Genetic Therapy for Intervertebral Disc Degeneration
Abstract
:1. Introduction
1.1. Basic Anatomy of Intervertebral Disc
1.2. Pathophysiology of IVD Degeneration
1.3. Discogenic Low Back Pain (LBP)
1.4. Current Treatments for Chronic LBP due to IVD Degeneration
2. Search Strategy
3. Biological Approaches
3.1. Growth Factor Injection
3.2. Cell Therapy
3.3. Tissue Engineering
4. Gene Therapy
4.1. Gene Transfer to Target Disc Cells In Vitro andIn Vivo
4.1.1. Virus Vector-Mediated Gene Transfer to Disc Cells
Retrovirus
Adenovirus
Adeno-Associated Virus (AAV)
Baculovirus
Lentivirus
4.1.2. Non-Virus Vector-Mediated Gene Transfer to Disc Cells
RNA Interference (RNAi)
Ultrasound Targeted Microbubble Destruction
Polyplex Micelle
4.2. Clustered Regulatory Interspaced Short Palindromic Repeats-Associated Cas9 (CRISPR/Cas9)
4.3. Correlation between IVD Degeneration and mTOR Signaling
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAV | Adeno-associated virus |
Ac-CMV-GFP | ArecombinantBaculovirusVector expression GFP |
AF | Annulus Fibrosus |
AP-2α | ActivatorProtein-2α |
BMP | BoneMorphogeneticProtein |
CASFISH | Cas9-mediated Fluorescence In situ Hybridization |
CRISPR | Clustered Regulatory Interspaced Short Palindromic Repeats |
CRISPRi | CRISPR interference |
CRISPRa | CRISPR activation |
crRNA | CRISPR RNA |
DRG | DorsalRootGanglion |
ECM | Extracellular matrix |
GDF | GrowthDifferentiationFactor |
GFP | GreenFluorescenceProtein |
HDR | Homology directed repair |
IGF-1 | Insulin-likeGrowthFactor-1 |
IL | Interleukin |
IL‑1β | Interleukin-1β |
IL‑1α | Interleukin-1α |
IVD | Intervertebral disc |
IVDD | Intervertebral disc degeneration |
LBP | LowBackPain |
MCBC | MixedCationicBlockCopolymers |
miRNA | MicroRNA |
MMP | MatrixMetalloproteinase |
MRI | Magnetic Resonance Imaging |
RNAi | RNA Interference |
MSCs | Mesenchymal stem cells |
mTOR | Mechanistic target of rapamycin |
mTORC1 | mTOR complex 1 |
NHEJ | Non-homologous end joining |
NP | Nucleus pulposus |
SASP | Senescence-AssociatedSecretoryPhenotype |
PG | Proteoglycan |
P-GSK-3β | phosphorylated glycogen synthase kinase-3 β |
PI3K | Phospoinositide3-Kinase |
P-mTOR | Phosphorylated-mTOR |
PSSS | PostSpinalSurgerySyndrome |
RAPTOR | Regulatory-associated protein with mTOR |
RICTOR | Rapamycin-insensitive companion of mTOR |
RSV | Resveratrol |
sgRNA | Single-guide RNA |
Sox | SRY-Boxtranscriptionfactor |
TGF-β | Transforming growth factor-β |
TLR4 | Toll-likeReceptor4 |
TNF‑α | TumorNecrosisFactor- α |
trRNA | trans-activating crRNA (tracrRNA) |
UTMD | Ultrasound-targeted microbubble destruction |
VP | ViralParticle |
References
- Dowdell, J.; Erwin, M.; Choma, T.; Vaccaro, A.; Iatridis, J.; Cho, S.K. Intervertebral Disk Degeneration and Repair. Neurosurgery 2017, 80, S46–S54. [Google Scholar] [CrossRef]
- Takeoka, Y.; Yurube, T.; Nishida, K. Gene Therapy Approach for Intervertebral Disc Degeneration: An Update. Neuro-spine 2020, 17, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, I. Moving Forward: Gene Therapy for Intervertebral Disc Degeneration. Neurospine 2020, 17, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Han, I.; Ropper, A.E.; Konya, D.; Kabataş, S.; Toktas, Z.; Aljuboori, Z.; Zeng, X.; Chi, J.H.; Zafonte, R.; Teng, Y.D. Biological Approaches to Treating Intervertebral Disk Degeneration: Devising Stem Cell Therapies. Cell Transplant. 2015, 24, 2197–2208. [Google Scholar] [CrossRef] [Green Version]
- Choi, U.; Joshi, H.P.; Payne, S.L.; Kim, K.-T.; Kyung, J.W.; Choi, H.; Cooke, M.J.; Kwon, S.Y.; Roh, E.J.; Sohn, S.; et al. An Injectable Hyaluronan–Methylcellulose (HAMC) Hydrogel Combined with Wharton’s Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. Int. J. Mol. Sci. 2020, 21, 7391. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Kim, B.J.; Choi, B.; Han, I.; Park, H.; Lee, S.-H. Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids Prevent Mesenchymal Stromal-Cell-Derived Chondrocyte Hypertrophy. Int. J. Mol. Sci. 2020, 21, 8911. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Kim, B.J.; Kumar, H.; Park, S.; Choi, U.Y.; Han, I.; Park, H.; Lee, S.-H. Efficacy of matrilin-3-primed adi-pose-derived mesenchymal stem cell spheroids in a rabbit model of disc degeneration. Stem Cell Res. Ther. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Ahn, J.; Park, E.M.; Kim, B.J.; Kim, J.S.; Choi, B.; Lee, S.H.; Han, I. Transplantation of human Wharton’s jelly-derived mesen-chymal stem cells highly expressing TGFbeta receptors in a rabbit model of disc degeneration. Stem Cell Res.Ther. 2015, 6, 190. [Google Scholar] [CrossRef] [Green Version]
- Kennon, J.C.; Awad, M.E.; Chutkan, N.; DeVine, J.; Fulzele, S. Current insights on use of growth factors as therapy for in-tervertebral disc degeneration. Biomol. Concepts 2018, 9, 43–52. [Google Scholar] [CrossRef]
- Kos, N.; Gradisnik, L.; Velnar, T. A Brief Review of the Degenerative Intervertebral Disc Disease. Med Arch. 2019, 73, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Sakai, D.; Grad, S. Advancing the cellular and molecular therapy for intervertebral disc disease. Adv. Drug Deliv. Rev. 2015, 84, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.V.; Hartman, R.A.; Patil, P.R.; Risbud, M.V.; Kletsas, D.; Iatridis, J.C.; Hoyland, J.A.; Le Maitre, C.L.; Sowa, G.A.; Kang, J.D. Molecular mechanisms of biological aging in intervertebral discs. J. Orthop. Res. 2016, 34, 1289–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kepler, C.K.; Ponnappan, R.K.; Tannoury, C.A.; Risbud, M.V.; Anderson, D.G. The molecular basis of intervertebral disc degeneration. Spine J. 2013, 13, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Risbud, M.V.; Shapiro, I.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat. Rev. Rheumatol. 2014, 10, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, M. Novel treatment strategies for intervertebral disc degeneration. Saudi J. Heal. Sci. 2015, 4, 5. [Google Scholar] [CrossRef]
- Sampara, P.; Banala, R.R.; Vemuri, S.K.; Av, G.R.; Gpv, S. Understanding the molecular biology of intervertebral disc de-generation and potential gene therapy strategies for regeneration: A review. Gene Ther. 2018, 25, 67–82. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, B.; Liu, W.; Wang, P.; Lv, X.; Chen, S.; Shao, Z. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthr. Cartil. 2021, 29, 17–27. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, X.; Shen, H.; Zhang, C. Molecular mechanisms of cell death in intervertebral disc degeneration (Review). Int. J. Mol. Med. 2016, 37, 1439–1448. [Google Scholar] [CrossRef] [Green Version]
- Van Uden, S.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L. Current strategies for treatment of intervertebral disc degeneration: Substitution and regeneration possibilities. Biomater. Res. 2017, 21, 22. [Google Scholar] [CrossRef] [Green Version]
- Johnson, Z.I.; Schoepflin, Z.R.; Choi, H.; Shapiro, I.M.; Risbud, M.V. Disc in flames: Roles of TNF-alpha and IL-1beta in in-tervertebral disc degeneration. Eur. Cell Mater. 2015, 30, 104–117. [Google Scholar] [CrossRef]
- Patil, P.; Niedernhofer, L.J.; Robbins, P.D.; Lee, J.; Sowa, G.; Vo, N. Cellular senescence in intervertebral disc aging and de-generation. Curr. Mol. Biol. Rep. 2018, 4, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ni, B.-B.; Li, B.; Yang, Y.-H.; Jiang, S.-D.; Jiang, L.-S. The Responses of Autophagy and Apoptosis to Oxidative Stress in Nucleus Pulposus Cells: Implications for Disc Degeneration. Cell. Physiol. Biochem. 2014, 34, 1175–1189. [Google Scholar] [CrossRef] [PubMed]
- Maatta, J.H.; Kraatari, M.; Wolber, L.; Niinimaki, J.; Wadge, S.; Karppinen, J.; Williams, F.M. Vertebral endplate change as a feature of intervertebral disc degeneration: A heritability study. Eur. Spine J. 2014, 23, 1856–1862. [Google Scholar] [CrossRef]
- Marchand, F.; Ahmed, A.M. Investigation of the laminate structure of lumbar disc anulusfibrosus. Spine 1990, 15, 402–410. [Google Scholar] [CrossRef]
- Urban, J.P.; Roberts, S. Degeneration of the intervertebral disc. Arthritis Res. Ther. 2003, 5, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Hoogendoorn, R.; Zandieh-Doulabi, B.; Huang, C.L.; Wuisman, P.I.; Bank, R.A.; Helder, M.N. Molecular Changes in the Degenerated Goat Intervertebral Disc. Spine 2008, 33, 1714–1721. [Google Scholar] [CrossRef]
- Nishida, K.; Suzuki, T.; Kakutani, K.; Yurube, T.; Maeno, K.; Kurosaka, M.; Doita, M. Gene therapy approach for disc degen-eration and associated spinal disorders. Eur. Spine J. 2008, 17, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Mosley, G.E.; Evashwick-Rogler, T.W.; Lai, A.; Iatridis, J.C. Looking beyond the intervertebral disc: The need for behavioral assays in models of discogenic pain. Ann. New York Acad. Sci. 2017, 1409, 51–66. [Google Scholar] [CrossRef]
- Fujii, K.; Yamazaki, M.; Kang, J.D.; Risbud, M.V.; Cho, S.K.; Qureshi, S.A.; Hecht, A.C.; Iatridis, J.C. Discogenic Back Pain: Literature Review of Definition, Diagnosis, and Treatment. JBMR Plus 2019, 3, e10180. [Google Scholar] [CrossRef] [Green Version]
- Knezevic, N.N.; Mandalia, S.; Raasch, J.; Knezevic, I.; Candido, K.D. Treatment of chronic low back pain–new approaches on the horizon. J. Pain Res. 2017, 10, 1111–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, J.M.; Levine, G.J.; Johnson, S.I.; Kerwin, S.C.; Hettlich, B.F.; Fosgate, G.T. Evaluation of the success of medical man-agement for presumptive thoracolumbar intervertebral disk herniation in dogs. Vet. Surg. 2007, 36, 482–491. [Google Scholar] [CrossRef]
- Ahsan, M.K.; Hossain, M.R.; Khan, M.S.I.; Zaman, N.; Ahmed, N.; Montemurro, N.; Chaurasia, B. Lumbar revision micro-discectomy in patients with recurrent lumbar disc herniation: A single-center prospective series. Surg. Neurol. Int. 2020, 11, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Perrini, P.; Gambacciani, C.; Martini, C.; Montemurro, N.; Lepori, P. Anterior cervical corpectomy for cervical spondylotic myelopathy: Reconstruction with expandable cylindrical cage versus iliac crest autograft. A retrospective study. Clin. Neurol. Neurosurg. 2015, 139, 258–263. [Google Scholar] [CrossRef]
- Li, W.; Liu, T.; Wu, L.; Chen, C.; Jia, Z.; Bai, X.; Ruan, D. Blocking the Function of Inflammatory Cytokines and Mediators by Using IL-10 and TGF-β: A Potential Biological Immunotherapy for Intervertebral Disc Degeneration in a Beagle Model. Int. J. Mol. Sci. 2014, 15, 17270–17283. [Google Scholar] [CrossRef] [Green Version]
- Palmer, N.; Guan, Z.; Chai, N.C. Spinal Cord Stimulation for Failed Back Surgery Syndrome--Patient Selection Considerations. Transl. Perioper. Pain Med. 2019, 6, 81–90. [Google Scholar]
- Ju, D.G.; Kanim, L.E.; Bae, H.W. Intervertebral Disc Repair: Current Concepts. Global. Spine J. 2020, 10, 130S–136S. [Google Scholar] [CrossRef]
- Feng, C.; Liu, H.; Yang, Y.; Huang, B.; Zhou, Y. Growth and Differentiation Factor-5 Contributes to the Structural and Functional Maintenance of the Intervertebral Disc. Cell. Physiol. Biochem. 2015, 35, 1–16. [Google Scholar] [CrossRef]
- Chujo, T.; An, H.S.; Akeda, K.; Miyamoto, K.; Muehleman, C.; Attawia, M.; Andersson, G.; Masuda, K. Effects of growth dif-ferentiation factor-5 on the intervertebral disc—in vitro bovine study and in vivo rabbit disc degeneration model study. Spine 2006, 31, 2909–2917. [Google Scholar] [CrossRef]
- Tendulkar, G.; Chen, T.; Ehnert, S.; Kaps, H.-P.; Nussler, A.K. Intervertebral Disc Nucleus Repair: Hype or Hope? Int. J. Mol. Sci. 2019, 20, 3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Xia, K.; Yu, W.; Wang, Y.; Hua, J.; Liu, B.; Gong, Z.; Wang, J.; Xu, A.; You, Z.; et al. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater. 2019, 86, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Lee, S.; Park, S.-H.; Huang, J.; Hasty, K.A.; Kim, S.-J. Synergistic effect of combined growth factors in porcine inter-vertebral disc degeneration. Connect. Tissue Res. 2013, 54, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K. Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur. Spine J. 2008, 17, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grad, S.; Andersson, G.; Iatridis, J.C.; Sakai, D.; Härtl, R.; Ito, K.; Grad, S. Cell therapy for intervertebral disc repair: Advancing cell therapy from bench to clinics. Eur Cell Mater 2014, 27, 5–11. [Google Scholar] [CrossRef]
- Teng, Y.D.; Yu, D.; Ropper, A.E.; Li, J.; Kabatas, S.; Wakeman, D.R.; Wang, J.; Sullivan, M.P.; Redmond, E., Jr.; Langer, R. Functional multipotency of stem cells: A conceptual review of neurotrophic factor-based evidence and its role in translational research. Curr. Neuropharmacolol. 2011, 9, 574–585. [Google Scholar]
- Jandial, R.; Aryan, H.E.; Park, J.; Taylor, W.T.; Snyder, E.Y. Stem cell–mediated regeneration of the intervertebral disc: Cellular and molecular challenges. Neurosurg. Focus 2008, 24, E21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Ha, D.-H.; Lee, E.-J.; Park, J.H.; Shim, J.H.; Ahn, T.-K.; Kim, K.-T.; Ropper, A.E.; Sohn, S.; Kim, C.-H.; et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kandel, R.; Roberts, S.; Urban, J.P.G. Tissue engineering and the intervertebral disc: The challenges. Eur. Spine J. 2008, 17, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Park, M.H.; Lee, K. Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polym. 2019, 11, 872. [Google Scholar] [CrossRef] [Green Version]
- Gullbrand, S.E.; Kim, D.H.; Bonnevie, E.; Ashinsky, B.G.; Smith, L.J.; Elliott, D.M.; Mauck, R.L.; Smith, H.E. Towards the scale up of tissue engineered intervertebral discs for clinical application. Acta Biomater. 2018, 70, 154–164. [Google Scholar] [CrossRef]
- Iatridis, J.C.; Nicoll, S.B.; Michalek, A.J.; Walter, B.A.; Gupta, M.S. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 2013, 13, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Moriguchi, Y.; Mojica-Santiago, J.; Grunert, P.; Pennicooke, B.; Berlin, C.; Khair, T.; Navarro-Ramirez, R.; Arbona, R.R.; Nguyen, J.; Härtl, R.; et al. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine. PLOS ONE 2017, 12, e0185716. [Google Scholar] [CrossRef] [Green Version]
- Sobajima, S.; Kim, J.S.; Gilbertson, L.G.; Kang, J.D. Gene therapy for degenerative disc disease. Gene Ther. 2004, 11, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Krupkova, O.; Cambria, E.; Bešše, L.; Besse, A.; Bowles, R.; Wuertz-Kozak, K. The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine 2018, 1, e1003. [Google Scholar] [CrossRef] [PubMed]
- Yurube, T.; Ito, M.; Kakiuchi, Y.; Kuroda, R.; Kakutani, K. Autophagy and mTOR signaling during intervertebral disc aging and degeneration. JOR Spine 2020, 3, e1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehling, P.; Schulitz, K.-P.; Robbins, P.D.; Evans, C.H.; Reinecke, J.A. Transfer of genes to chondrocytic cells of the lumbar spine: Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine 1997, 22, 1092–1097. [Google Scholar] [CrossRef]
- Nishida, K.; Kang, J.D.; Suh, J.K.; Robbins, P.D.; Evans, C.H.; Gilbertson, L.G. Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 1998, 23, 2437–2442. [Google Scholar] [CrossRef]
- High, K.A.; Roncarolo, M.G. Gene Therapy. N. Engl. J. Med. 2019, 381, 455–464. [Google Scholar] [CrossRef]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L., 3rd; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, W.; Liang, B.; Wei, J.; Yin, D.; Fan, Q. Role of AP-2alpha/TGF-beta1/Smad3 axis in rats with intervertebral disc degeneration. Life Sci. 2020, 263, 118567. [Google Scholar] [CrossRef]
- Jiao, Y.; Xia, Z.L.; Ze, L.J.; Jing, H.; Xin, B.; Fu, S. Research Progress of nucleic acid delivery vectors for gene therapy. Biomed. Microdevices 2020, 22, 16. [Google Scholar] [CrossRef]
- Kotterman, M.A.; Chalberg, T.W.; Schaffer, D.V. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu. Rev. Biomed. Eng. 2015, 17, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, K.; Song, J.; Liang, C.; Wang, X.; Chen, X. Efficient and Stable Gene Expression in Rabbit Intervertebral Disc Cells Transduced With a Recombinant Baculovirus Vector. Spine 2006, 31, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, S.; Huang, H.; Fang, J.; Wei, H.; Xi, Y. In vivo delivery of MMP3-shRNA and Sox9 lentivirus cocktail enhances matrix synthesis to prevent lumbar disc degeneration. Adv. Clin. Exp. Med. 2020, 29, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Liu, W.; Wu, Z.; Ji, C.; Chang, C. Antiaging Factor Klotho Retards the Progress of Intervertebral Disc Degeneration through the Toll-Like Receptor 4-NF-κB Pathway. Int. J. Cell Biol. 2020, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, S.; Asanuma-Abe, Y.; Masuda, K.; Kawaguchi, Y.; Asanuma, K.; Muehleman, C.; Iwai, A.; Kimura, T. Effect of small interference RNA (siRNA) for ADAMTS5 on intervertebral disc degeneration in the rabbit anular needle-puncture model. Arthritis Res. Ther. 2009, 11, R166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanotto, D.; Rossi, J.J. The promises and pitfalls of RNA-interference-based therapeutics. Nat. Cell Biol. 2009, 457, 426–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, K.; Doita, M.; Takada, T.; Kakutani, K.-I.; Miyamoto, H.; Shimomura, T.; Maeno, K.; Kurosaka, M. Sustained Transgene Expression in Intervertebral Disc Cells In Vivo Mediated by Microbubble-Enhanced Ultrasound Gene Therapy. Spine 2006, 31, 1415–1419. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, L.; Li, L.; Ge, Z.; Feng, G.; Liu, L.; Song, Y. MicroRNA-25-3p therapy for intervertebral disc degeneration by targeting the IL-1β/ZIP8/MTF1 signaling pathway with a novel thermo-responsive vector. Ann. Transl. Med. 2020, 8, 1500. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Lin, Y.; Yang, F.; Jiang, L.; Ge, S.P. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc. Ultrasound 2013, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentacker, I.; Wang, N.; Vandenbroucke, R.E.; Demeester, J.; De Smedt, S.C.; Sanders, N.N. Ultrasound Exposure of Lipoplex Loaded Microbubbles Facilitates Direct Cytoplasmic Entry of the Lipoplexes. Mol. Pharm. 2009, 6, 457–467. [Google Scholar] [CrossRef]
- Fujii, H.; Sun, Z.; Li, S.-H.; Wu, J.; Fazel, S.; Weisel, R.D.; Rakowski, H.; Lindner, J.; Li, R.-K. Ultrasound-Targeted Gene Delivery Induces Angiogenesis After a Myocardial Infarction in Mice. JACC: Cardiovasc. Imaging 2009, 2, 869–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, G.; Zha, Z.; Huang, Y.; Li, J.; Wang, Y.; Ke, W.; Chen, H.; Liu, L.; Song, Y.; Ge, Z. Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Adv. Heal. Mater. 2018, 7, e1800623. [Google Scholar] [CrossRef] [PubMed]
- Luther, D.; Lee, Y.; Nagaraj, H.; Scaletti, F.; Rotello, V. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: Advances and challenges. Expert Opin. Drug Deliv. 2018, 15, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wan, T.; Xin, H.; Li, D.; Pan, H.; Wu, J.; Ping, Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J. Gene Med. 2019, 21, e3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef] [Green Version]
- Farhang, N.; Brunger, J.M.; Stover, J.D.; Thakore, P.I.; Lawrence, B.; Guilak, F.; Gersbach, C.A.; Setton, L.A.; Bowles, R.D. CRISPR-Based Epigenome Editing of Cytokine Receptors for the Promotion of Cell Survival and Tissue Deposition in Inflammatory Environments. Tissue Eng. Part A 2017, 23, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Farhang, N.; Ginley-Hidinger, M.; Berrett, K.C.; Gertz, J.; Lawrence, B.; Bowles, R.D.; Bowles, R.D. Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration. Hum. Gene Ther. 2019, 30, 1161–1175. [Google Scholar] [CrossRef]
- Cambria, E.; Arlt, M.J.; Wandel, S.; Krupkova, O.; Hitzl, W.; Passini, F.S.; Hausmann, O.; Snedeker, J.G.; Ferguson, S.J.; Wuertz-Kozak, K. TRPV4 Inhibition and CRISPR-Cas9 Knockout Reduce Inflammation Induced by Hyperphysiological Stretching in Human Annulus Fibrosus Cells. Cells 2020, 9, 1736. [Google Scholar] [CrossRef]
- Stover, J.D.; Farhang, N.; Berrett, K.C.; Gertz, J.; Lawrence, B.; Bowles, R.D. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation. Mol. Ther. 2017, 25, 2014–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, N.; Dehghani, M.; Gaborski, T.R.; Wuertz-Kozak, K. Therapeutic Potential of Extracellular Vesicles in Degenerative Diseases of the Intervertebral Disc. Front. Bioeng. Biotechnol. 2020, 8, 311. [Google Scholar] [CrossRef]
- Fontana, G.; See, E.; Pandit, A. Current trends in biologics delivery to restore intervertebral disc anabolism. Adv. Drug Deliv. Rev. 2015, 84, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Yurube, T.; Kakutani, K.; Maeno, K.; Takada, T.; Terashima, Y.; Kakiuchi, Y.; Takeoka, Y.; Miyazaki, S.; Kuroda, R.; et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthr. Cartil. 2017, 25, 2134–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamali, A.; Ziadlou, R.; Lang, G.; Pfannkuche, J.; Cui, S.; Li, Z.; Richards, R.G.; Alini, M.; Grad, S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021, 11, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Liu, H.; Yang, M.; Zhang, Y.; Huang, B.; Zhou, Y. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle 2016, 15, 1674–1684. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460, 392–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, Z.-H.; Wang, W.-J.; Yan, Y.-G.; Wang, B.; Lv, G.-H. The PI3K/Akt pathway: A critical player in intervertebral disc degeneration. Oncotarget 2017, 8, 57870–57881. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Guo, X.; Zhang, F.; Zheng, L.; Ding, W.; Yang, S. Resveratrol Combined with 17β-Estradiol Prevents IL-1β Induced Apoptosis in Human Nucleus Pulposus Via The PI3K/AKT/Mtor and PI3K/AKT/GSK-3β Pathway. J. Investig. Surg. 2020, 1–8. [Google Scholar] [CrossRef]
- Jacinto, F.V.; Link, W.; Ferreira, B.I. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. J. Cell. Mol. Med. 2020, 24, 3766–3778. [Google Scholar] [CrossRef] [Green Version]
Gene Therapy | Target Gene | Target Cell | Reference | |
---|---|---|---|---|
Viral vector | Retro | Bacterial lacZ, Human IL-1 receptor antagonist | Bovine chondrocytic cell | [55] |
Adeno | Bacterial lacZ | RabbitdiscNP cell | [56] | |
Adeno-associated | AP-2α, TGF-β1 | RatdiscNP cell | [59] | |
Baculo | GFP | RabbitdiscNP cell | [62] | |
Lenti | MMP3, Sox9 | RabbitdiscNP cell | [63] | |
Nonviral Vector | RNAi | Klotho, TLR4 | RatdiscNP cell | [64] |
UTMD | GFP, Firefly luciferase | RatdiscNP cell | [67] | |
Polyplex micelle | miRNA-25-3p, Firefly luciferase | HumanandRatdiscNP cell | [68] | |
CRISPR | Cas9 | TRPV4 | HumandiscAF cell | [79] |
mTOR pathway | PI3K/AKT | GSK-3β, NF-kappaB, caspase3, mTOR | RatdiscNP cell | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, E.J.; Darai, A.; Kyung, J.W.; Choi, H.; Kwon, S.Y.; Bhujel, B.; Kim, K.T.; Han, I. Genetic Therapy for Intervertebral Disc Degeneration. Int. J. Mol. Sci. 2021, 22, 1579. https://doi.org/10.3390/ijms22041579
Roh EJ, Darai A, Kyung JW, Choi H, Kwon SY, Bhujel B, Kim KT, Han I. Genetic Therapy for Intervertebral Disc Degeneration. International Journal of Molecular Sciences. 2021; 22(4):1579. https://doi.org/10.3390/ijms22041579
Chicago/Turabian StyleRoh, Eun Ji, Anjani Darai, Jae Won Kyung, Hyemin Choi, Su Yeon Kwon, Basanta Bhujel, Kyoung Tae Kim, and Inbo Han. 2021. "Genetic Therapy for Intervertebral Disc Degeneration" International Journal of Molecular Sciences 22, no. 4: 1579. https://doi.org/10.3390/ijms22041579
APA StyleRoh, E. J., Darai, A., Kyung, J. W., Choi, H., Kwon, S. Y., Bhujel, B., Kim, K. T., & Han, I. (2021). Genetic Therapy for Intervertebral Disc Degeneration. International Journal of Molecular Sciences, 22(4), 1579. https://doi.org/10.3390/ijms22041579