine Intestinal Extracts and Its Biological Properties. Am. J. Physiol.-Gastrointest. Liver Physiol. 2004, 287, G326–G333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dourish, C.T.; O’Neill, M.F.; Coughlan, J.; Kitchener, S.J.; Hawley, D.; Iversen, S.D. The Selective CCK-B Receptor Antagonist L-365,260 Enhances Morphine Analgesia and Prevents Morphine Tolerance in the Rat. Eur. J. Pharmacol. 1990, 176, 35–44. [Google Scholar] [CrossRef]
- Pommier, B.; Beslot, F.; Simon, A.; Pophillat, M.; Matsui, T.; Dauge, V.; Roques, B.P.; Noble, F. Deletion of CCK2 Receptor in Mice Results in an Upregulation of the Endogenous Opioid System. J. NeuroSci. 2002, 22, 2005–2011. [Google Scholar] [CrossRef] [Green Version]
- Baber, N.S.; Dourish, C.T.; Hill, D.R. The Role of CCK Caerulein, and CCK Antagonists in Nociception. Pain 1989, 39, 307–328. [Google Scholar] [CrossRef]
- Derrien, M.; Noble, F.; Maldonado, R.; Roques, B.P. Cholecystokinin-A but Not Cholecystokinin-B Receptor Stimulation Induces Endogenous Opioid-Dependent Antinociceptive Effects in the Hot Plate Test in Mice. Neurosci. Lett 1993, 160, 193–196. [Google Scholar] [CrossRef]
- Noble, F.; Derrien, M.; Roques, B.P. Modulation of Opioid Antinociception by CCK at the Supraspinal Level: Evidence of Regulatory Mechanisms between CCK and Enkephalin Systems in the Control of Pain. Br. J. Pharmacol. 1993, 109, 1064–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, O.; Wiesenfeld-Hallin, Z. The CCK-B Receptor Antagonist Cl 988 Reverses Tolerance to Morphine in Rats. Neuroreport 1994, 5, 2565–2568. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Wiesenfeld-Hallin, Z.; Hughes, J.; Horwell, D.C.; Hökfelt, T. CI988, a Selective Antagonist of CholecystokininB Receptors, Prevents Morphine Tolerance in the Rat. Br. J. Pharmacol. 1992, 105, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Dourish, C.T.; O’Neill, M.F.; Schaffer, L.W.; Siegl, P.K.; Iversen, S.D. The Cholecystokinin Receptor Antagonist Devazepide Enhances Morphine-Induced Analgesia but Not Morphine-Induced Respiratory Depression in the Squirrel Monkey. J. Pharmacol. Exp. Ther. 1990, 255, 1158–1165. [Google Scholar]
- Ellenberger, H.H.; Smith, F.M. Sulfated Cholecystokinin Octapeptide in the Rat: Pontomedullary Distribution and Modulation of the Respiratory Pattern. Can. J. Physiol. Pharmacol. 1999, 77, 490–504. [Google Scholar] [CrossRef]
- Hurlé, M.A.; Dierssen, M.M.; Morin-Surun, M.P.; Oceja, C.; Flórez, J. Respiratory Actions Induced by Cholecystokinin at the Brainstem Level. Peptides 1988, 9, 809–815. [Google Scholar] [CrossRef]
- Kaczyńska, K.; Szereda-Przestaszewska, M. Contribution of CCK1 Receptors to Cardiovascular and Respiratory Effects of Cholecystokinin in Anesthetized Rats. Neuropeptides 2015, 54, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Bennet, L.; Johnston, B.M.; Gluckman, P.D. Apneic Effects of Cholecystokinin in Unanaesthetized Fetal Sheep. J. Dev. Physiol. 1990, 14, 229–233. [Google Scholar]
- Calo’, G.; Guerrini, R.; Rizzi, A.; Salvadori, S.; Regoli, D. Pharmacology of Nociceptin and Its Receptor: A Novel Therapeutic Target. Br. J. Pharmacol. 2000, 129, 1261–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B. Isolation and Structure of the Endogenous Agonist of Opioid Receptor-like ORL1 Receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef]
- Katsuyama, S.; Mizoguchi, H.; Komatsu, T.; Sakurada, C.; Tsuzuki, M.; Sakurada, S.; Sakurada, T. Antinociceptive Effects of Spinally Administered Nociceptin/Orphanin FQ and Its N-Terminal Fragments on Capsaicin-Induced Nociception. Peptides 2011, 32, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Hao, J.X.; Wiesenfeld-Hallin, Z. Nociceptin or Antinociceptin: Potent Spinal Antinociceptive Effect of Orphanin FQ/Nociceptin in the Rat. Neuroreport 1996, 7, 2092–2094. [Google Scholar]
- Chung, S.; Pohl, S.; Zeng, J.; Civelli, O.; Reinscheid, R.K. Endogenous Orphanin FQ/Nociceptin Is Involved in the Development of Morphine Tolerance. J. Pharmacol. Exp. Ther. 2006, 318, 262–267. [Google Scholar] [CrossRef]
- Toll, L.; Bruchas, M.R.; Calo’, G.; Cox, B.M.; Zaveri, N.T. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol. Rev. 2016, 68, 419–457. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Boom, M.; Sarton, E.; Hay, J.; Groeneveld, G.J.; Neukirchen, M.; Bothmer, J.; Aarts, L.; Olofsen, E. Respiratory Effects of the Nociceptin/Orphanin FQ Peptide and Opioid Receptor Agonist, Cebranopadol, in Healthy Human Volunteers. Anesthesiology 2017, 126, 697–707. [Google Scholar] [CrossRef]
- Linz, K.; Schröder, W.; Frosch, S.; Christoph, T. Opioid-Type Respiratory Depressant Side Effects of Cebranopadol in Rats Are Limited by Its Nociceptin/Orphanin FQ Peptide Receptor Agonist Activity. Anesthesiology 2017, 126, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Eerdekens, M.-H.; Kapanadze, S.; Koch, E.D.; Kralidis, G.; Volkers, G.; Ahmedzai, S.H.; Meissner, W. Cancer-Related Chronic Pain: Investigation of the Novel Analgesic Drug Candidate Cebranopadol in a Randomized, Double-Blind, Noninferiority Trial. Eur. J. Pain 2019, 23, 577–588. [Google Scholar] [CrossRef]
- Koch, E.D.; Kapanadze, S.; Eerdekens, M.-H.; Kralidis, G.; Létal, J.; Sabatschus, I.; Ahmedzai, S.H. Cebranopadol, a Novel First-in-Class Analgesic Drug Candidate: First Experience with Cancer-Related Pain for up to 26 Weeks. J. Pain Symptom Manag. 2019, 58, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Takita, K.; Morimoto, Y. Nociceptin/Orphanin FQ Slows Inspiratory Rhythm via Its Direct Effects on the Pre-Bötzinger Complex. Respir. Physiol. Neurobiol. 2015, 207, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Champion, H.C.; Kadowitz, P.J. Nociceptin, an Endogenous Ligand for the ORL1 Receptor, Has Novel Hypotensive Activity in the Rat. Life Sci. 1997, 60, PL241–PL245. [Google Scholar] [CrossRef]
- Champion, H.C.; Kadowitz, P.J. [Tyr1]-Nociceptin, a Novel Nociceptin Analog, Decreases Systemic Arterial Pressure by a Naloxone-Insensitive Mechanism in the Rat. BioChem. Biophys Res. Commun. 1997, 234, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, P.; Salis, M.B.; Milia, A.F.; Emanueli, C.; Guerrini, R.; Regoli, D.; Calò, G. Cardiovascular Effects of Nociceptin in Unanesthetized Mice. Hypertension 1999, 33, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Wang, J.Q. Cardiovascular Responses to Microinjection of Nociceptin and Endomorphin-1 into the Nucleus Tractus Solitarii in Conscious Rats. Neuroscience 2005, 132, 1009–1015. [Google Scholar] [CrossRef]
- Shah, N.; Chitravanshi, V.C.; Sapru, H.N. Cardiovascular Responses to Microinjections of Nociceptin into a Midline Area in the Commissural Subnucleus of the Nucleus Tractus Solitarius of the Rat. Brain Res. 2003, 984, 93–103. [Google Scholar] [CrossRef]
- Hickey, K.A.; Rubanyi, G.; Paul, R.J.; Highsmith, R.F. Characterization of a Coronary Vasoconstrictor Produced by Cultured Endothelial Cells. Am. J. Physiol.-Cell Physiol. 1985, 248, C550–C556. [Google Scholar] [CrossRef]
- Bhalla, S.; Pais, G.; Tapia, M.; Gulati, A. Endothelin ETA Receptor Antagonist Reverses Naloxone-Precipitated Opioid Withdrawal in Mice. Can. J. Physiol. Pharmacol. 2015, 93, 935–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, Y.; Nonaka, M.; Kamikubo, Y.; Ogawa, H.; Murayama, T.; Kurebayashi, N.; Sakairi, H.; Miyano, K.; Komatsu, A.; Dodo, T.; et al. Inhibition of Endothelin A Receptor by a Novel, Selective Receptor Antagonist Enhances Morphine-Induced Analgesia: Possible Functional Interaction of Dimerized Endothelin A and μ-Opioid Receptors. Biomed. Pharmacother. 2021, 141, 111800. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.; Aoki, C.T.; Santos, D.C.; Rezende, M.J.; Mendes, M.P.; Moura, R.A.; Delgado, M.A.; Ferreira, J.; Gomez, M.V.; Castro Junior, C.J. Antinociceptive Synergism upon the JoInt. Use of Methadone and Phα1β in a Model of Cancer-Related Pain in C57BL/6J Mice. Life Sci. 2021, 278, 119582. [Google Scholar] [CrossRef]
- Kolosov, A.; Aurini, L.; Williams, E.D.; Cooke, I.; Goodchild, C.S. Intravenous Injection of Leconotide, an Omega Conotoxin: Synergistic Antihyperalgesic Effects with Morphine in a Rat Model of Bone Cancer Pain. Pain Med. 2011, 12, 923–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowersox, S.S.; Gadbois, T.; Singh, T.; Pettus, M.; Wang, Y.X.; Luther, R.R. Selective N-Type Neuronal Voltage-Sensitive Calcium Channel Blocker, SNX-111, Produces Spinal Antinociception in Rat Models of Acute, Persistent and Neuropathic Pain. J. Pharmacol. Exp. Ther. 1996, 279, 1243–1249. [Google Scholar]
- Wright, C.E.; Robertson, A.D.; Whorlow, S.L.; Angus, J.A. Cardiovascular and Autonomic Effects of Omega-Conotoxins MVIIA and CVID in Conscious Rabbits and Isolated Tissue Assays. Br. J. Pharmacol. 2000, 131, 1325–1336. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dekan, Z. Wingerd, J.S.; Smith, J.J.; Munasinghe, N.R.; Bhola, R.F.; Imlach, W.L.; Herzig, V.; Armstrong, D.A.; Rosengren, K.J.; et al. Pharmacological characterization of the highly NaV1.7 selective spider venom peptide Pn3a. Sci. Rep. 2017, 7, 40883. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, T.C.; Lesport, P.; Kuylle, S.; Stura, E.; Ciolek, J.; Mourier, G.; Servent, D.; Bourinet, E.; Benoit, E.; Gilles, N. Evaluation of the Spider (Phlogiellus genus) Phlotoxin 1 and Synthetic Variants as Antinociceptive Drug Candidates. Toxins 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, S.; Zoukimian, C.; Bosmans, F.; Montnach, J.; Diochot, S.; Cuypers, E.; De Waard, S.; Béroud, R.; Mebs, D.; Craik, D.; et al. Chemical Synthesis, Proper Folding, Nav Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins 2019, 11, 367. [Google Scholar] [CrossRef] [Green Version]
Peptide (Sequence) | Pro-Opioid Activity | Anti-Opioid Activity | Receptors |
---|---|---|---|
NPFF (FLFQPQRFa) |
|
| NPFF [15,18] |
| NPFF [15,18] | ||
| NPFF2 [19,20] | ||
| NPFF1, NPFF2 [20,21] | ||
Oxytocin (CYIQNCPLG) |
| OT and opioid receptors [22,24] | |
| OT receptors [25] | ||
Ghrelin (GSSFSPEHQKAQQRKESKKPPAKLQPR) |
| interaction of GHS-R1a and opioid receptors [27] | |
CCK-8 (DXMGWMDF) |
| CCK-B [31,32] | |
Nociceptin/ orphanin FQ (H-FGGFTGARKSARKLANQ-OH) |
| ORL1 [34] | |
Endothelin (CSCSSLMDKECVYFCHLDIIW) |
| ETA [35] | |
Phα1β-venom peptide |
|
|
Peptide (Sequence) | MIF-1 (PLG) | Tyr-MIF-1 (YPLG) | Tyr-W-MIF-1 (YPWG) | Tyr-K-MIF-1 (YPKG) | |
---|---|---|---|---|---|
Binding sites [55] | Tyr-K-MIF-1 | − | − | − | + |
Tyr-MIF-1 | − | + | + | + | |
MOR | − | + | + | − | |
DOR | − | − | − | − | |
KOR | − | − | − | − | |
Opiate effects | + | + | + | ||
Antiopiate effects | + | + | + (mu1) [56] | + | |
Analgesia induction | + | + (mu2) [56,57] | + (histaminergic system) [58] | ||
Effects on | MF analgesia | antagonism [55] | decrease [59] | antagonism [56,59] | decrease [55] |
MF tolerance | blockade [60] | decrease [61] | increase [62] | ||
MF dependence | blockade [60] | ||||
MF abstinence syndrome | increase [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczyńska, K.; Wojciechowski, P. Non-Opioid Peptides Targeting Opioid Effects. Int. J. Mol. Sci. 2021, 22, 13619. https://doi.org/10.3390/ijms222413619
Kaczyńska K, Wojciechowski P. Non-Opioid Peptides Targeting Opioid Effects. International Journal of Molecular Sciences. 2021; 22(24):13619. https://doi.org/10.3390/ijms222413619
Chicago/Turabian StyleKaczyńska, Katarzyna, and Piotr Wojciechowski. 2021. "Non-Opioid Peptides Targeting Opioid Effects" International Journal of Molecular Sciences 22, no. 24: 13619. https://doi.org/10.3390/ijms222413619
APA StyleKaczyńska, K., & Wojciechowski, P. (2021). Non-Opioid Peptides Targeting Opioid Effects. International Journal of Molecular Sciences, 22(24), 13619. https://doi.org/10.3390/ijms222413619