Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein
Abstract
:1. Background
2. Results
2.1. Characterization of GM3-rHDL Nanoparticles
2.2. Confirmation of the Inclusions of ApoA-1 and GM3 in Nanoparticles
2.3. Evaluation of In Vitro Anti-Atherosclerotic Efficacy of Gm3-Rhdl Nanoparticles via Cellular Experiments
2.4. Evaluation of the Biocompatibility of GM3-rHDL Nanoparticles in Mouse Blood
2.5. Evaluation of In Vivo Anti-Atherosclerotic Efficacy of Gm3-Rhdl Nanoparticles via Animal Experiments
2.6. Validation of the Cell/Tissue-Targeting Ability of rHDL and GM3-rHDL Nanoparticles
2.7. Verification of the pH-Responsive Release of GM3 from GM3-rHDL Nanoparticles
3. Discussion
4. Materials and Methods
4.1. Reagents, Cells, and Cell Culture
4.2. Preparations of rHDL and GM3-rHDL
4.3. Imaging and Size Measurement of Rhdl and Gm3-Rhdl Nanoparticles
4.4. Determination of Entrapment Efficiency (Ee) and Drug Loading Efficiency (Dl) of Gm3-Rhdl
4.5. Preparation of Streptavidin-Coated Silica Microspheres
4.6. Confirmation of the Presences of Gm3 and Apoa-I in Gm3-Rhdl Nanoparticles by Using A Microsphere-Based Method
4.7. In Vitro Reversal of Ox-ldl-Induced Lipid Deposition in Macrophages by Gm3-rhdl Nanoparticles
4.8. Evaluation of the Biocompatibility of Gm3-Rhdl Nanoparticles in Mouse Blood
4.9. Animals, Diet, and Treatments
4.10. Measurements of Major Blood Lipids
4.11. Imaging and Quantification of Atherosclerotic Lesions in Aortic Arch, Aortic Root, and Full-Length Aorta
4.12. In Vitro Validation of the Macrophage Targeting of Rhdl and Gm3-Rhdl Nanoparticles by Using another Microsphere-Based Method
4.13. In Vitro Validation of the Atherosclerotic Plaque Targeting of Rhdl and Gm3-Rhdl Nanoparticles
4.14. Quantification of the Released Gm3 and ghe Remaining Total Cholesterol at Different Ph Values
4.15. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inokuchi, J.; Inamori, K.; Kabayama, K.; Nagafuku, M.; Uemura, S.; Go, S.; Suzuki, A.; Ohno, I.; Kanoh, H.; Shishido, F. Biology of GM3 ganglioside. Gangliosides Health Dis. 2018, 156, 151–195. [Google Scholar]
- Zheng, C.P.; Terreni, M.; Sollogoub, M.; Zhang, Y.M. Ganglioside GM3 and its role in cancer. Curr. Med. Chem. 2019, 26, 2933–2947. [Google Scholar] [CrossRef] [PubMed]
- Kanoh, H.; Nitta, T.; Go, S.J.; Inamori, K.I.; Veillon, L.; Nihei, W.; Fujii, M.; Kabayama, K.; Shimoyama, A.; Fukase, K.; et al. Homeostatic and pathogenic roles of GM3 ganglioside molecular species inTLR4 signaling in obesity. Embo J. 2020, 39, e101732. [Google Scholar] [CrossRef]
- Kim, C.-H. GM3 Signaling, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020. [Google Scholar]
- Wen, F.Q.; Jabbar, A.A.; Patel, D.A.; Kazarian, T.; Valentino, L.A. Atherosclerotic aortic gangliosides enhance integrin-mediated platelet adhesion to collagen. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 519–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobryshev, Y.V.; Golovanova, N.K.; Tran, D.; Samovilova, N.N.; Grachev, E.V.; Efremov, E.E.; Sobolev, A.Y.; Yurchenko, Y.V.; Lord, R.S.; Cao, W.; et al. Expression of GM3 synthase in human atherosclerotic lesions. Atherosclerosis 2006, 184, 63–71. [Google Scholar] [CrossRef]
- Sasaki, N.; Toyoda, M. Vascular diseases and gangliosides. Int. J. Mol. Sci. 2019, 20, 6362. [Google Scholar] [CrossRef] [Green Version]
- Prokazova, N.V.; Orekhov, A.N.; Mukhin, D.N.; Mikhailenko, I.A.; Kogtev, L.S.; Sadovskaya, V.L.; Golovanova, N.K.; Bergelson, L.D. The gangliosides of adult human aorta–INTIMA, media and plaque. Eur. J. Biochem. 1987, 167, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, D.N.; Prokazova, N.V.; Bergelson, L.D.; Orekhov, A.N. Ganglioside content and composition of cells from normal and atherosclerotic human aorta. Atherosclerosis 1989, 78, 39–45. [Google Scholar] [CrossRef]
- Mukhin, D.N.; Chao, F.F.; Kruth, H.S. Glycosphingolipid accumulation in the aortic-wall is another feature of human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 1607–1615. [Google Scholar] [CrossRef]
- Bobryshev, Y.V.; Lord, R.S.; Golovanova, N.K.; Gracheva, E.V.; Zvezdina, N.D.; Sadovskaya, V.L.; Prokazova, N.V. Incorporation and localisation of ganglioside GM3 in human intimal atherosclerotic lesions. Biochim. Biophys. Acta Mol. Basis Dis. 1997, 1361, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Gracheva, E.V.; Samovilova, N.N.; Golovanova, N.K.; Kashirina, S.V.; Shevelev, A.; Rybalkin, I.; Gurskaya, T.; Vlasik, T.N.; Andreeva, E.R.; Prokazova, N.V. Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol. Cell. Biochem. 2009, 330, 121–129. [Google Scholar] [CrossRef]
- Ao, M.; Wang, K.; Zhou, X.; Chen, G.; Zhou, Y.; Wei, B.; Shao, W.; Huang, J.; Liao, H.; Wang, Z.; et al. Exogenous GM3 ganglioside inhibits atherosclerosis via multiple steps: A potential atheroprotective drug. Pharmacol. Res. 2019, 148, 104445. [Google Scholar] [CrossRef]
- Badimon, J.J.; Fuster, V.; Badimon, L. Role of high-density-lipoproteins in the regression of atherosclerosis. Circulation 1992, 86, 86–94. [Google Scholar]
- Sirtori, C.R.; Fumagalli, R. LDL-cholesterol lowering or HDL-cholesterol raising for cardiovascular prevention—A lesson from cholesterol turnover studies and others. Atherosclerosis 2006, 186, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, C.; Kuai, R.; Zhu, Q.; White, P.; Moon, J.J.; Schwendeman, A.; Cohen, M.S. Synthetic high-density lipoprotein nanoparticles: A novel therapeutic strategy for adrenocortical carcinomas. Surgery 2016, 159, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuai, R.; Li, D.; Chen, Y.E.; Moon, J.J.; Schwendeman, A. High-density lipoproteins: Nature’s multifunctional nanoparticles. Acs Nano 2016, 10, 3015–3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonsen, J.B. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform—A detailed survey of rHDL particles ranging from biophysical properties to clinical implications. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2161–2179. [Google Scholar] [CrossRef]
- Mutharasan, R.K.; Foit, L.; Thaxton, C.S. High-density lipoproteins for therapeutic delivery systems. J. Mater. Chem. B 2016, 4, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Mo, Z.C.; Ren, K.; Liu, X.; Tang, Z.L.; Yi, G.H. A high-density lipoprotein-mediated drug delivery system. Adv. Drug Deliv. Rev. 2016, 106, 132–147. [Google Scholar] [CrossRef]
- Duivenvoorden, R.; Tang, J.; Cormode, D.; Mieszawska, A.J.; Izquierdo-Garcia, D.; Ozcan, C.; Otten, M.J.; Zaidi, N.; Lobatto, M.E.; Van Rijs, S.M.; et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat. Commun. 2014, 5, 3065. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.S.; He, H.L.; Zhang, M.Y.; Zhang, S.S.; Zhang, W.L.; Liu, J.P. Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials 2014, 35, 8002–8014. [Google Scholar] [CrossRef]
- Cao, Y.N.; Xu, L.; Han, Y.C.; Wang, Y.N.; Liu, G.; Qi, R. Recombinant high-density lipoproteins and their use in cardiovascular diseases. Drug Discov. Today 2017, 22, 180–185. [Google Scholar] [CrossRef]
- Zhang, M.; He, J.; Jiang, C.; Zhang, W.; Yang, Y.; Wang, Z.; Liu, J. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy. Int. J. Nanomed. 2017, 12, 533–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Yu, C.; Liu, Y.; Zhang, W.D.; Sun, Y.A.; Chen, Y. Enhanced antiatherosclerotic efficacy of statin-loaded reconstituted high-density lipoprotein via ganglioside GM1 modification. Acs Biomater. Sci. Eng. 2018, 4, 952–962. [Google Scholar] [CrossRef]
- Pendse, A.A.; Arbones-Mainar, J.M.; Johnson, L.A.; Altenburg, M.K.; Maeda, N. Apolipoprotein E knock-out and knock-in mice: Atherosclerosis, metabolic syndrome, and beyond. J. Lipid Res. 2009, 50, S178–S182. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Cruz, W.; Chen, J.; Zheng, G. Learning from biology: Synthetic lipoproteins for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 298–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Jin, U.; Kang, S.; Abekura, F.; Park, J.; Kwon, K.; Suh, S.; Cho, S.; Ha, K.; Lee, Y.; et al. Monosialyl ganglioside GM3 decreases apolipoprotein B-100 secretion in liver cells. J. Cell. Biochem. 2017, 118, 2168–2181. [Google Scholar] [CrossRef] [PubMed]
- Acton, S.; Rigotti, A.; Landschulz, K.T.; Xu, S.Z.; Hobbs, H.H.; Krieger, M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996, 271, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Murao, K.; Terpstra, V.; Green, S.R.; Kondratenko, N.; Steinberg, D.; Quehenberger, O. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI as a receptor for high density lipoprotein and apoptotic thymocytes. J. Biol. Chem. 1997, 272, 17551–17557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, C.Y.; Wang, Z.X.; Chen, Y. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL. Atherosclerosis 2017, 259, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.Y.; Wang, K.; Tang, Q.S.; Chen, Y. Comparative investigation on the sizes and scavenger receptor binding of human native and modified lipoprotein particles with atomic force microscopy. J. Nanobiotechnol. 2018, 16, 25. [Google Scholar] [CrossRef]
- Goti, D.; Hrzenjak, A.; Levak-Frank, S.; Frank, S.; Van Der Westhuyzen, D.R.; Malle, E.; Sattler, W. Scavenger receptor class, B.; type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J. Neurochem. 2001, 76, 498–508. [Google Scholar] [CrossRef]
- Mooberry, L.K.; Nair, M.; Paranjape, S.; McConathy, W.J.; Lacko, A.G. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J. Drug Target. 2010, 18, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Berney, E.; Sabnis, N.; Panchoo, M.; Raut, S.; Dickerman, R.; Lacko, A.G. The SR-B1 Receptor as a potential target for treating glioblastoma. J. Oncol. 2019, 2019, 1805841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naghavi, M.; John, R.; Naguib, S.; Siadaty, M.S.; Grasu, R.; Kurian, K.; van Winkle, W.; Soller, B.; Litovsky, S.; Madjid, M.; et al. pH heterogeneity of human and rabbit atherosclerotic plaques; a new insight into detection of vulnerable plaque. Atherosclerosis 2002, 164, 27–35. [Google Scholar] [CrossRef]
- Öörni, K.; Rajamäki, K.; Nguyen, S.D.; Lähdesmäki, K.; Plihtari, R.; Lee-Rueckert, M.; Kovanen, P.T. Acidification of the intimal fluid: The perfect storm for atherogenesis. J. Lipid Res. 2015, 56, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Gan, C.; Wang, H.; Ao, M.; Fan, Y.; Chen, Y. AFM detects the effects of acidic condition on the size and biomechanical properties of native/oxidized low-density lipoprotein. Colloids Surf. B Biointerfaces 2021, 208, 112053. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, W.; Tang, Q.; Zhou, Y.; Li, Y.; Rong, T.; Wang, H.; Chen, Y. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J. Nanobiotechnol. 2020, 18, 69. [Google Scholar] [CrossRef]
- Weetall, H.H. Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl. Biochem. Biotechnol. 1993, 41, 157–188. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, G.T. Bioconjugate Techniques, 1st ed.; Academic Press Inc.: San Diego, CA, USA, 1996. [Google Scholar]
rHDL | GM3L-rHDL | GM3H-rHDL | |
---|---|---|---|
Mean size (nm) | 161.3 ± 8.8 | 176.8 ± 9.2 | 209.6 ± 22.1 |
polydispersity index (PDI) | 0.28 ± 0.02 | 0.22 ± 0.01 | 0.21 ± 0.05 |
Zeta potential (mV) | −14.58 ± 0.80 | −22.22 ± 4.61 | −13.82 ± 1.48 |
EE (%) | --- | 92.63 ± 3.57 | 80.16 ± 5.14 |
DL (%) | --- | 0.68 ± 0.03 | 3.39 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, T.; Wei, B.; Ao, M.; Zhao, H.; Li, Y.; Zhang, Y.; Qin, Y.; Zhou, J.; Zhou, F.; Chen, Y. Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein. Int. J. Mol. Sci. 2021, 22, 13624. https://doi.org/10.3390/ijms222413624
Rong T, Wei B, Ao M, Zhao H, Li Y, Zhang Y, Qin Y, Zhou J, Zhou F, Chen Y. Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein. International Journal of Molecular Sciences. 2021; 22(24):13624. https://doi.org/10.3390/ijms222413624
Chicago/Turabian StyleRong, Tong, Bo Wei, Meiying Ao, Haonan Zhao, Yuanfang Li, Yang Zhang, Ying Qin, Jinhua Zhou, Fenfen Zhou, and Yong Chen. 2021. "Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein" International Journal of Molecular Sciences 22, no. 24: 13624. https://doi.org/10.3390/ijms222413624
APA StyleRong, T., Wei, B., Ao, M., Zhao, H., Li, Y., Zhang, Y., Qin, Y., Zhou, J., Zhou, F., & Chen, Y. (2021). Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein. International Journal of Molecular Sciences, 22(24), 13624. https://doi.org/10.3390/ijms222413624