Little Helpers or Mean Rogue—Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. SOD1 Model
2.1. Microglial Morphology of the SOD1 Models
2.2. Microglial Markers in the SOD1 Models
2.3. Transcriptome Profiling of the SOD1 Models
Model. | Strain | Age | Tissue | Molecule | Variation | Treatment | Effect after Treatment | Method | MN Survival | Ref |
---|---|---|---|---|---|---|---|---|---|---|
SOD1G93A mouse | B6SJL-Tg | 4–6 weeks | spinal cord | NOS2, TLR2, TLR4, NFκB, HMGB1, IL-10, IL-18, MhcII, Cebpa, CD80, miR-125b, miR-146a, miR-21, miR-124 | 0 | X | WB, RT-PCR | [11] | ||
Nlrp3, Il-1β, Il-6, Tnfα, Arg1, Fizz1, Socs1, Tgf-β, CD206 | − | RT-PCR | ||||||||
miR-155 | + | |||||||||
SOD1G93A mouse | B6SJL-Tg | 9 and 14 weeks | spinal cord | Nlrp3, Il-1β | + | X | RT-PCR | [12] | ||
Asc, Il-18 | 0 | |||||||||
IL-1β, ASC, IL-18, CAS1 | + | WB | ||||||||
SOD1G93A mouse | B6SJL-Tg | 10 weeks | spinal cord | Tyrobp, Trem2 | + | X | sc-RNA-seq | [13] | ||
SOD1G93A mouse | B6SJL-Tg | 12–14 weeks | spinal cord | Nos2, Fizz1, Il-6, Il-18 | 0 | X | RT-PCR | [11] | ||
HMGB1, NFκB, p- NFκB, MhcII, Cebpa, CD80, NLRP3, IL-1β, IL-10, TNFα, TGF-β, CD206, miR-155, miR-125b, miR-146a, miR-21, miR-124 | + | WB, RT-PCR | ||||||||
TLR2, TLR4, Arg1, Socs1 | − | |||||||||
SOD1G93A mouse | B6SJL-Tg | 13 weeks | spinal cord | Ccl5, Cxcl13, Spp1, Brca1, P21, Pcna, Stat1 | + | X | RNA-seq | [83] | ||
α-synuclein, Gadd45a, Sp3 | − | |||||||||
SOD1G93A mouse | B6SJL-Tg | 13 and 17 weeks | spinal cord | CX3CR1, iNOS, CD86, IL-1β, TNFα, Arg1, CD206, IL-10 | + | X | IF, qPCR | [76] | ||
SOD1G93A mouse | B6SJL-Tg | 14 weeks | spinal cord | Bdnf, Gdnf, Il-1β, Tnfα, Tgf-β, iNOS, Ifn-γ | + | X | RT-PCR | [14] | ||
Il-10 | 0 | X | ||||||||
tempol | ↓Bdnf, ↓Gdnf, ↓Il-1β, ↓Tnfα, ↓Tgf-β, ↔iNOS, ↔Ifn-γ, ↔Il-10 | ↑ | ||||||||
SOD1G93A mouse | B6SJL-Tg | 14 weeks | brain stem | Sod1, Camk2b | + | X | sc-RNA-seq | [81] | ||
Nav2, mt-Rnr2, 1700112E06Rik | − | |||||||||
SOD1G93A mouse | B6SJL-Tg | 18 weeks | spinal cord | ROS, iNOS | + | IF, WB | [18] | |||
KCHO-1 | ↓ROS, ↓iNOS | ↑ | ||||||||
SOD1G93A mouse | B6.Cg-Tg | 17 weeks | spinal cord | Arg1, CD163 | 0 | WB | [24] | |||
clemastine | ↑Arg1, ↑CD163 | ↑ | ||||||||
SOD1G93A mouse | B6.Cg-Tg | 21 weeks | spinal cord | pSTAT3, Kv1.3, Kv1.5 | + | X | IF | [70] | ||
SOD1G93A mouse | B6.Cg-Tg | NM | spinal cord | Spp1, Itgax, Axl, Lilrb4, Clec7a, Ccl2, Csf1, Apoe | + | X | RNA-seq | [82] | ||
SOD1G93A mouse | C57BL/6J-Tg | 19–22 weeks | spinal cord | Il-1β, Nlrp3, Asc, Cas1 | + | X | RT-PCR | [73] | ||
SOD1H46R mouse | C57BL/6N-Tg | 28 weeks | spinal cord | Ubiquitin | + | X | IF | [71] | ||
SOD1G86R mouse | FVB/N | NM | brain stem | Nox2, Ccl4, MhcII, Ym1, Tyrobp, Tgf-β, Tgf-βr1, Cx3Cr1, Hexb, Tmem119 | + | X | RT-PCR | [27] | ||
SOD1G93A mouse | NM | 14 weeks | spinal cord | Il-1β, Tnfα | + | X | RT-PCR | [29] | ||
TAK-242 | ↔Il-1β, ↓Tnfα | ↑ | ||||||||
SOD1G93A mouse | NM | 15 weeks | spinal cord | TLR4, CD14, COX2 | + | WB | [28] | |||
gamisoyo-san | ↓TLR4, ↓CD14, ↓COX2 | |||||||||
SOD1G93A mouse | NM | 18 weeks | spinal cord | HuR | + | X | WB, IF | ↑ | [30] |
2.4. Summary of the Microglial Characteristics of the SOD1 Models
3. C9Orf72 Model
3.1. Microglial Morphology of the C9Orf72 Models
3.2. Transcriptome Profiling of the C9Orf72 Models
3.3. Summary of Microglial Characteristics of the C9Orf72 Models
4. TDP-43 Model
4.1. Microglial Morphology of the TDP-43 Models
4.2. Microglial Markers in the TDP-43 Models
4.3. Summary of the Microglial Characteristics of the TDP-43 Models
5. Wobbler Mouse Model
5.1. Microglial Morphology of Wobbler Mice
5.2. Microglial Markers in the Wobbler Mouse
5.3. Summary of the Microglial Characteristics of the Wobbler Mouse
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1700112E06Rik | Leucine rich melanocyte differentiation associated protein |
5D4 | Keratan sulfate |
ALS | Amyotrophic lateral sclerosis |
APOE | Apolipoprotein E |
Arg1 | Arginase 1 |
Asc | Apoptosis associated speck-like protein containing a CARD |
ASIALO-EPO | Asialo erythropoietin |
Axl | Tyrosine protein kinase receptor UFO |
BDNF | Brain derived neurotrophic factor |
Brca1 | Breast cancer gene 1 |
C1q | Complement component 1q |
C1qB | C1q beta polypeptide |
C3 | Complement component 3 |
C5a | Complement component 5a |
C5aR1 | C5a receptor 1 |
C9Orf72 | Chromosome 9 open reading frame 72 |
Camk2b | Calcium/calmodulin dependent protein kinase beta 2 |
Cas | Caspase |
CCL | C-C motif chemokine ligand |
CD | Cluster of differentiation |
CD11b | Cluster of differentiation molecule 11b |
CD55 | Complement regulator |
CD59a | Complement regulator |
Cebpa | CCAAT/enhancer binding protein |
CEPO | Asialo erythropoietin |
CEPO | Carbamylated erythropoietin |
Clec7a | C-type lectin domain containing 7A |
CNS | Central nervous system |
COX2 | Cyclo-oxygenase 2 |
Csf1 | Colony stimulating factor 1 |
CX3CR1 | C-X3-C motif chemokine receptor 1 |
Cyr61 | Cysteine rich angiogenic inducer 61 |
EPO | Erythropoietin |
fALS | Familial amyotrophic lateral sclerosis |
fB | Complement factor B |
Fizz1 | Found in inflammatory zone 1 |
FUS | Fused in sarcoma |
Gadd45a | Growth arrest and DNA damage inducible protein |
GARP | Golgi-associated retrograde protein |
GDNF | Glial cell line derived neurotrophic factor |
Grn | Granulin |
Hexb | Hexosaminidase subunit beta |
HMGB1 | High mobility group box protein 1 |
HuR | ELAV-like RNA binding protein 1 |
IκB | Inhibitor of kappa B |
IBA1 | Ionized calcium binding adaptor molecule 1 |
IF | Immunofluorescence staining |
IFN-γ | Interferon gamma |
IGF1 | Insulin-like growth factor |
IHC | Immunohistochemistry |
IL | Interleukin |
iNOS | Inducible NOS |
Isg15 | Interferon stimulated gene 15 |
Itgax | Integrin subunit alpha X |
jALS | Juvenile amyotrophic lateral sclerosis |
Kv1.3/Kv1.5 | Voltage-gated potassium channel |
Lilrb4 | Leukocyte immunoglobulin like receptor B4 |
LPS | Lipopolysaccharide |
MhcII | Major histocompatibility complex class II |
mt-Rnr2 | Mitochondrially encoded 16S rRNA |
Mx1 | Interferon induced GTP binding protein Mx1 |
MyD88 | Myeloid differentiation primary response 88 |
Nav2 | Neuron navigator 2 |
NFκB | Nuclear factor kappa B |
NLRP3 | Nucleotide binding domain and leucine rich repeat containing protein 3 |
NOS | Nitric oxide synthase |
NOX2 | NADPH oxidase 2 |
Oasl1/2 | 2′-5′-oligoadenylate synthase-like protein 1 |
p-NFκB | Phosphorylated NFκB |
P21 | Cyclin dependent kinase inhibitor 1A |
Pcna | Proliferating cell nuclear antigen |
pSTAT3 | Phosphorylated signal transducer and activator of transcription 3 |
qRT-PCR | Quantitative RT-PCR |
RAGE | Receptor for advanced glycation end products |
rhTBP-1 | Recombinant human TNFα binding protein 1 |
RNA-seq | RNA sequencing |
ROS | Reactive oxygen species |
RT-PCR | Reverse transcription polymerase chain reaction |
S1R | Endoplasmic reticulum resident receptor with chaperone-like activity |
sALS | Sporadic amyotrophic lateral sclerosis |
sc-RNA-seq | Single cell RNA-seq |
Socs1 | Suppressor of cytokine signaling |
SOD1 | Superoxide dismutase 1 |
Sp3 | Specificity protein 3 |
Spp | Secreted phosphoprotein |
STAT1 | Signal transducer and activator of transcription 1 |
TDP-43 | Transactive response DNA protein 43 |
TGF-βR | TGF-β receptor |
TGFβ | Transforming growth factor beta |
TGN | Trans-Golgi network |
TLR4 | Toll-like receptor 4 |
Tmem119 | Transmembrane protein 119 |
TNFα | Tumor necrosis factor alpha |
TNFR1 | TNFα receptor 1 |
Trem2 | Triggering receptor expressed on myeloid cells 2 |
Tyrobp | TYRO protein tyrosine kinase binding protein |
VPS54 | Vacuolar protein sorting-associated protein 54 |
WB | Western blotting |
Wr | Wobbler |
Ym1 | Chitinase 3 like 1 |
References
- Ferraiuolo, L.; Kirby, J.; Grierson, A.J.; Sendtner, M.; Shaw, P.J. Molecular Pathways of Motor Neuron Injury in Amyotrophic Lateral Sclerosis. Nat. Rev. Neurol. 2011, 7, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, W.; Philips, T. The Changing Scene of Amyotrophic Lateral Sclerosis. Nat. Rev. Neurosci. 2013. [Google Scholar] [CrossRef] [PubMed]
- Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the Mechanisms Involved in Motor Neuron Degeneration in Als. Annu. Rev. Neurosci. 2004, 14, 248–264. [Google Scholar] [CrossRef] [Green Version]
- Philips, T.; Rothstein, J.D. Glial Cells in Amyotrophic Lateral Sclerosis. Exp. Neurol. 2014, 262, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Polazzi, E.; Monti, B. Microglia and Neuroprotection: From in Vitro Studies to Therapeutic Applications. Prog. Neurobiol. 2010, 92, 293–315. [Google Scholar] [CrossRef]
- Imai, Y.; Kohsaka, S. Intracellular Signaling in M-CSF-Induced Microglia Activation: Role of Iba1. Glia 2002, 40, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Panni, R.Z.; Herndon, J.M.; Zuo, C.; Hegde, S.; Hogg, G.D.; Knolhoff, B.L.; Breden, M.A.; Li, X.; Krisnawan, V.E.; Khan, S.Q.; et al. Agonism of CD11b Reprograms Innate Immunity to Sensitize Pancreatic Cancer to Immunotherapies. Sci. Transl. Med. 2019, 11, 499. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/Macrosialin: Not Just a Histochemical Marker. Lab. Investig. 2017, 97, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, R.L.; Febbraio, M. CD36, a Scavenger Receptor Involved in Immunity, Metabolism, Angiogenesis, and Behavior. Sci. Signal. 2009, 2. [Google Scholar] [CrossRef] [Green Version]
- Benveniste, E.N.; Nguyen, V.T.; Wesemann, D.R. Molecular Regulation of CD40 Gene Expression in Macrophages and Microglia. Brain Behav. Immun. 2004, 18, 7–12. [Google Scholar] [CrossRef]
- Cunha, C.; Santos, C.; Gomes, C.; Fernandes, A.; Correia, A.M.; Sebastião, A.M.; Vaz, A.R.; Brites, D. Downregulated Glia Interplay and Increased MiRNA-155 as Promising Markers to Track ALS at an Early Stage. Mol. Neurobiol. 2018, 55, 4207–4224. [Google Scholar] [CrossRef] [PubMed]
- Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 Inflammasome Is Expressed by Astrocytes in the SOD1 Mouse Model of ALS and in Human Sporadic ALS Patients. Glia 2015, 63, 2260–2273. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, S.; Äijö, T.; Vickovic, S.; Braine, C.; Kang, K.; Mollbrink, A.; Fagegaltier, D.; Andrusivová, Ž.; Saarenpää, S.; Saiz-Castro, G.; et al. Spatiotemporal Dynamics of Molecular Pathology in Amyotrophic Lateral Sclerosis. Science 2019, 364, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Chiarotto, G.B.; Cartarozzi, L.P.; Perez, M.; Biscola, N.P.; Spejo, A.B.; Gubert, F.; Francą Junior, M.; Mendez-Otero, R.; De Oliveira, A.L.R. Tempol Improves Neuroinflammation and Delays Motor Dysfunction in a Mouse Model (SOD1G93A) of ALS. J. Neuroinflamm. 2019, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romer, S.H.; Seedle, K.; Turner, S.M.; Li, J.; Baccei, M.L.; Crone, S.A. Accessory Respiratory Muscles Enhance Ventilation in ALS Model Mice and Are Activated by Excitatory V2a Neurons. Exp. Neurol. 2017, 287, 192–204. [Google Scholar] [CrossRef]
- Bonifacino, T.; Cattaneo, L.; Gallia, E.; Puliti, A.; Melone, M.; Provenzano, F.; Bossi, S.; Musante, I.; Usai, C.; Conti, F.; et al. In-Vivo Effects of Knocking-down Metabotropic Glutamate Receptor 5 in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Neuropharmacology 2017, 123, 433–445. [Google Scholar] [CrossRef]
- Ringer, C.; Weihe, E.; Schütz, B. SOD1G93A Mutant Mice Develop a Neuroinflammation-Independent Dendropathy in Excitatory Neuronal Subsets of the Olfactory Bulb and Retina. J. Neuropathol. Exp. Neurol. 2017, 76, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Kook, M.G.; Choi, S.W.; Seo, Y.; Kim, D.W.; Song, B.K.; Son, I.; Kim, S.; Kang, K.S. KCHO-1, a Novel Herbal Anti-Inflammatory Compound, Attenuates Oxidative Stress in an Animal Model of Amyotrophic Lateral Sclerosis. J. Vet. Sci. 2017, 18, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Sereddenina, T.; Nayernia, Z.; Sorce, S.; Maghzal, G.J.; Filippova, A.; Ling, S.-C.; Basset, O.; Plastre, O.; Daali, Y.; Rushing, E.J.; et al. Evaluation of NADPH Oxidases as Drug Targets in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. Free Radic. Biol. Med. 2016, 97, 95–108. [Google Scholar] [CrossRef]
- Sheean, R.K.; McKay, F.C.; Cretney, E.; Bye, C.R.; Perera, N.D.; Tomas, D.; Weston, R.A.; Scheller, K.J.; Djouma, E.; Menon, P.; et al. Association of Regulatory T-Cell Expansion with Progression of Amyotrophic Lateral Sclerosis. JAMA Neurol. 2018, 75, 681. [Google Scholar] [CrossRef] [Green Version]
- Solomonov, Y.; Hadad, N.; Levy, R. Reduction of Cytosolic Phospholipase A2α Upregulation Delays the Onset of Symptoms in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. J. Neuroinflamm. 2016, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinovich-Nikitin, I.; Ezra, A.; Barbiro, B.; Rabinovich-Toidman, P.; Solomon, B. Chronic Administration of AMD3100 Increases Survival and Alleviates Pathology in SOD1G93A Mice Model of ALS. J. Neuroinflamm. 2016, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocozza, G.; di Castro, M.A.; Carbonari, L.; Grimaldi, A.; Antonangeli, F.; Garofalo, S.; Porzia, A.; Madonna, M.; Mainiero, F.; Santoni, A.; et al. Ca2+ -Activated K+ Channels Modulate Microglia Affecting Motor Neuron Survival in HSOD1 G93A Mice. Brain Behav. Immun. 2018, 73, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Apolloni, S.; Fabbrizio, P.; Amadio, S.; Volonte, C. Actions of the Antihistaminergic Clemastine on Presymptomatic SOD1-G93A Mice Ameliorate ALS Disease Progression. J. Neuroinflamm. 2016, 13, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korhonen, P.; Pollari, E.; Kanninen, K.M.; Savchenko, E.; Lehtonen, Š.; Wojciechowski, S.; Pomeshchik, Y.; Van Den Bosch, L.; Goldsteins, G.; Koistinaho, J.; et al. Long-Term Interleukin-33 Treatment Delays Disease Onset and Alleviates Astrocytic Activation in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. IBRO Rep. 2019, 6, 74–86. [Google Scholar] [CrossRef]
- Zeldich, E.; Di Chen, C.; Boden, E.; Howat, B.; Nasse, J.S.; Zeldich, D.; Lambert, A.G.; Yuste, A.; Cherry, J.D.; Mathias, R.M.; et al. Klotho Is Neuroprotective in the Superoxide Dismutase (SOD1G93A) Mouse Model of ALS. J. Mol. Neurosci. 2019, 69, 264–285. [Google Scholar] [CrossRef]
- El Oussini, H.; Bayer, H.; Scekic-Zahirovic, J.; Vercruysse, P.; Sinniger, J.; Dirrig-Grosch, S.; Dieterlé, S.; Echaniz-Laguna, A.; Larmet, Y.; Müller, K.; et al. Serotonin 2B Receptor Slows Disease Progression and Prevents Degeneration of Spinal Cord Mononuclear Phagocytes in Amyotrophic Lateral Sclerosis. Acta Neuropathol. 2016, 131, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.D.; Yang, E.J. Gamisoyo-San Ameliorates Neuroinflammation in the Spinal Cord of HSOD1G93A Transgenic Mice. Mediat. Inflamm. 2018. [Google Scholar] [CrossRef]
- Fellner, A.; Barhum, Y.; Angel, A.; Perets, N.; Steiner, I.; Offen, D.; Lev, N. Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates Motor Dysfunction and Spinal Cord Pathology in an Amyotrophic Lateral Sclerosis Mouse Model. Int. J. Mol. Sci. 2017, 18, 1666. [Google Scholar] [CrossRef] [Green Version]
- Matsye, P.; Zheng, L.; Si, Y.; Kim, S.; Luo, W.; Crossman, D.K.; Bratcher, P.E.; King, P.H. HuR Promotes the Molecular Signature and Phenotype of Activated Microglia: Implications for Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Glia 2017, 65, 945–963. [Google Scholar] [CrossRef]
- LaClair, K.D.; Zhou, Q.; Michaelsen, M.; Wefers, B.; Brill, M.S.; Janjic, A.; Rathkolb, B.; Farny, D.; Cygan, M.; de Angelis, M.H.; et al. Congenic Expression of Poly-GA but Not Poly-PR in Mice Triggers Selective Neuron Loss and Interferon Responses Found in C9orf72 ALS. Acta Neuropathol. 2020, 140, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Schludi, M.H.; Becker, L.; Garrett, L.; Gendron, T.F.; Zhou, Q.; Schreiber, F.; Popper, B.; Dimou, L.; Strom, T.M.; Winkelmann, J.; et al. Spinal Poly-GA Inclusions in a C9orf72 Mouse Model Trigger Motor Deficits and Inflammation without Neuron Loss. Acta Neuropathol. 2017, 134, 241–254. [Google Scholar] [CrossRef]
- Zhou, Q.; Mareljic, N.; Michaelsen, M.; Parhizkar, S.; Heindl, S.; Nuscher, B.; Farny, D.; Czuppa, M.; Schludi, C.; Graf, A.; et al. Active Poly-GA Vaccination Prevents Microglia Activation and Motor Deficits in a C9orf72 Mouse Model. EMBO Mol. Med. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gendron, T.F.; Ebbert, M.T.W.; O’Raw, A.D.; Yue, M.; Jansen-West, K.; Zhang, X.; Prudencio, M.; Chew, J.; Cook, C.N.; et al. Poly(GR) Impairs Protein Translation and Stress Granule Dynamics in C9orf72-Associated Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Nat. Med. 2018, 24, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Levin, S.C.; Willis, E.F.; Li, R.; Woodruff, T.M.; Noakes, P.G. Complement Components Are Upregulated and Correlate with Disease Progression in the TDP-43 Q331K Mouse Model of Amyotrophic Lateral Sclerosis. J. Neuroinflamm. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Jara, J.H.; Gautam, M.; Kocak, N.; Xie, E.F.; Mao, Q.; Bigio, E.H.; Özdinler, P.H. MCP1-CCR2 and Neuroinflammation in the ALS Motor Cortex with TDP-43 Pathology. J. Neuroinflamm. 2019, 16, 196. [Google Scholar] [CrossRef] [PubMed]
- Perera, N.D.; Sheean, R.K.; Crouch, P.J.; White, A.R.; Horne, M.K.; Turner, B.J. Enhancing Survival Motor Neuron Expression Extends Lifespan and Attenuates Neurodegeneration in Mutant TDP-43 Mice. Hum. Mol. Genet. 2016, 25, 4080–4093. [Google Scholar] [CrossRef] [Green Version]
- Dahlke, C.; Saberi, D.; Ott, B.; Brand-Saberi, B.; Schmitt-John, T.; Theiss, C. Inflammation and Neuronal Death in the Motor Cortex of the Wobbler Mouse, an ALS Animal Model. J. Neuroinflamm. 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Saberi, D.; Ott, B.; Dahlke, C.; Matschke, V.; Schmitt-John, T.; Theiss, C. The Spatiotemporal Pattern of Degeneration in the Cerebellum of the Wobbler Mouse. J. Neuropathol. Exp. Neurol. 2016, 75, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Bigini, P.; Repici, M.; Cantarella, G.; Fumagalli, E.; Barbera, S.; Cagnotto, A.; De Luigi, A.; Tonelli, R.; Bernardini, R.; Borsello, T.; et al. Recombinant Human TNF-Binding Protein-1 (RhTBP-1) Treatment Delays Both Symptoms Progression and Motor Neuron Loss in the Wobbler Mouse. Neurobiol. Dis. 2008, 29, 465–476. [Google Scholar] [CrossRef]
- Peviani, M.; Salvaneschi, E.; Bontempi, L.; Petese, A.; Manzo, A.; Rossi, D.; Salmona, M.; Collina, S.; Bigini, P.; Curti, D. Neuroprotective Effects of the Sigma-1 Receptor (S1R) Agonist PRE-084, in a Mouse Model of Motor Neuron Disease Not Linked to SOD1 Mutation. Neurobiol. Dis. 2014, 62, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo-Monachelli, G.; Meyer, M.; Lara, A.; Garay, L.; Lima, A.; Roig, P.; De Nicola, A.F.; Gonzalez Deniselle, M.C. Comparative Effects of Progesterone and the Synthetic Progestin Norethindrone on Neuroprotection in a Model of Spontaneous Motoneuron Degeneration. J. Steroid Biochem. Mol. Biol. 2019, 192. [Google Scholar] [CrossRef] [PubMed]
- De Paola, M.; Mariani, A.; Bigini, P.; Peviani, M.; Ferrara, G.; Molteni, M.; Gemma, S.; Veglianese, P.; Castellaneta, V.; Boldrin, V.; et al. Neuroprotective Effects of Toll-like Receptor 4 Antagonism in Spinal Cord Cultures and in a Mouse Model of Motor Neuron Degeneration. Mol. Med. 2012, 18, 971–981. [Google Scholar] [CrossRef]
- Mennini, T.; De Paola, M.; Bigini, P.; Mastrotto, C.; Fumagalli, E.; Barbera, S.; Mengozzi, M.; Viviani, B.; Corsini, E.; Marinovich, M.; et al. Nonhematopoietic Erythropoietin Derivatives Prevent Motoneuron Degeneration in Vitro and in Vivo. Mol. Med. 2006, 12, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Gonzalez Deniselle, M.C.; Hunt, H.; De Kloet, E.R.; De Nicola, A.F. The Selective Glucocorticoid Receptor Modulator CORT108297 Restores Faulty Hippocampal Parameters in Wobbler and Corticosterone-Treated Mice. J. Steroid Biochem. Mol. Biol. 2014, 143, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Lara, A.; Hunt, H.; Belanoff, J.; de Kloet, E.R.; Gonzalez Deniselle, M.C.; De Nicola, A.F. The Selective Glucocorticoid Receptor Modulator Cort 113176 Reduces Neurodegeneration and Neuroinflammation in Wobbler Mice Spinal Cord. Neuroscience 2018, 384, 384–396. [Google Scholar] [CrossRef]
- Meyer, M.; Kruse, M.S.; Garay, L.; Lima, A.; Roig, P.; Hunt, H.; Belanoff, J.; de Kloet, E.R.; Deniselle, M.C.G.; De Nicola, A.F. Long-Term Effects of the Glucocorticoid Receptor Modulator CORT113176 in Murine Motoneuron Degeneration. Brain Res. 2020, 1727. [Google Scholar] [CrossRef]
- Meyer, M.; Gonzalez Deniselle, M.C.; Garay, L.; Sitruk-Ware, R.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. The Progesterone Receptor Agonist Nestorone Holds Back Proinflammatory Mediators and Neuropathology in the Wobbler Mouse Model of Motoneuron Degeneration. Neuroscience 2015, 308, 51–63. [Google Scholar] [CrossRef]
- Ransohoff, R.M. A Polarizing Question: Do M1 and M2 Microglia Exist. Nat. Neurosci. 2016, 19, 987–991. [Google Scholar] [CrossRef]
- Kabba, J.A.; Xu, Y.; Christian, H.; Ruan, W.; Chenai, K.; Xiang, Y.; Zhang, L.; Saavedra, J.M.; Pang, T. Microglia: Housekeeper of the Central Nervous System. Cell. Mol. Neurobiol. 2018, 38, 53–71. [Google Scholar] [CrossRef]
- Zhao, W.; Beers, D.R.; Appel, S.H. Immune-Mediated Mechanisms in the Pathoprogression of Amyotrophic Lateral Sclerosis. J. Neuroimmune Pharmacol. 2013, 8, 888–899. [Google Scholar] [CrossRef]
- Henkel, J.S.; Engelhardt, J.I.; Siklós, L.; Simpson, E.P.; Kim, S.H.; Pan, T.; Goodman, J.C.; Siddique, T.; Beers, D.R.; Appel, S.H. Presence of Dendritic Cells, MCP-1, and Activated Microglia/Macrophages in Amyotrophic Lateral Sclerosis Spinal Cord Tissue. Ann. Neurol. 2004, 55, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Corcia, P.; Tauber, C.; Vercoullie, J.; Arlicot, N.; Prunier, C.; Praline, J.; Nicolas, G.; Venel, Y.; Hommet, C.; Baulieu, J.L.; et al. Molecular Imaging of Microglial Activation in Amyotrophic Lateral Sclerosis. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.R.; Cagnin, A.; Turkheimer, F.E.; Miller, C.C.J.; Shaw, C.E.; Brooks, D.J.; Leigh, P.N.; Banati, R.B. Evidence of Widespread Cerebral Microglial Activation in Amyotrophic Lateral Sclerosis: An [11C](R)-PK11195 Positron Emission Tomography Study. Neurobiol. Dis. 2004, 15, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.C.; Couch, Y.; Sibson, N.; Turner, M.R. Inflammation and Neurovascular Changes in Amyotrophic Lateral Sclerosis. Mol. Cell. Neurosci. 2013, 53, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.A.; Manning, J.; Rossi, F.; Krieger, C. The Neuroinflammatory Response in ALS: The Roles of Microglia and T Cells. Neurol. Res. Int. 2012. [Google Scholar] [CrossRef] [PubMed]
- Santiago, A.R.; Bernardino, L.; Agudo-Barriuso, M.; Gonçalves, J. Microglia in Health and Disease: A Double-Edged Sword. Mediat. Inflamm. 2017. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Al-Chalabi, A.; Van Den Berg, L.H.; Veldink, J. Gene Discovery in Amyotrophic Lateral Sclerosis: Implications for Clinical Management. Nat. Rev. Neurol. 2017, 13, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.Y.; Zhou, Z.R.; Che, C.H.; Liu, C.Y.; He, R.L.; Huang, H.P. Genetic Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 540–549. [Google Scholar] [CrossRef]
- Bosco, D.A.; Morfini, G.; Karabacak, N.M.; Song, Y.; Gros-Louis, F.; Pasinelli, P.; Goolsby, H.; Fontaine, B.A.; Lemay, N.; McKenna-Yasek, D.; et al. Wild-Type and Mutant SOD1 Share an Aberrant Conformation and a Common Pathogenic Pathway in ALS. Nat. Neurosci. 2010, 13, 1396–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, S.; Heath, P.R.; Kirby, J.; Wharton, S.B.; Cookson, M.R.; Menzies, F.M.; Banks, R.E.; Shaw, P.J. Analysis of the Cytosolic Proteome in a Cell Culture Model of Familial Amyotrophic Lateral Sclerosis Reveals Alterations to the Proteasome, Antioxidant Defenses, and Nitric Oxide Synthetic Pathways. J. Biol. Chem. 2003, 278, 6371–6383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiman-Patterson, T.D.; Sher, R.B.; Blankenhorn, E.A.; Alexander, G.; Deitch, J.S.; Kunst, C.B.; Maragakis, N.; Cox, G. Effect of Genetic Background on Phenotype Variability in Transgenic Mouse Models of Amyotrophic Lateral Sclerosis: A Window of Opportunity in the Search for Genetic Modifiers. Amyotroph. Lateral Scler. 2011, 12, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Nardo, G.; Trolese, M.C.; Tortarolo, M.; Vallarola, A.; Freschi, M.; Pasetto, L.; Bonetto, V.; Bendotti, C. New Insights on the Mechanisms of Disease Course Variability in ALS from Mutant SOD1 Mouse Models. Brain Pathol. 2016, 26, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Nardo, G.; Trolese, M.C.; de Vito, G.; Cecchi, R.; Riva, N.; Dina, G.; Heath, P.R.; Quattrini, A.; Shaw, P.J.; Piazza, V.; et al. Immune Response in Peripheral Axons Delays Disease Progression in SOD1G93A Mice. J. Neuroinflamm. 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Marino, M.; Papa, S.; Crippa, V.; Nardo, G.; Peviani, M.; Cheroni, C.; Trolese, M.C.; Lauranzano, E.; Bonetto, V.; Poletti, A.; et al. Differences in Protein Quality Control Correlate with Phenotype Variability in 2 Mouse Models of Familial Amyotrophic Lateral Sclerosis. Neurobiol. Aging 2015, 36, 492–504. [Google Scholar] [CrossRef]
- Turner, B.J.; Talbot, K. Transgenics, Toxicity and Therapeutics in Rodent Models of Mutant SOD1-Mediated Familial ALS. Prog. Neurobiol. 2008, 85, 94–134. [Google Scholar] [CrossRef]
- Gurney, M.E.; Pu, H.; Chiu, A.Y.; Dal Canto, M.C.; Polchow, C.Y.; Alexander, D.D.; Caliendo, J.; Hentati, A.; Kwon, Y.W.; Deng, H.X.; et al. Motor Neuron Degeneration in Mice That Express a Human Cu, Zn Superoxide Dismutase Mutation. Science 1994, 264, 1772–1775. [Google Scholar] [CrossRef]
- Foyez, T.; Takeda-Uchimura, Y.; Ishigaki, S.; Narentuya, N.; Zhang, Z.; Sobue, G.; Kadomatsu, K.; Uchimura, K. Microglial Keratan Sulfate Epitope Elicits in Central Nervous Tissues of Transgenic Model Mice and Patients with Amyotrophic Lateral Sclerosis. Am. J. Pathol. 2015, 185, 3053–3065. [Google Scholar] [CrossRef]
- Ohgomori, T.; Yamasaki, R.; Takeuchi, H.; Kadomatsu, K.; Kira, J.I.; Jinno, S. Differential Activation of Neuronal and Glial STAT3 in the Spinal Cord of the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Eur. J. Neurosci. 2017, 46, 2001–2014. [Google Scholar] [CrossRef]
- Mitsui, S.; Otomo, A.; Nozaki, M.; Ono, S.; Sato, K.; Shirakawa, R.; Adachi, H.; Aoki, M.; Sobue, G.; Shang, H.F.; et al. Systemic Overexpression of SQSTM1/P62 Accelerates Disease Onset in a SOD1H46R-Expressing ALS Mouse Model. Mol. Brain 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Trias, E.; Ibarburu, S.; Barreto-Núñez, R.; Babdor, J.; Maciel, T.T.; Guillo, M.; Gros, L.; Dubreuil, P.; Díaz-Amarilla, P.; Cassina, P.; et al. Post-Paralysis Tyrosine Kinase Inhibition with Masitinib Abrogates Neuroinflammation and Slows Disease Progression in Inherited Amyotrophic Lateral Sclerosis. J. Neuroinflamm. 2016, 13. [Google Scholar] [CrossRef]
- Deora, V.; Lee, J.D.; Albornoz, E.A.; McAlary, L.; Jagaraj, C.J.; Robertson, A.A.B.; Atkin, J.D.; Cooper, M.A.; Schroder, K.; Yerbury, J.J.; et al. The Microglial NLRP3 Inflammasome Is Activated by Amyotrophic Lateral Sclerosis Proteins. Glia 2020, 68, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.M.; Christy, D.; Shyu, C.C.; Moon, K.M.; Fernando, S.; Gidden, Z.; Cowan, C.M.; Ban, Y.; Greg Stacey, R.; Grad, L.I.; et al. CNS-Derived Extracellular Vesicles from Superoxide Dismutase 1 (SOD1)G93A ALS Mice Originate from Astrocytes and Neurons and Carry Misfolded SOD1. J. Biol. Chem. 2019, 294, 3744–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassa, R.M.; Bonafede, R.; Boschi, F.; Bentivoglio, M.; Mariotti, R. Effect of Physical Exercise and Anabolic Steroid Treatment on Spinal Motoneurons and Surrounding Glia of Wild-Type and ALS Mice. Brain Res. 2017, 1657, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Liu, X.; Li, S.; Cheng, C.; Chen, S.; Le, W. Dynamic Changes of CX3CL1/CX3CR1 Axis during Microglial Activation and Motor Neuron Loss in the Spinal Cord of ALS Mouse Model. Transl. Neurodegener. 2018, 7. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, H.; Zhu, L.; Gan, W.; Tang, C.; Li, J.; Xu, R. Expression and Distribution of Arylsulfatase B Are Closely Associated with Neuron Death in SOD1 G93A Transgenic Mice. Mol. Neurobiol. 2018, 55, 1323–1337. [Google Scholar] [CrossRef]
- Shijo, T.; Warita, H.; Suzuki, N.; Ikeda, K.; Mitsuzawa, S.; Akiyama, T.; Ono, H.; Nishiyama, A.; Izumi, R.; Kitajima, Y.; et al. Antagonizing Bone Morphogenetic Protein 4 Attenuates Disease Progression in a Rat Model of Amyotrophic Lateral Sclerosis. Exp. Neurol. 2018, 307, 164–179. [Google Scholar] [CrossRef]
- Han, G.; Li, F.; Singh, T.P.; Wolf, P.; Wang, X.J. The Pro-Inflammatory Role of TGFβ1: A Paradox? Int. J. Biol. Sci. 2012, 8, 28–235. [Google Scholar] [CrossRef] [Green Version]
- Epperly, M.W.; Fisher, R.; Rigatti, L.; Watkins, S.; Zhang, X.; Hou, W.; Shields, D.; Franicola, D.; Bayir, H.; Wang, H.; et al. Amelioration of Amyotrophic Lateral Sclerosis in SOD1G93A Mice by M2 Microglia from Transplanted Marrow. In Vivo 2019, 33, 675–688. [Google Scholar] [CrossRef]
- Liu, W.; Venugopal, S.; Majid, S.; Ahn, I.S.; Diamante, G.; Hong, J.; Yang, X.; Chandler, S.H. Single-Cell RNA-Seq Analysis of the Brainstem of Mutant SOD1 Mice Reveals Perturbed Cell Types and Pathways of Amyotrophic Lateral Sclerosis. Neurobiol. Dis. 2020, 141. [Google Scholar] [CrossRef] [PubMed]
- Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017, 47, 566–581.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noristani, H.N.; Sabourin, J.C.; Gerber, Y.N.; Teigell, M.; Sommacal, A.; Vivanco, M.D.M.; Weber, M.; Perrin, F.E. Brca1 Is Expressed in Human Microglia and Is Dysregulated in Human and Animal Model of ALS. Mol. Neurodegener. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Renton, A.E.; Chiò, A.; Traynor, B.J. State of Play in Amyotrophic Lateral Sclerosis Genetics. Nat. Neurosci. 2014, 17, 17–23. [Google Scholar] [CrossRef]
- Taylor, J.P.; Brown, R.H.; Cleveland, D.W. Decoding ALS: From Genes to Mechanism. Nature 2016, 539, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Lutz, C. Mouse Models of ALS: Past, Present and Future. Brain Res. 2018, 1693, 1–10. [Google Scholar] [CrossRef] [PubMed]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.C.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Kankel, M.W.; Su, S.C.; Han, S.W.S.; Ofengeim, D. Exploring the Genetics and Non-Cell Autonomous Mechanisms Underlying ALS/FTLD. Cell Death Differ. 2018, 25, 646–660. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, J.G.; Bogdanik, L.; Yáñez, A.; Lall, D.; Wolf, A.J.; Muhammad, A.K.M.G.; Ho, R.; Carmona, S.; Vit, J.P.; Zarrow, J.; et al. C9orf72 Is Required for Proper Macrophage and Microglial Function in Mice. Science 2016, 351, 1324–1329. [Google Scholar] [CrossRef] [Green Version]
- Chew, J.; Gendron, T.F.; Prudencio, M.; Sasaguri, H.; Zhang, Y.J.; Castanedes-Casey, M.; Lee, C.W.; Jansen-West, K.; Kurti, A.; Murray, M.E.; et al. C9ORF72 Repeat Expansions in Mice Cause TDP-43 Pathology, Neuronal Loss, and Behavioral Deficits. Science 2015, 348, 1151–1154. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, J.G.; Bogdanik, L.; Muhammad, A.K.M.G.; Gendron, T.F.; Kim, K.J.; Austin, A.; Cady, J.; Liu, E.Y.; Zarrow, J.; Grant, S.; et al. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD. Neuron 2015, 88, 892–901. [Google Scholar] [CrossRef] [Green Version]
- Peters, O.M.; Cabrera, G.T.; Tran, H.; Gendron, T.F.; McKeon, J.E.; Metterville, J.; Weiss, A.; Wightman, N.; Salameh, J.; Kim, J.; et al. Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice. Neuron 2015, 88, 902–909. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pattamatta, A.; Zu, T.; Reid, T.; Bardhi, O.; Borchelt, D.R.; Yachnis, A.T.; Ranum, L.P.W. C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD. Neuron 2016, 90, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Batra, R.; Lee, C.W. Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia. Front. Cell. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Langseth, A.J.; Kim, J.; Ugolino, J.E.; Shah, Y.; Hwang, H.Y.; Wang, J.; Bergles, D.E.; Brown, S.P. Cell-Type Specific Differences in Promoter Activity of the ALS-Linked C9orf72 Mouse Ortholog. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Nicholson, A.M.; Zhou, X.; Perkerson, R.B.; Parsons, T.M.; Chew, J.; Brooks, M.; DeJesus-Hernandez, M.; Finch, N.C.A.; Matchett, B.J.; Kurti, A.; et al. Loss of Tmem106b Is Unable to Ameliorate Frontotemporal Dementia-like Phenotypes in an AAV Mouse Model of C9ORF72-Repeat Induced Toxicity. Acta Neuropathol. Commun. 2018, 6, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.J.; Gendron, T.F.; Grima, J.C.; Sasaguri, H.; Jansen-West, K.; Xu, Y.F.; Katzman, R.B.; Gass, J.; Murray, M.E.; Shinohara, M.; et al. C9ORF72 Poly(GA) Aggregates Sequester and Impair HR23 and Nucleocytoplasmic Transport Proteins. Nat. Neurosci. 2016, 19, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Lagier-Tourenne, C.; Baughn, M.; Rigo, F.; Sun, S.; Liu, P.; Li, H.R.; Jiang, J.; Watt, A.T.; Chun, S.; Katz, M.; et al. Targeted Degradation of Sense and Antisense C9orf72 RNA Foci as Therapy for ALS and Frontotemporal Degeneration. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [Green Version]
- Benajiba, L.; Le Ber, I.; Camuzat, A.; Lacoste, M.; Thomas-Anterion, C.; Couratier, P.; Legallic, S.; Salachas, F.; Hannequin, D.; Decousus, M.; et al. TARDBP Mutations in Motoneuron Disease with Frontotemporal Lobar Degeneration. Ann. Neurol. 2009, 65, 470–473. [Google Scholar] [CrossRef]
- Lee, E.B.; Lee, V.M.Y.; Trojanowski, J.Q. Gains or Losses: Molecular Mechanisms of TDP43-Mediated Neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Tan, C.F.; Mori, F.; Tanji, K.; Kakita, A.; Takahashi, H.; Wakabayashi, K. TDP-43-Immunoreactive Neuronal and Glial Inclusions in the Neostriatum in Amyotrophic Lateral Sclerosis with and without Dementia. Acta Neuropathol. 2008, 115, 115–122. [Google Scholar] [CrossRef] [PubMed]
- McGoldrick, P.; Joyce, P.I.; Fisher, E.M.C.; Greensmith, L. Rodent Models of Amyotrophic Lateral Sclerosis. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 1421–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, K.; Patel, P.; Rahimian, R.; Phaneuf, D.; Julien, J.P. Withania Somnifera Reverses Transactive Response DNA Binding Protein 43 Proteinopathy in a Mouse Model of Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration. Neurotherapeutics 2017, 14, 447–462. [Google Scholar] [CrossRef] [Green Version]
- Correia, A.S.; Patel, P.; Dutta, K.; Julien, J.P. Inflammation Induces TDP-43 Mislocalization and Aggregation. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falconer, D.S. Wobbler (Wr). Mouse News Lett. 1956, 15, 22. [Google Scholar]
- Schmitt-John, T.; Drepper, C.; Mußmann, A.; Hahn, P.; Kuhlmann, M.; Thiel, C.; Hafner, M.; Lengeling, A.; Heimann, P.; Jones, J.M.; et al. Mutation of Vps54 Causes Motor Neuron Disease and Defective Spermiogenesis in the Wobbler Mouse. Nat. Genet. 2005, 37, 1213–1215. [Google Scholar] [CrossRef]
- Boillée, S.; Peschanski, M.; Junier, M.P. The Wobbler Mouse: A Neurodegeneration Jigsaw Puzzle. Mol. Neurobiol. 2003, 28, 65–106. [Google Scholar] [CrossRef]
- Moser, J.M.; Bigini, P.; Schmitt-John, T. The Wobbler Mouse, an ALS Animal Model. Mol. Genet. Genom. 2013, 288, 207–229. [Google Scholar] [CrossRef] [Green Version]
- Cipollina, G.; Serej, A.D.; Di Nolfi, G.; Gazzano, A.; Marsala, A.; Spatafora, M.G.; Peviani, M. Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity? Int. J. Mol. Sci. 2020, 21, 7923. [Google Scholar] [CrossRef]
Model | Strain | Age | Tissue | Microglial Marker | Morphology | Reference |
---|---|---|---|---|---|---|
SOD1G93A mouse | B6SJL-Tg | 4–6 weeks | spinal cord | IBA1, CD11b | ND | [11] |
SOD1G93A mouse | B6SJL-Tg | 9 and 14 weeks | spinal cord | IBA1 | ND | [12] |
SOD1G93A mouse | B6SJL-Tg | 10 and 14 weeks | spinal cord | IBA1 | ND | [13] |
SOD1G93A mouse | B6SJL-Tg | 12–14 weeks | spinal cord | IBA1, CD11b | Activated | [11] |
SOD1G93A mouse | B6SJL-Tg | 14 and 20 weeks | spinal cord | IBA1 | ND | [14] |
SOD1G93A mouse | B6SJL-Tg | 16 and 19 weeks | medial reticular formation | IBA1, CD68 | Amoeboid | [15] |
SOD1G93A mouse | B6SJL-Tg | 16–17 weeks | spinal cord | CD11b | ND | [16] |
SOD1G93A mouse | B6SJL-Tg | 17 weeks | retina, olfactory bulb | IBA1 | Ramified | [17] |
SOD1G93A mouse | B6SJL-Tg | 18 weeks | spinal cord | IBA1 | ND | [18] |
SOD1G93A mouse | B6SJL-Tg | NM | spinal cord | IBA1 | Activated | [19] |
SOD1G93A mouse | B6SJL-Tg | NM | spinal cord | CD11b | ND | [20] |
SOD1G93A mouse | B6.Cg-Tg | 15 weeks | spinal cord | IBA1, CD40 | Activated | [21] |
SOD1G93A mouse | B6.Cg-Tg | 16 weeks | spinal cord | IBA1, CD36 | Activated | [22] |
SOD1G93A mouse | B6.Cg-Tg | 16 weeks | spinal cord | IBA1 | ND | [23] |
SOD1G93A mouse | B6.Cg-Tg | 17 weeks | spinal cord | IBA1, CD68 | ND | [24] |
SOD1G93A mouse | B6.Cg-Tg | 22 weeks | spinal cord | IBA1 | ND | [25] |
SOD1G93A mouse | B6J-Tg | 16 weeks | motor cortex, spinal cord | IBA1 | ND | [26] |
SOD1G86R mouse | FVB/N | NM | spinal cord | IBA1 | Activated | [27] |
SOD1G93A mouse | NM | 15 weeks | spinal cord | IBA1, CD11b | ND | [28] |
SOD1G93A mouse | NM | 14 weeks | spinal cord | IBA1 | ND | [29] |
SOD1G93A mouse | NM | 18 weeks | spinal cord | IBA1 | Activated | [30] |
Poly-GA mouse | C57BL/6N-Tg | 3 weeks | hippocampus | IBA1 | Amoeboid | [31] |
Poly-GA-CFP mouse | C57BL/6N-Tg | 26 weeks | spinal cord | IBA1, CD68 | Phagocytic | [32] |
Poly-GA mouse | C57BL/6J-Tg | 28 weeks | spinal cord | IBA1 | Activated | [33] |
Poly-PR mouse | C57BL/6N-Tg | 4 and 68 weeks | hippocampus | IBA1 | Ramified | [31] |
GFP-(GR)100 | C57BL/6J | 6 weeks | brain | IBA1 | ND | [34] |
TDP-43Q331K mouse | C57BL/6J-Tg | 10 and 16 months | spinal cord | IBA1 | Amoeboid | [35] |
TDP-43Q331K mouse | C57BL/6J-Tg | 16 months | spinal cord | CD11b | Amoeboid | [35] |
prpTDP-43A315T UCHL1eGFP mouse | C57BL/6-Tg | 3, 4 and 5 months | motor cortex | IBA1 | Activated | [36] |
TDP-43A315T mouse | C57BL/6 x CBA-Tg | 4.5 months | spinal cord | CD11b | ND | [37] |
Wr mouse | C57BL/6J-wr | P20, P40 and P60 | motor cortex, cerebellum | IBA1 | ND | [38,39] |
Wr mouse | NFR-wr | P28 | spinal cord | CD11b | Ramified and clusters | [40] |
Wr mouse | NFR-wr | P42 | spinal cord | CD11b | Ramified and amoeboid | [41] |
Wr mouse | NFR-wr | P60 | spinal cord | IBA1 | Highly reactive | [42] |
Wr mouse | NFR-wr | P60 | spinal cord | CD11b | ND | [42] |
Wr mouse | NFR-wr | P63 | spinal cord | CD11b | Activated | [40] |
Wr mouse | NFR-wr | P70 | spinal cord | CD11b | ND | [43] |
Wr mouse | NFR-wr | P84 | spinal cord | CD11b | ND | [44] |
Wr mouse | NFR-wr | P90 | dentate gyrus | IBA1 | Amoeboid | [45] |
Wr mouse | NFR-wr | P150 | spinal cord | IBA1 | ND | [46,47] |
Wr mouse | NFR-wr | P150 | spinal cord | IBA1 | Highly ramified | [48] |
Wr mouse | NFR-wr | P150 | spinal cord | CD11b | ND | [46,47,48] |
Model. | Strain | Age | Tissue | Molecule | Variation | Method | Reference |
---|---|---|---|---|---|---|---|
Poly-GA mouse | C57BL/6 | 10 weeks | spinal cord | Cyr61 | + | RNA-seq | [98] |
Poly-GA mouse | C57BL/6J-Tg | 28 weeks | spinal cord | Ccl4, Grn, Tyrobp | + | RNA-seq | [33] |
Poly-GA mouse | C57BL/6N-Tg | 7 weeks | brain | Mx1, Isg15, Oasl1/2, C3, C4b | + | RNA-seq | [31] |
C9Orf72−/− mouse | C57BL/6J-Tg | N/A | spinal cord | Il-1β, Il-6 | + | qRT-PCR | [89] |
Model. | Strain | Age | Tissue | Molecule | Variation | Method | Reference |
---|---|---|---|---|---|---|---|
TDP-43Q331K mouse | C57BL/6J-Tg | 10 and 16 months | spinal cord | C1qB, C4, C3, C5aR1, C1q | + | RT-PCR, IF | [35] |
TDP-43Q331K mouse | C57BL/6J-Tg | 10 and 16 months | spinal cord | fB, CD59a, C5a | 0 | RT-PCR | [35] |
TDP-43Q331K mouse | C57BL/6J-Tg | 10 and 16 months | spinal cord | CD55 | − | RT-PCR | [35] |
TDP-43A315T mouse * | C57BL/6-Tg | N/A | spinal cord | Ym1, Arg1 | + | WB | [104] |
TDP-43A315T mouse * | C57BL/6-Tg | N/A | spinal cord | Tnfα | 0 | WB | [104] |
TDP-43A315T mouse * | C57BL/6-Tg | N/A | spinal cord | p65 of NFκB | − | WB | [104] |
Model. | Strain | Age | Tissue | Molecule | Variation | Treatment | Molecule after Treatment | Method | MN Survival | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Wr mouse | C57BL/6J-wr | P40 | motor cortex | TNFα, Cas3 | + | X | IF | [38] | ||
Wr mouse | C57BL/6J-wr | P40 | cerebellum | Tnfα, Tgf-β | + | X | RT-PCR | [39] | ||
Wr mouse | C57BL/6J-wr | P20 and P40 | cerebellum | Il-1β, Il-10 | + | X | RT-PCR | [39] | ||
Wr mouse | NFR/wr | P28 | spinal cord | TNFα, CD11b | + | X | IF | [40] | ||
Wr mouse | NFR/wr | P63 | spinal cord | TNFα, TNFR, | + | IF | [40] | |||
rhTBP-1 | ↔TNFα, ↔TNFR, ↓CD11b | ↑ | ||||||||
Wr mouse | NFR/wr | P70 | spinal cord | TNFα | + | IF | [43] | |||
riluzole | ↓TNFα, ↓CD11b | ↑ | ||||||||
Wr mouse | NFR/wr | P70 | spinal cord | TNFα | + | IF | [43] | |||
VB3323 | ↓TNFα, ↓CD11b | ↑ | ||||||||
Wr mouse | NFR/wr | P84 | spinal cord | TNFα, IL-1β | + | IF, RT-PCR | [41] | |||
PRE-084 | ↔TNFα, ↔IL-1β, ↑CD68, ↑CD206 | ↑ | ||||||||
Wr mouse | NFR/wr | P150 | spinal cord | HMGB1, TLR4, IBA1, CD11b, TNFα, TNFR, iNOS, p65 of NFκB | + | IHC, RT-PCR | [46] | |||
CORT113176 | ↓HMGB1, ↓TLR4, ↓IBA1, ↓CD11b, ↓TNFα, ↓TNFR, ↓iNOS, ↓p65 of NFκB | ↑ | ||||||||
Wr mouse | NFR/wr | P150 | spinal cord | IBA1, CD11b, TNFα, TLR4, iNOS | + | IHC, RT-PCR | [42] | |||
Tgf-β, p65 of NFκB, RAGE | 0 | |||||||||
IκB | − | |||||||||
progesterone | ↓IBA1, ↓CD11b, ↔TNFα, ↓TLR4, ↓iNOS, ↑Tgf-β, ↑p65 of NFκB, ↔RAGE, ↑IκB | ↑ | ||||||||
Wr mouse | NFR/wr | P150 | spinal cord | IBA1, CD11b, TNFα, TLR4, iNOS | + | IHC, RT-PCR | [42] | |||
Tgf-β, p65 of NFκB, RAGE | 0 | |||||||||
IκB | − | |||||||||
norethindrone | ↓IBA1, ↔CD11b, ↑TNFα, ↔TLR4, ↑iNOS, ↔Tgf-β, ↔p65 of NFκB, ↔RAGE, ↑IκB | ↔ | ||||||||
Wr mouse | NFR/wr | P150 | spinal cord | HMGB1, TLR4, MyD88, TNFR, IL-18, IBA1, CD11b | + | IHC, RT-PCR | [47] | |||
p50 of NFκB | 0 | |||||||||
CORT113176 | ↓HMGB1, ↓TLR4, ↓MyD88, ↓TNFR, ↓IL-18, ↓IBA1, ↓CD11b, ↓ p50 of NFκB | ↑ | ||||||||
Wr mouse | NFR/wr | P150 | spinal cord | IBA1, CD11b, TNFα, iNOS, NFκB, TLR4 | + | IHC, RT-PCR | [48] | |||
IκB | 0 | |||||||||
nestorone | ↓IBA1, ↓CD11b, ↓TNFα, ↓iNOS, ↓NFκB, ↔TLR4, ↑IκB | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cihankaya, H.; Theiss, C.; Matschke, V. Little Helpers or Mean Rogue—Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 993. https://doi.org/10.3390/ijms22030993
Cihankaya H, Theiss C, Matschke V. Little Helpers or Mean Rogue—Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences. 2021; 22(3):993. https://doi.org/10.3390/ijms22030993
Chicago/Turabian StyleCihankaya, Hilal, Carsten Theiss, and Veronika Matschke. 2021. "Little Helpers or Mean Rogue—Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis" International Journal of Molecular Sciences 22, no. 3: 993. https://doi.org/10.3390/ijms22030993
APA StyleCihankaya, H., Theiss, C., & Matschke, V. (2021). Little Helpers or Mean Rogue—Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 22(3), 993. https://doi.org/10.3390/ijms22030993