Characterisation of Endogenous Peptides Present in Virgin Olive Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Endogenous Peptides Identified by Peaks DB in VOO
2.2. Olive Proteins Detected as Sources of VOO Peptides
2.3. Endogenous Peptides Identified by de Novo Sequencing in VOO
2.4. Predicted Activities of VOO Endogenous Peptides
2.5. ACE-Inhibitory and Antioxidant Activity of Synthetic Peptides
3. Materials and Methods
3.1. Plant Material and Extraction of Olive Oil
3.2. Extraction and Fractionation of VOO Peptides
3.3. LC-Orbitrap MS/MS Analysis of Peptide Fractions
3.4. Peptide and Protein Identification by de Novo Sequencing and Database Search
3.5. Biological Activity Prediction of VOO Peptides and Peptide Selection
3.6. Peptide Synthesis
3.7. Peptide Concentration Determination
3.8. Determination of Angiotensin-Converting Enzyme Inhibitory Activity
3.9. Determination of the Antioxidant Activity
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive oil and prevention of chronic diseases: Summary of an International conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Blekas, G.; Tsimidou, M.; Boskou, D. Olive Oil Composition, 2nd ed.; American Oil Chemists’ Society, Ed.; AOCS Press: Urbana, IL, USA, 2006; pp. 42–72. [Google Scholar]
- Brenes, M.; Garcia, A.; Garcia, P.; Rios, J.J.; Garrido, A. Phenolic compounds in Spanish olive oils. J. Agric. Food Chem. 1999, 47, 3535–3540. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865),maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), anti-inflammatory properties (ID 1882), contributes to the upper respiratory tract health (ID 3468), can help to maintain a normal function of gastrointestinal tract (3779), and contributes to body defences against external agents (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033–2057. [Google Scholar]
- Montealegre, C.; Esteve, C.; García, M.C.; García-Ruiz, C.; Marina, M.L. Proteins in olive fruit and oil. Crit. Rev. Food Sci. Nutr. 2014, 54, 611–624. [Google Scholar] [CrossRef]
- Liao, W.; Sun, G.; Xu, D.; Wang, Y.; Lu, Y.; Sun, J.; Xia, H.; Wang, S. The Blood-Pressure-Lowering Effect of Food-Protein-Derived Peptides: A Meta-Analysis of Recent Clinical Trials. Foods 2021, 10, 2316. [Google Scholar] [CrossRef]
- Cruz-Huerta, E.; Fernandez-Tome, S.; Arques, M.C.; Amigo, L.; Recio, I.; Clemente, A.; Hernandez-Ledesma, B. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: The effect of released peptides on colon cancer growth. Food Funct. 2015, 6, 2626–2635. [Google Scholar] [CrossRef] [Green Version]
- Tornatore, L.; Sandomenico, A.; Raimondo, D.; Low, C.; Rocci, A.; Tralau-Stewart, C.; Capece, D.; D’Andrea, D.; Bua, M.; Boyle, E.; et al. Cancer-selective targeting of the NF-kB survival pathway with GADD45b/MKK7 inhibitors. Cancer Cell 2014, 26, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Jang, A.; Jo, C.; Kang, K.-S.; Lee, M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 2008, 107, 327–336. [Google Scholar] [CrossRef]
- Pak, V.V.; Koo, M.S.; Kasymova, T.D.; Kwon, D.Y. Isolation and identification of peptides from soy 11S-globulin with hypocholesterolemic activity. Chem. Nat. Compd. 2005, 41, 710–714. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Scigliuolo, G.M.; D’Amato, A.; Arnoldi, A. Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2. J. Agric. Food. Chem. 2014, 62, 7151–7159. [Google Scholar] [CrossRef]
- Kagawa, K.; Matsutaka, H.; Fukuhama, C.; Fujino, H.; Okuda, H. Suppressive effect of globin digest on postprandial hyperlipidemia in male volunteers. J. Nutr. 1998, 128, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.M.; Muramoto, K.; Yamauchi, F.; Fujimoto, K.; Nokihara, K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food. Chem. 1998, 46, 49–53. [Google Scholar] [CrossRef]
- Rival, S.G.; Fornaroli, S.; Boeriu, C.G.; Wichers, H.J. Caseins and casein hydrolysates: Lipoxygenase inhibitory properties. J. Agric. Food. Chem. 2001, 49, 287–294. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; He, Y.; Ren, D.; Kow, F.; Song, L.; Xingju, Y. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014, 145, 991–996. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Daily, J.W., III; Kim, H.J.; Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010, 30, 1–13. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Arnoldi, A. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. Int. J. Mol. Sci. 2015, 16, 27362–27370. [Google Scholar] [CrossRef] [Green Version]
- Cam, A.; de Mejia, E.G. RGD-peptide lunasin inhibits Akt-mediated NF-kappaB activation in human macrophages through interaction with the alphaVbeta3 integrin. Mol. Nutr. Food Res. 2012, 56, 1569–1581. [Google Scholar] [CrossRef]
- Dia, V.P.; Bringe, N.A.; de Mejia, E.G. Peptides in pepsin-pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem. 2014, 152, 423–431. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Kishi, K.; Takahashi, M.; Watanabe, A.; Miyamura, T.; Yamazaki, M.; Chiba, H. Immunostimulating peptide derived from soybean protein. Ann. N. Y. Acad. Sci. 1993, 685, 375–376. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Qian, Z.Y.; Jolles, P.; Migliore-Samour, D.; Schoentgen, F.; Fiat, A.M. Sheep kappa-casein peptides inhibit platelet aggregation. Biochim. Biophys. Acta 1995, 1244, 411–417. [Google Scholar] [CrossRef]
- Chabance, B.; Jolles, P.; Izquierdo, C.; Mazoyer, E.; Francoual, C.; Drouet, L.; Fiat, A.M. Characterization of an antithrombotic peptide from kappacasein in newborn plasma after milk ingestion. Br. J. Nutr. 1995, 73, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, N.L.; Nagain-Domaine, C.; Mahe, S.; Chariot, J.; Roze, C.; Tome, D. Caseinomacropeptide specifically stimulates exocrine pancreatic secretion in the anesthetized rat. Peptides 2000, 21, 1527–1535. [Google Scholar] [CrossRef]
- Nishi, T.; Hara, H.; Asano, K.; Tomita, F. The soybean beta-conglycinin beta 51–63 fragment suppresses appetite by stimulating cholecystokinin release in rats. J. Nutr. 2003, 133, 2537–2542. [Google Scholar] [CrossRef]
- Ohinata, K.; Agui, S.; Yoshikawa, M. Soymorphins, novel mu opioid peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic activities. Biosci. Biotechnol. Biochem. 2007, 71, 2618–2621. [Google Scholar] [CrossRef]
- Kaneko, K.; Iwasaki, M.; Yoshikawa, M.; Ohinata, K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut mu(1)-receptor coupled to 5-HT(1A), D.(2), and GABA(B.) systems. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G799–G805. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. A Global Brief on Hypertension. Silent Killer, Global Public Health Crisis; Document number WHO/DCO/WHD/2013.2; WHO Press: Geneva, Switzerland, 2013. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar]
- Saadi, S.; Saari, N.; Anwar, F.; Hamid, A.A.; Mohd Ghazali, H. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef]
- Escudero, E.; Mora, L.; Fraser, P.D.; Aristoy, M.C.; Arihara, K.; Toldrá, F. Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. J. Proteom. 2013, 78, 499–507. [Google Scholar] [CrossRef]
- Mandal, S.M.; Bharti, R.; Porto, W.F.; Gauri, S.S.; Mandal, M.; Franco, O.L.; Ghosh, A.K. Identification of multifunctional peptides from human milk. Peptides 2014, 56, 84–93. [Google Scholar] [CrossRef]
- Fekete, A.A.; Givens, D.I.; Lovegrove, J.A. Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients 2015, 7, 659–681. [Google Scholar] [CrossRef] [Green Version]
- Daliri, E.B.; Lee, B.H.; Oh, D.H. Current trends and perspectives of bioactive peptides. Crit. Rev. Food Sci. Nutr. 2018, 58, 2273–2284. [Google Scholar] [CrossRef]
- Alcaide-Hidalgo, J.M.; Margalef, M.; Bravo, F.I.; Muguerza, B.; López-Huertas, E. Virgin olive oil (unfiltered) extract contains peptides and possesses ACE inhibitory and antihypertensive activity. Clin. Nutr. 2020, 39, 1242–1249. [Google Scholar] [CrossRef]
- Alcaide-Hidalgo, J.M.; Romero, M.; Duarte, J.; López-Huertas, E. Antihypertensive Effects of Virgin Olive Oil (Unfiltered) Low Molecular Weight Peptides with ACE Inhibitory Activity in Spontaneously Hypertensive Rats. Nutrients 2020, 12, 271. [Google Scholar] [CrossRef] [Green Version]
- Herregods, G.; Van Camp, J.; Morel, N.; Ghesquiere, B.; Gevaert, K.; Vercruysse, L.; Dierckx, S.; Quanten, E.; Smagghe, G. Angiotensin I-Converting Enzyme Inhibitory Activity of Gelatin Hydrolysates and Identification of Bioactive Peptides. J. Agric. Food Chem. 2011, 59, 552–558. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful Software for Peptide De Novo Sequencing by MS/MS. Rapid. Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef]
- Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 2003, 421, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, K.; Cheung, B.W.; Schröder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 2008, 19, 643–654. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant Activity of Proteins. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- BLAST: Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 21 November 2021).
- Alché, J.D.; Jiménez-López, J.C.; Wang, W.; Castro-López, A.J.; Rodríguez-García, M.I. Biochemical characterization and cellular localization of 11S type storage proteins in olive (Olea europaea L.) seeds. J. Agric. Food Chem. 2006, 54, 5562–5570. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.J.; Lima-Cabello, E.; Alché, J.D. Identification of seed storage proteins as the major constituents of the extra virgin olive oil proteome. Food Chem. X 2020, 7, 100099. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Bouwmeester, K. L-type lectin receptor kinases: New forces in plant immunity. PLoS Pathog. 2017, 13, e1006433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, H.; Wei, F.; Marano, M.R.; Wirtz, U.; Wang, X.; Liu, J.; Shum, W.P.; Zaborsky, J.; Tallon, L.J.; Rensink, W.; et al. The R1 resistange gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J. 2005, 44, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Tadini, L.; Pesaresi, P.; Kleine, T.; Rossi, F.; Guljamow, A.; Sommer, F.; Mühlhaus, T.; Schroda, M.; Masiero, S.; Pribil, M.; et al. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis. Plant Physiol. 2016, 170, 1817–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Fan, G.; Lu, C.; Xiao, G.; Zou, C.; Kohel, R.J. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 2015, 33, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Breitsprecher, D.; Kiesewetter, A.K.; Linkner, J.; Urbanke, C.; Resch, G.P.; Small, J.V.; Faix, J. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 2008, 27, 2943–2954. [Google Scholar] [CrossRef]
- Toledo-Ortiz, G.; Huq, E.; Quail, P.H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 2003, 15, 1749–1770. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular mechanisms of chitosan interactions with fungi and plants Int. J. Mol. Sci. 2019, 20, 232. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.; Taschler, U.; Domenig, O.; Poglitsch, M.; Bourgeois, B.; Pollheimer, M.; Pusch, L.M.; Malovan, G.; Frank, S.; Madl, T.; et al. Dipeptidyl peptidase 3 modulates the renin-angiotensin system in mice. J. Biol. Chem. 2020, 295, 13711–13723. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 642–653. [Google Scholar] [CrossRef]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef]
- Sentandreu, M.A.; Toldra, F. Evaluation of ACE inhibitory activity of dipeptides generated by the action of porcine muscle dipeptidyl peptidases. Food Chem. 2007, 101, 1629–1633. [Google Scholar] [CrossRef]
- Yano, S.; Suzuki, K.; Funatsu, G. Isolation from alpha-zein of thermolysin peptides with angiotensin I-converting enzyme inhibitory activity. Biosci. Biotechnol. Biochem. 1996, 60, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Cheung, H.-S.; Wang, F.-L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. J. Biol. Chem. 1980, 255, 401–407. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamamoto, N.; Sakai, K.; Takano, T. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 1995, 78, 1253–1257. [Google Scholar] [CrossRef]
- Saito, Y.; Wanezaki, K.; Kawato, A.; Imayasu, S. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotechnol. Biochem. 1994, 58, 1767–1771. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.Q.; Sun, S.; Canning, C. Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration. Food Chem. 2012, 135, 1192–1197. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zhou, K. Chelating and radical scavenging activities of soy protein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresour. Technol. 2010, 101, 2084–2089. [Google Scholar] [CrossRef]
- Kou, X.H.; Gao, J.; Xue, Z.H.; Zhang, Z.J.; Wang, H.; Wang, X. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT-Food Sci. Technol. 2013, 50, 591–598. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Mendis, E.; Rajapakse, N.; Kim, S.-K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food. Chem. 2005, 53, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, K.; Grosser, N.; Schipporeit, K.; Schroder, H. The ACE inhibitory dipeptide Met-Tyr diminishes free radical formation in human endothelial cells via induction of heme oxygenase-1 and ferritin. J. Nutr. 2006, 136, 2148–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisel, H. Biochemical properties of peptides encrypted in bovine milk proteins. Curr. Med. Chem. 2005, 12, 1905–1919. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef] [Green Version]
- Maestri, E.; Marmiroli, M.; Marmiroli, N. Bioactive peptides in plant-derived foodstuffs. J. Proteom. 2016, 147, 140–155. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.J. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994, 234, 279–293. [Google Scholar]
- Mateos, R.; Dominguez, M.M.; Espartero, J.L.; Cert, A. Antioxidant effect of phenolic compounds, α-tocopherol, and other minor components in virgin olive oil. J. Agric. Food Chem. 2003, 51, 7170–7175. [Google Scholar] [CrossRef]
- López-Huertas, E.; Palma, J.M. Changes in Glutathione, Ascorbate, and Antioxidant Enzymes during Olive Fruit Ripening. J. Agric. Food Chem. 2020, 68, 12221–12228. [Google Scholar] [CrossRef]
- Ferreira, J. Explotaciones Olivareras Colaboradoras, No.5; Ministerio de Agricultura: Madrid, Spain, 1979. [Google Scholar]
- López-Huertas, E.; Lozano-Sánchez, J.; Segura-Carretero, A. Olive oil varieties and ripening stages containing the antioxidants hydroxytyrosol and derivatives in compliance with EFSA health claim. Food Chem. 2021, 342, 128291. [Google Scholar] [CrossRef]
- Cruz, F.; Julca, I.; Gómez-Garrido, J.; Loska, D.; Marcet-Houben, M.; Cano, E.; Galán, B.; Frias, L.; Ribeca, P.; Derdak, S.; et al. Genome sequence of the olive tree, Olea europaea. GigaScience 2016, 5, 29. [Google Scholar] [CrossRef]
- The olive Genome. Available online: https://denovo.cnag.cat/olive (accessed on 21 November 2021).
- Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.; Zhang, W.; Zhang, Z.; Gilles, A.; Lajoie, G.A.; et al. Peaks DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell Proteom. 2012, 11, M111.010587. [Google Scholar] [CrossRef] [Green Version]
- Peaks Team. Peaks X Pro user Manual. 2020. Available online: www.bioinfor.com/user-manual/ (accessed on 21 November 2021).
- Stephen, F.; Altschul, T.L.; Madden, A.A.; Schäffer, J.Z.; Zheng, Z.; Webb, M.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar]
- Minkiewicz, P.; Dziuba, J.; Iwaniak, A.; Dziuba, M.; Darewicz, M. BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int. 2008, 91, 965–980. [Google Scholar] [CrossRef] [Green Version]
- BIOPEP-UWM: Bioactive Peptides. Available online: https://biochemia.uwm.edu.pl/en/biopep-uwm-2/ (accessed on 21 November 2021).
- Dziuba, J.; Iwaniak, A.; Minkiewicz, P. Computer-aided characteristics of proteins as potential precursors of bioactive peptides. Polimery 2003, 48, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ledesma, B.; del Mar Contreras, M.; Recio, I. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Sentandreu, M.A.; Toldrá, F. A fluorescence-based protocol for quantifying angiotensin-converting enzyme activity. Nat. Protoc. 2006, 1, 2423–2427. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
No. | Sequence | −10 lgP | N | m/z | Mass | RT | ppm | Area | Protein Source (BLASTP) | Accession |
---|---|---|---|---|---|---|---|---|---|---|
1 | LDTANEMNQLDLQFR | 93.56 | 15 | 904.4365 | 1806.8571 | 34.18 | 8.3 | 1.0 × 106 | 11S globulin subunit beta-like | OE9A085162P3: OE9A085162P1: OE9A085162P2 |
2 | VVLQDTSNNVNQLD | 77.73 | 14 | 779.8878 | 1557.7634 | 24.96 | 5.9 | 3.44 × 105 | legumin A-like | OE9A032471P1: OE9A042009P1 |
3 | VVLQDTSNNVNQLDDIPRRFFLA | 63.26 | 23 | 892.1344 | 2673.3875 | 48.98 | 5.2 | ND | legumin A-like | OE9A032471P1: OE9A042009P1 |
4 | AVVPIWLQPDTPAR | 57.79 | 14 | 781.9397 | 1561.8616 | 38.09 | 9.6 | 4.39 × 105 | apyrase-like | OE9A001718P2: OE9A001718P1 |
5 | IFSGGESSGQPR | 57.53 | 12 | 611.2961 | 1220.5785 | 22.47 | 6.8 | 1.24 × 105 | legumin A-like | OE9A032471P1: OE9A042009P1 |
6 | DTSNNVNQLDDIPRR | 46.89 | 15 | 586.2892 | 1755.8500 | 26.25 | 5.1 | 1.54 × 105 | legumin A-like | OE9A032471P1: OE9A042009P1 |
7 | NCSTSIISG | 39.01 | 9 | 441.2062 | 880.3961 | 35.88 | 9.5 | 3.49 × 107 | hypothetical predicted protein | OE9A087501P1 |
8 | VHVFRFDQNQDLLPIGN | 34.71 | 17 | 671.3506 | 2011.0275 | 48.03 | 8.8 | 1.53 × 104 | apyrase-like | OE9A001718P2: OE9A001718P1 |
9 | LLLGAGCM(+15.99) | 34.51 | 8 | 397.1985 | 792.3874 | 33.76 | 1.4 | 1.24 × 107 | zinc transporter 5-like | OE9A117792P1 |
10 | QDTSNNVNQLDDIPRR | 33.36 | 16 | 628.9771 | 1883.9086 | 26.36 | 8.0 | 2.06 × 106 | legumin A-like | OE9A032471P1: OE9A042009P1 |
11 | FSASTEGS | 32.74 | 8 | 393.1665 | 784.3239 | 25.27 | 0.5 | 9.63 × 105 | probable L-type lectin domain containing receptor kinase S.7 | OE9A013295P1: OE9A042038P1: OE9A062197P1 |
12 | INTISGR | 31.90 | 7 | 380.7197 | 759.4239 | 20.53 | 8.6 | 1.38 × 105 | legumin A-like | OE9A032471P1: OE9A042009P1 |
13 | LDGNSSAR | 31.66 | 8 | 410.1964 | 818.3882 | 18.63 | −4.9 | 1.41 × 105 | late blight resistance protein homolog R1A-10 | OE9A106456P1 |
14 | VCGEAFGKA | 31.36 | 9 | 441.2060 | 880.4113 | 33.38 | −8.2 | 4.18 × 106 | translation initiation factor IF-2, chloroplastic | OE9A058866P1 |
15 | KGGGGGSGSAGGGGS | 31.14 | 15 | 525.2275 | 1048.4534 | 35.95 | −4.9 | 4.01 × 106 | mitogen-activated kinase 9-like, partial | OE9A057915P1 |
16 | SGPGNHEQ | 30.94 | 8 | 413.1722 | 824.3413 | 30.38 | −6.5 | ND | hypothetical predicted protein | OE9A054657P1: OE9A104108P1 |
17 | LGGGGSSGGAAC | 30.30 | 12 | 447.1878 | 892.3708 | 20.67 | −3.4 | 4.31 × 105 | VASP homolog (vasodilator-stimulated phosphoprotein) | OE9A026632P1 |
18 | NALLCSNS | 30.09 | 8 | 411.1950 | 820.3749 | 27.63 | 8.1 | 2.25 × 105 | transcription factor bHLH143-like | OE9A100476P1 |
19 | CPANGFY | 29.54 | 7 | 386.1598 | 770.3057 | 26.19 | 6.7 | ND | basic endochitinase-like | OE9A087887P1 |
Protein Accession | −10 lgP | Peptides | Cover (%) | Average Mass (Da) | Area | Protein Identification (BLASTP) | E-Value | % Identity | Protein Description |
---|---|---|---|---|---|---|---|---|---|
OE9A032471P1 | 155.75 | 6 | 9 | 51,572 | 2.82 × 106 | legumin A-like | 0.0 | 100 | CAA3011204.1 |
OE9A042009P1 | 155.75 | 6 | 9 | 51,725 | 2.82 × 106 | legumin A-like | 0.0 | 100 | ID: CAA3019014.1 |
OE9A085162P3 | 93.56 | 1 | 4 | 40,777 | 1.08 × 106 | 11S globulin subunit beta-like | 0.0 | 100 | XP_022872671.1 |
OE9A085162P1 | 93.56 | 1 | 4 | 44,093 | 1.08 × 106 | 11S globulin subunit beta-like | 0.0 | 100 | CAA2975576.1 |
OE9A085162P2 | 93.56 | 1 | 3 | 55,757 | 1.08 × 106 | 11S globulin subunit beta-like | 0.0 | 100 | XP_022872671.1 |
OE9A001718P2 | 75.15 | 2 | 7 | 47,253 | 4.54 × 105 | apyrase-like | 0.0 | 100 | CAA3020286.1 |
OE9A001718P1 | 75.15 | 2 | 7 | 49,955 | 4.54 × 105 | apyrase-like | 0.0 | 100 | CAA3020285.1 |
OE9A057915P1 | 43.19 | 1 | 7 | 21,805 | 4.01 × 106 | mitogen-activated kinase 9-like | 6 × 10−86 | 100 | CAA3032954.1 |
OE9A117792P1 | 43.16 | 1 | 2 | 38,475 | 6.11 × 106 | zinc transporter 5-like | 0.0 | 100 | CAA3032762.1 |
OE9A087501P1 | 39.01 | 1 | 4 | 27,647 | 3.49 × 107 | hypothetical predicted protein | 1 × 10−160 | 100 | CAA2984267.1 |
OE9A013295P1 | 32.74 | 1 | 1 | 72,709 | 9.63 × 105 | probable L-type lectin domain containing receptor kinase S.7 | 0.0 | 100 | CAA2995736.1 |
OE9A042038P1 | 32.74 | 1 | 1 | 75,341 | 9.63 × 105 | probable L-type lectin domain containing receptor kinase S.7 | 0.0 | 100 | XP_022879160.1 |
OE9A062197P1 | 32.74 | 1 | 1 | 75,780 | 9.63 × 105 | probable L-type lectin domain containing receptor kinase S.7 | 0.0 | 100 | CAA2978283.1 |
OE9A106456P1 | 31.66 | 1 | 1 | 86,941 | 7.40 × 104 | late blight resistance protein homolog R1A-10 | 0.0 | 100 | CAA2992824.1 |
OE9A058866P1 | 31.36 | 1 | 1 | 108,486 | 4.18 × 106 | translation initiation factor IF-2, chloroplastic | 0.0 | 100 | CAA3007316.1 |
OE9A054657P1 | 30.94 | 1 | 3 | 30,439 | 0 | hypothetical predicted protein | 4 × 10−138 | 100 | CAA3010733.1 |
OE9A104108P1 | 30.94 | 1 | 2 | 41,131 | 0 | hypothetical predicted protein | 2 × 10−172 | 100 | CAA2977756.1 |
OE9A026632P1 | 30.3 | 1 | 4 | 30,682 | 4.31 × 105 | VASP homolog (vasodilator-stimulated phosphoprotein) | 2 × 10−136 | 100 | CAA2968008.1 |
OE9A100476P1 | 30.09 | 1 | 2 | 38,275 | 2.25 × 105 | hypothetical predicted protein (transcription factor bHLH143-like) | 0.0 | 100 | CAA2983039.1 |
OE9A087887P1 | 29.54 | 1 | 3 | 28,540 | 0 | basic endochitinase-like | 0.0 | 100 | CAA2941635.1 |
No. | Peptide | ALC (%) | N | m/z | Mass | RT | Area | ppm | Local Confidence (%) |
---|---|---|---|---|---|---|---|---|---|
1 de novo | CCYSVY | 95 | 6 | 369.1365 | 736.256 | 24.36 | 5.77 × 105 | 3.2 | 92 97 99 93 92 98 |
2 de novo | DCHYFL | 94 | 6 | 399.1715 | 796.3214 | 25.13 | 6.41 × 104 | 8.9 | 92 98 98 98 90 93 |
3 de novo | LYPFAH | 94 | 6 | 374.1952 | 746.3751 | 19.07 | 3.59 × 105 | 1 | 99 99 99 85 89 93 |
4 de novo | SVSKPGW | 92 | 7 | 380.7006 | 759.3915 | 14.03 | 1.85 × 105 | −6.5 | 93 97 99 99 89 78 93 |
5 de novo | LHTVVH | 91 | 6 | 353.2084 | 704.397 | 26.06 | 8.67 × 104 | 7.6 | 99 93 93 92 85 87 |
6 de novo | NKLCCEH | 91 | 7 | 423.6815 | 845.3524 | 29.15 | ND | −4.7 | 84 95 98 94 86 94 89 |
7 de novo | DHHEEL | 91 | 6 | 390.1661 | 778.3246 | 36.35 | 7.71 × 104 | −8.9 | 89 91 97 91 92 85 |
8 de novo | LPCAAHR | 90 | 7 | 384.2062 | 766.3908 | 19.09 | 2.70 × 105 | 9.2 | 98 79 79 89 97 96 95 |
No. | Peptide Sequence | Predicted Activity | No. of Sequences with Activity | A | B |
---|---|---|---|---|---|
1 | LDTANEMNQLDLQFR | ACE inhibitor | 3 | 0.2000 | 7.24 × 10−5 |
DPP IV inhibitor | 7 | 0.4667 | |||
DPP III inhibitor | 1 | 0.0667 | |||
Renin inhibitor | 1 | 0.0667 | |||
2 | VVLQDTSNNVNQLD | ACE inhibitor | 2 | 0.1429 | |
Glucose uptake stimulation | 1 | 0.0714 | |||
DPP IV inhibitor | 9 | 0.6429 | 9.65 × 10−4 | ||
3 | VVLQDTSNNVNQLDDIPRRFFLA | ACE inhibitor | 9 | 0.3913 | 1.36 × 10−2 |
Activator of ubiquitin-mediated proteolysis | 1 | 0.0435 | |||
DPP IV inhibitor | 10 | 0.2174 | |||
DPP III inhibitor | 5 | 0.6087 | 8.62 × 10−4 | ||
Stimulation | 1 | 0.0435 | |||
4 | AVVPIWLQPDTPAR | ACE inhibitor | 10 | 0.7143 | 5.69 × 10−2 |
DPP IV inhibitor | 10 | 0.7143 | 1.80 × 10−3 | ||
5 | IFSGGESSGQPR | ACE inhibitor | 9 | 0.7500 | 4.63 × 10−2 |
Antioxidant | 1 | 0.0833 | |||
DPP III inhibitor | 2 | 0.1667 | |||
DPP IV inhibitor | 4 | 0.3333 | |||
Neuropeptide | 1 | 0.0833 | |||
6 | DTSNNVNQLDDIPRR | ACE inhibitor | 3 | 0.2000 | 1.70 × 10−2 |
DPP IV inhibitor | 8 | 0.1333 | |||
DPP III inhibitor | 2 | 0.5333 | 1.62 × 10−4 | ||
7 | NCSTSIISG | ACE inhibitor | 2 | 0.2222 | 2.75 × 10−2 |
DPP IV inhibitor | 3 | 0.3333 | |||
Glucose uptake stimulation | 1 | 0.1111 | |||
8 | VHVFRFDQNQDLLPIGN | ACE inhibitor | 5 | 0.2941 | 8.20 × 10−3 |
Glucose uptake stimulation | 1 | 0.0588 | |||
DPP IV inhibitor | 11 | 0.6471 | 2.48 × 10−5 | ||
DPP III inhibitor | 2 | 0.1176 | |||
9 | LLLGAGCM(+15.99) | ACE inhibitor | 3 | 0.3750 | 1.26 × 10−4 |
Glucose uptake stimulation | 2 | ||||
Stimulation of vasoactive substance release | 1 | 0.3750 | |||
DPP IV inhibitor | 3 | 0.5000 | |||
10 | QDTSNNVNQLDDIPRR | ACE inhibitor | 3 | 0.1875 | 1.59 × 10−2 |
DPP IV inhibitor | 9 | 0.5625 | 1.52 × 10−4 | ||
DPP III inhibitor | 2 | 0.1250 | |||
11 | FSASTEGS | ACE inhibitor | 4 | 0.5000 | 3.11 × 10−2 |
DPP IV inhibitor | 3 | 0.3750 | |||
12 | INTISGR | ACE inhibitor | 2 | 0.2857 | 6.14 × 10−5 |
DPP IV inhibitor | 3 | 0.4286 | |||
13 | LDGNSSAR | ACE inhibitor | 2 | 0.2500 | 1.14 × 10−2 |
14 | VCGEAFGKA | ACE inhibitor | 7 | 0.7778 | 4.80 × 10−3 |
Alpha-glucosidase inhibitor | 1 | 0.1111 | 6.53 × 10−6 | ||
DPP IV inhibitor | 3 | 0.3333 | 1.78 × 10−5 | ||
DPP III inhibitor | 2 | 0.2222 | |||
15 | KGGGGGSGSAGGGGS | ACE inhibitor | 13 | 0.8667 | 1.72 × 10−4 |
DPP IV inhibitor | 9 | 0.6000 | |||
16 | SGPGNHEQ | ACE inhibitor | 4 | 0.5000 | 2.10 × 10−3 |
Antiamnestic | 2 | 0.2500 | |||
Antithrombotic | 2 | 0.2500 | |||
Regulation of stomach mucosal activity | 2 | 0.2500 | |||
DPP IV inhibitor | 4 | 0.5000 | 1.80 × 10−3 | ||
17 | LGGGGSSGGAAC | ACE inhibitor | 9 | 0.7500 | 2.63 × 10−4 |
Antioxidant | 1 | 0.0833 | |||
DPP IV inhibitor | 6 | 0.5000 | 8.87 × 10−6 | ||
18 | NALLCSNS | Glucose uptake stimulation | 1 | 0.1250 | |
DPP IV inhibitor | 3 | 0.3750 | 1.42 × 10−6 | ||
19 | CPANGFY | ACE inhibitor | 3 | 0.4286 | 5.90 × 10−3 |
DPP IV inhibitor | 3 | 0.4286 | |||
DPP III inhibitor | 1 | 0.1429 |
No. | Peptide | ALC (%) | Predicted Activity | No. Seq. with Activity | A | B |
---|---|---|---|---|---|---|
1 de novo | CCYSVY | 95 | ACE inhibitor | 2 | 0.3333 | 4.39 × 10−2 |
Antioxidant | 1 | 0.1667 | ||||
DPP III inhibitor | 3 | 0.1667 | ||||
DPP IV inhibitor | 1 | 0.5000 | ||||
2 de novo | DCHYFL | 94 | ACE inhibitor | 1 | 0.1667 | 6.38 × 10−3 |
Anti-inflammatory | 1 | 0.1667 | ||||
DPP III inhibitor | 3 | 0.3333 | ||||
DPP IV inhibitor | 2 | 0.5000 | 4.17 × 10−4 | |||
3 de novo | LYPFAH | 94 | ACE inhibitor | 4 | 0.6667 | 3.47 × 10−4 |
Alpha-glucosidase inhibitor | 1 | 0.1667 | 9.92 × 10−5 | |||
Antioxidant | 2 | 0.3333 | ||||
DPP III inhibitor | 2 | 0.3333 | ||||
DPP IV inhibitor | 4 | 0.6667 | 5.25 × 10−5 | |||
Opioid | 1 | 0.1667 | ||||
Renin inhibitor | 1 | 0.1667 | ||||
4 de novo | SVSKPGW | 92 | ACE inhibitor | 3 | 0.4286 | 1.12 × 10−2 |
Antiamnestic | 1 | 0.1429 | ||||
Antioxidant | 1 | 0.1429 | ||||
Antithrombotic | 1 | 0.1429 | ||||
Regulation of stomach activity | 1 | 0.1429 | ||||
DPP IV inhibitor | 6 | 0.8571 | 5.62 × 10−5 | |||
5 de novo | LHTVVH | 91 | Antioxidant | 2 | 0.3333 | |
DPP IV inhibitor | 5 | 0.8333 | ||||
6 de novo | NKLCCEH | 91 | ACE inhibitor | 3 | 0.4286 | 4.64 × 10−3 |
DPP IV inhibitor | 1 | 0.1429 | ||||
7 de novo | DHHEEL | 91 | Antioxidative | 3 | 0.5000 | |
Stimulation of vasoactive substance release | 1 | 0.1667 | ||||
DPP IV inhibitor | 2 | 0.3333 | ||||
8 de novo | LPCAAHR | 90 | ACE inhibitor | 2 | 0.2857 | 2.30 × 10−4 |
Antioxidant | 1 | 0.1429 | ||||
DPP IV inhibitor | 4 | 0.5714 | 7.54 × 10−5 |
No. | Peptide Sequence | Pepsin | Trypsin | Chymotrypsin |
---|---|---|---|---|
1 | LDTANEMNQLDLQFR | L-DTANEMNQL-DL-QF-R | L-DTAN-EM-N-QL-DL-QF-R | |
QF: renin inhibitor, | QF, renin inhibitor, | |||
QF, DPP IV, inhibitor | QF, QL: DPP IV, inhibitor | |||
2 | VVLQDTSNNVNQLD | VVL-QDTSNNVNQL-D | VVL-QDTSNNVNQL-D | VVL-QDTSN-N-VN-QL-D |
VVL: ACE inhibitor | VVL: ACE inhibitor | VVL: ACE inhibitor | ||
QL, VN: DPP IV, inhibitor | ||||
3 | VVLQDTSNNVNQLDDIPRRFFLA | VVL-QDTSNNVNQL-DDIPRRF-F-L-A | VVL-QDTSN-N-VN-QL-DDIPRRF-F-L-A | |
VVL: ACE inhibitor | VVL: ACE inhibitor | |||
QL, VN: DPP IV, inhibitor | ||||
4 | AVVPIWLQPDTPAR | |||
5 | IFSGGESSGQPR | IF-SGGESSGQPR | IF-SGGESSGQPR | |
IF: ACE inhibitor | IF: ACE inhibitor | |||
6 | DTSNNVNQLDDIPRR | DTSN-N-VN-QL-DDIPRR | ||
QL, VN: DPP IV, inhibitor | ||||
7 | NCSTSIISG | |||
8 | VHVFRFDQNQDLLPIGN | VHVF-RF-DQNQDL-L-PIGN | VHVF-RF-DQNQDL-L-PIGN | |
RF: ACE inhibitor | RF: ACE inhibitor | |||
RF: DPP-III inhibitor | RF: DPP-III inhibitor | |||
9 | LLLGAGCM(+15.99) | |||
10 | QDTSNNVNQLDDIPRR | QDTSN-N-VN-QL-DDIPRR | ||
QL, VN: DPP IV, inhibitor | ||||
11 | FSASTEGS | F-SASTEGS | ||
12 | INTISGR | IN-TISGR | ||
IN: DPP-IV inhibitor | ||||
13 | LDGNSSAR | |||
14 | VCGEAFGKA | |||
15 | KGGGGGSGSAGGGGS | |||
16 | SGPGNHEQ | |||
17 | LGGGGSSGGAAC | |||
18 | NALLCSNS | N-AL-L-CSN-S | ||
AL: DPP-IV inhibitor | ||||
19 | CPANGFY | CPAN-GF-Y | ||
GF: ACE inhibitor | ||||
GF: DPP IV, inhibitor | ||||
GF: DPP III inhibitor | ||||
1 de novo | CCYSVY | CCY-SVY | ||
SVY: ACE inhibitor | ||||
2 de novo | DCHYFL | |||
3 de novo | LYPFAH | L-YPF-AH | ||
YPF: Opioid | ||||
4 de novo | SVSKPGW | |||
5 de novo | LHTVVH | |||
6 de novo | NKLCCEH | |||
7 de novo | DHHEEL | |||
8 de novo | LPCAAHR |
No. | Peptide Sequence | ACEi Activity IC50 (µM) ± SD | TEAC ± SD |
---|---|---|---|
1 | LDTANEMNQLDLQFR | ND | ND |
2 | VVLQDTSNNVNQLD | ND | ND |
5 | IFSGGESSGQPR | ND | ND |
10 | QDTSNNVNQLDDIPRR | ND | ND |
14 | VCGEAFGKA | 57.2 ± 4.31 | 0.79 ± 0.02 |
18 | NALLCSNS | 0.98 ± 0.04 | 0.95 ± 0.03 |
19 | CPANGFY | 3.76 ± 0.39 | 1.53± 0.14 |
1 de novo | CCYSVY | 25.6 ± 0.41 | 3.20 ± 0.19 |
2 de novo | DCHYFL | 41.5 ± 2.09 | 2.36 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Huertas, E.; Alcaide-Hidalgo, J.M. Characterisation of Endogenous Peptides Present in Virgin Olive Oil. Int. J. Mol. Sci. 2022, 23, 1712. https://doi.org/10.3390/ijms23031712
Lopez-Huertas E, Alcaide-Hidalgo JM. Characterisation of Endogenous Peptides Present in Virgin Olive Oil. International Journal of Molecular Sciences. 2022; 23(3):1712. https://doi.org/10.3390/ijms23031712
Chicago/Turabian StyleLopez-Huertas, Eduardo, and Juan M. Alcaide-Hidalgo. 2022. "Characterisation of Endogenous Peptides Present in Virgin Olive Oil" International Journal of Molecular Sciences 23, no. 3: 1712. https://doi.org/10.3390/ijms23031712
APA StyleLopez-Huertas, E., & Alcaide-Hidalgo, J. M. (2022). Characterisation of Endogenous Peptides Present in Virgin Olive Oil. International Journal of Molecular Sciences, 23(3), 1712. https://doi.org/10.3390/ijms23031712