Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of PUF and PUF@Cu-BTC
2.2. Characterizations of Nanosized Cu-BTC, PUF, and PUF@Cu-BTC
2.3. Swelling Properties of PUF@Cu-BTC
2.4. Bactericidal Test
2.5. Ion Release Test
2.6. Cytotoxicity of PUF@Cu-BTC
3. Materials and Methods
3.1. Preparation of Nanosized Copper(II)-Benzene-1,3,5-Tricarboxylate (Cu-BTC)
3.2. Preparation of PUF and Nanosized Cu-BTC Incorporated Polyurethane Foam (PUF@Cu-BTC)
3.3. Instrumentation
3.4. Swelling Ratio of PUF@Cu-BTC
3.5. Degradation and Metal Ion Release Test
3.6. Antibacterial Test
3.7. Cytotoxicity Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Liang, S.; Thouas, G.A. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013, 38, 584–671. [Google Scholar] [CrossRef]
- Chen, F.-M.; Liu, X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016, 53, 86–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, P.; Ferreira, P.; Gil, M.H. Biomedical Polyurethane-Based Materials in: Polyurethane: Properties, Structure and Application; Nova Publishers: New York, NV, USA, 2012; ISBN 978-1-61942-453-1. [Google Scholar]
- Zdrahhala, R.J.; Zdrahhala, I.J. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future. J. Biomater. Appl. 1999, 14, 67–90. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Yang, J. Design strategies and applications of tissue bioadhesives. Marcromol. Biosci. 2013, 13, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Kaur, R.; Walia, R.S. PU foam derived from renewable sources: Perspective on properties enhancement: An overview. Eur. Polym. J. 2017, 95, 255–274. [Google Scholar] [CrossRef]
- Pawar, M.S.; Kadam, A.S.; Dawane, B.S.; Yemul, O.S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2016, 73, 727–741. [Google Scholar] [CrossRef]
- Petrović, Z.S. Polyurethanes from vegetable oils. Polym. Rev. 2008, 48, 109–155. [Google Scholar] [CrossRef]
- Guo, A.; Javni, I.; Petrovic, Z. Rigid polyurethane foams based on soybean oil. J. Appl. Polym. Sci. 2000, 77, 467–473. [Google Scholar] [CrossRef]
- Sawpan, M.A. Polyurethanes from vegetable oils and applications: A review. J. Polym. Res. 2018, 25, 184. [Google Scholar] [CrossRef]
- Vermette, P.; Griesser, H.J.; Laroche, G.; Guidoin, R. Biomedical Application of Polyurethanes; Landes Bioscience: Georgetown, TX, USA, 2001. [Google Scholar]
- Kaushiva, B.D.; McCartney, S.R.; Rossmy, G.R.; Wilkes, G.L. Surfactant level influences on structure and properties of flexible slabstock polyurethane foams. Polymer 2000, 41, 285–310. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Raju, K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32, 352–418. [Google Scholar] [CrossRef]
- Lu, Y.; Larock, R.C. Novel polymeric materials from vegetable oils and vinyl monomers: Preparation, properties, and applications. ChemSusChem 2009, 2, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Kodama, M. Porous polyurethane vascular prostheses with variable compliances. J. Biomed. Mater. Res. 1992, 26, 1489–1502. [Google Scholar] [CrossRef]
- Hoffman, D.; Sisto, D.; Yu, L.S.; Dahm, M.; Kolff, W.J. Evaluation of stented polyurethane mitral valve prosthesis. Trans Am. Soc. Artif. Intern. Organs. 1991, 37, M354–M355. [Google Scholar]
- Shi, H.; Liu, H.; Luan, S.; Shi, D.; Yan, S.; Liu, C.; Li, R.K.Y.; Yin, J. Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal properties. Compos. Sci. Technol. 2016, 127, 28–35. [Google Scholar] [CrossRef]
- Unnithan, A.R.; Gnanasekaran, G.; Sathishkumar, Y.; Lee, Y.S.; Kim, C.L. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr. Polym. 2014, 102, 884–892. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Xiang, P.; Lu, J.; Jyuan, J.; Shen, J. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible antibacterial wound dressings. J. Mater. Chem. 2016, 4, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Flemming, R.G.; Proctor, R.A.; Cooper, S.L. Bacterial adhesion to functionalized polyurethanes. J. Biomater. Sci. Polym. Ed. 1999, 10, 679–697. [Google Scholar] [CrossRef]
- Flemming, R.G.; Capelli, C.C.; Cooper, S.L.; Proctor, R.A. Bacterial colonization of functionalized polyurethanes. Biomaterials 2000, 21, 273–281. [Google Scholar] [CrossRef]
- Ancelin, M.L.; Vial, H.J. Quaternary ammonium compounds efficiently inhibit Plasmodium falciparum growth in vitro by impairment of chlorine transport. Antimicrob. Agents Chemother. 1986, 29, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Sahraro, M.; Yeganeh, H.; Sorayya, M. Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility. Mater. Sci. Eng. C 2016, 59, 1025–1037. [Google Scholar] [CrossRef]
- Majeti, N.V.; Kumar, R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar]
- Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Sahariah, P.; Másson, M. Antimicrobial chitosan and chitosan derivatives: A review of the structure–activity relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Mohy Eldin, M.S.; Soliman, E.A.; Hashem, A.I.; Tamer, T.M. Antimicrobial Activity of Novel Aminated Chitosan Derivatives for Biomedical Applications. Adv. Polym. Technol. 2012, 31, 414–428. [Google Scholar] [CrossRef]
- Liu, N.; Chen, X.-G.; Park, H.-J.; Liu, C.-G.; Liu, C.-S.; Meng, X.-H.; Yu, L.-J. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia Coli. Carbohydr. Polym. 2006, 64, 60. [Google Scholar] [CrossRef]
- Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Krungleviciute, V.I.; Eryazici, J.T.; Hupp, O.; Farha, K.; Yildirim, T. Methane storage in metal–organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc. 2013, 135, 11887. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724. [Google Scholar] [CrossRef]
- Alavijeh, R.K.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron 2018, 156, 257. [Google Scholar] [CrossRef]
- Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Micropor. Mesopor. Mat. 2009, 117, 406. [Google Scholar] [CrossRef]
- Glaeser, R.; Dreisbach, F.; Moellmer, J.; Moeller, A.; Staudt, R. High pressure adsorption of hydrogen, nitrogen, carbon dioxide and methane on the metal–organic framework CU-BTC. Micropor. Mesopor. Mat. 2011, 138, 140. [Google Scholar]
- Martı’n-Calvo, A.; Garcı´a-Pe´rez, E.; Garcı´a-Sa´nchez, A.; Bueno-Pe´rez, R.; Hamad, S.; Calero, S. Effect of air humidity on the removal of carbon tetrachloride from air using Cu-BTC metal-organic framework. Phys. Chem. Chem. Phys. 2011, 13, 11165. [Google Scholar] [CrossRef]
- Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Micropor. Mesopor. Mat. 2012, 152, 246. [Google Scholar] [CrossRef]
- Cai, H.; Huang, Y.-L.; Li, D. Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications Coord. Chem. Rev. 2019, 378, 207–221. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Peterson, G.W.; Schindler, B.J.; Killops, K.L.; Browe, M.A.; Mahle, J.J. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 2013, 1, 11922. [Google Scholar] [CrossRef]
- Chen, M.; Ye, Q.; Jiang, S.; Shao, M.; Jin, C.; Huang, Z. Two-step elution recovery of cyanide platinum using functional metal organic resin. Molecules 2019, 24, 2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaura, R.; Kaura, A.; Umarb, A.; Anderson, W.A.; Kansal, S.K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Mater. Res. Bull. 2019, 109, 124. [Google Scholar] [CrossRef]
- Davydovskaya, P.; Pohle, R.; Tawil, A.; Fleischer, M. Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection. Sens. Actuators B 2013, 187, 142. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Zeinali, S.; Sheikhi, M.H. Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sensor. Actuat. B-Chem. 2016, 230, 9. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Lee, J.; Park, J. Recent innovation of metal-organic frameworks for carbon dioxide photocatalytic reduction. Polymers 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Souillard, G.; Chassat, L.; Gao, Y.; Mulet, X.; Doherty, C.M. Fabricating bioactive 3D metal–organic framework devices. Adv. Sustain. Syst. 2020, 4, 2000059. [Google Scholar] [CrossRef]
- Liang, K.R.; Ricco, C.M.; Doherty, M.J.; Styles, S.; Bell, N.; Kirby, S.; Mudie, D.; Haylock, A.J.; Hill, C.; Doonan, J. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J.V.; Chou, L.-Y.; Wu, K.C.-W.; Tsung, C.-K. Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. J. Am. Chem. Soc. 2017, 139, 6530. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Chen, H.; Wang, Y.; Ying, Y. Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord. Chem. Rev. 2019, 387, 60. [Google Scholar] [CrossRef]
- Jeong, N.C.; Samanta, B.C.; Lee, Y.; Farha, O.K.; Hupp, J.T. Coordination-chemistry control of proton conductivity in the iconic metal−organic framework material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51–54. [Google Scholar] [CrossRef]
- Stachak, P.; Łukaszewska, I.; Hebda, E.; Pielichowski, K. Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. Materials 2021, 14, 3497. [Google Scholar] [CrossRef]
- Cinelli, P.; Anguillesi, I.; Lazzeri, A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J. 2013, 49, 1174–1184. [Google Scholar] [CrossRef]
- Gu, R.; Sain, M. Effects of Wood Fiber and Microclay on the Performance of Soy Based Polyurethane Foams. J. Polym Environ. 2013, 21, 30–38. [Google Scholar] [CrossRef]
- Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; de With, G. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds. Prog. Org. Coat. 2011, 72, 343–347. [Google Scholar] [CrossRef]
- Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.; Ali, S.M.; Siddiqui, M.; Khan, A.U. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 2009, 14, 586–597. [Google Scholar] [CrossRef]
- Bužarovskaa, A.; Dinescu, S.; Lazar, A.D.; Serban, M.; Pircalabioru, G.G.; Costache, M.; Gualandi, C.; Avérous, L. Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mater. Sci. Eng. C 2019, 104, 109893. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Preparation, characterization, and properties of castor oil-based flexible polyurethane/Cloisite 30B nanocomposites foam. J. Compos. Mater. 2018, 52, 531–542. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, B.; Zhu, Y.; Wang, Z. Preparation and characterization of rigid polyurethane foams with different loadings of lignin-derived polycarboxylic acids. Int. J. Polym. Sci. 2019, 3710545. [Google Scholar] [CrossRef]
- Gwon, K.; Jo, E.-J.; Sahu, A.; Lee, J.Y.; Kim, M.-G.; Tae, G. Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles. Mater. Sci. Eng. C 2018, 90, 77. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, J.; Wang, L.; Wang, R.; Liu, Z.; Zhuo, R. Preparation and applications of peptide-based injectable hydrogels. RSC Adv. 2016, 6, 101334. [Google Scholar] [CrossRef]
- Gwon, K.; Han, I.; Lee, S.; Kim, Y.; Lee, D.N. Novel Metal–Organic Framework-Based Photocrosslinked Hydrogel System for Efficient Antibacterial Applications. ACS Appl. Mater. Interfaces 2020, 12, 20234. [Google Scholar] [CrossRef]
Sample | PUF | PUF@Cu-BTC |
---|---|---|
Swelling ratio | 1.11 ± 0.03 | 1.22 ± 0.04 |
Test Strain | Test Sample | Test Results a,b | ||
---|---|---|---|---|
Early Conc. (cfu·mL−1) | After 24 h, Conc. (cfu·mL−1) | Reduction Rate of Bacteria (%) | ||
P. aeruginosa | Blank | 3.7 × 105 | 9.5 × 106 | - |
PUF | 3.7 × 105 | 3.2 × 106 | 66.3 | |
PUF@Cu-BTC | 3.7 × 104 | 2.0 × 105 | 97.8 | |
K. pneumoniae | Blank | 3.1 × 105 | 4.0 × 106 | - |
PUF | 3.1 × 105 | 2.8 × 104 | 99.3 | |
PUF@Cu-BTC | 3.1 × 104 | <10 | 99.9 | |
MRSA | Blank | 3.7 × 105 | 9.4 × 106 | - |
PUF | 3.7 × 105 | 6.5 × 106 | 30.8 | |
PUF@Cu-BTC | 3.7 × 105 | 1.5 × 106 | 77.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.N.; Gwon, K.; Nam, Y.; Lee, S.J.; Tran, N.M.; Yoo, H. Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility. Int. J. Mol. Sci. 2021, 22, 13622. https://doi.org/10.3390/ijms222413622
Lee DN, Gwon K, Nam Y, Lee SJ, Tran NM, Yoo H. Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility. International Journal of Molecular Sciences. 2021; 22(24):13622. https://doi.org/10.3390/ijms222413622
Chicago/Turabian StyleLee, Do Nam, Kihak Gwon, Yunhee Nam, Su Jung Lee, Ngoc Minh Tran, and Hyojong Yoo. 2021. "Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility" International Journal of Molecular Sciences 22, no. 24: 13622. https://doi.org/10.3390/ijms222413622
APA StyleLee, D. N., Gwon, K., Nam, Y., Lee, S. J., Tran, N. M., & Yoo, H. (2021). Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility. International Journal of Molecular Sciences, 22(24), 13622. https://doi.org/10.3390/ijms222413622