The Role of the Thalamus in Post-Traumatic Stress Disorder
Abstract
:1. Introduction
2. Results
3. Stress-Related Structural Change in the Thalamus
3.1. Volume Change in Thalamus
3.2. Diffusion Tensor Imaging (DTI)
3.3. Depleted Regional Activity in the Right Thalamus
3.4. Connectivity Research
Volume Change in Thalamus | Reference Number |
---|---|
Volume reduction (not significant) | [26,27,28] |
Volume loss in the right thalamus was detected in PTSD malingerers | [29] |
Negative correlation between volume of right thalamus and re-experiencing | [30] |
Volume loss in the bilateral thalamus in pain meta-analysis | [16] |
Negative correlation between right thalamic volume and childhood maltreatment | [31] |
Positive correlation between left thalamic volume and childhood maltreatment | [32] |
Volume reduction in bilateral thalamus in cases of childhood physical maltreatment | [33] |
No associations between trauma exposure age and volume of thalamus | [34] |
Volume loss in the bilateral thalamus (ventrolateral nuclei) in animals under severe stress | [18] |
Thinner right prefrontal cortex and larger right thalamus are related to denial and response prevention in PTSD | [36] |
Diffusion Tensor Imaging (DTI) | |
Loss of MD and AD in right thalamus | [37] |
Low FA in bilateral dorsal cingulum and anterior corona radiate | [38] |
FA value improvement in anterior corona radiation and right thalamus in recovered PTSD patients | [39] |
Increased anterior thalamic radiation via childhood maltreatment correlated to thalamic volume | [40] |
Depleted Regional Activity in the Right Thalamus | |
Depleted regional activity | [42,43,44,45] |
Enhanced regional connectivity within thalamus | [45,48,49] |
Psychotherapy increased activity in thalamus during retrieval | [46] |
Enhanced activity of thalamus from showing PTSD patients a neutral picture | [47] |
Depleted cluster coefficients within bilateral thalamus | [50] |
BOLD signal positively correlated with symptoms | [51] |
Early life stress severity positively correlated with connectivity in thalamus | [52] |
Resilience score is positively correlated with BOLD signal in right thalamus in cases of childhood maltreatment | [53] |
Laterality of activation (pathological significance of right side) | [46] |
Enhanced activity in left thalamus during dissociation | [54] |
3.5. The Retinotectal Pathway in Fear-Related Learning in the Thalamus
Connectivity Research | Reference Number |
---|---|
Increased coactivity with ACC, posterior cingulate cortex, and thalamus | [55] |
Increase in effective connectivity from thalamus to amygdala | [56,57,58,59] |
Increase in effective connectivity from thalamus to ACC, striatum, and occipital cortex | [56] |
Positive correlation between thalamus−amygdala and PTSD severity | [58] |
Depletion of connectivity between thalamus and ACC | [19,52,60,61] |
Emotional processing correlation between thalamus and ACC/PCC | [55] |
Alteration of connectivity from VLT to other sensory areas in dissociative PTSD patients | [62] |
Enhanced connectivity of pedunculopontine nuclei (reticular activation system) and anterior thalamic nucleus in dissociative PTSD | [48] |
Enhanced connectivity between thalamus and locus coeruleus | [63] |
Simultaneous enhancement of activity in midline thalamus and periaqueductal nuclei in animal PTSD model | [64] |
Diminished correlation between CAN and HRV | [65] |
Enhanced connectivity between thalamus and VTA | [66] |
Positive correlation between thalamus activity and alexithymia | [68] |
4. Discussion on Therapeutic Implications Targeting the Thalamus
4.1. EMDR
4.2. Functional MRI Neurofeedback Technique
4.3. Visual Task Games
4.4. Hyperbaric Oxygen Therapy (HBOT)
4.5. Oxytocin Administration
4.6. Other Medications
5. Methods
Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldstein, R.B.; Smith, S.M.; Chou, S.P.; Saha, T.D.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Huang, B.; Grant, B.F. The epidemiology of DSM-5 posttraumatic stress disorder in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Soc. Psychiatry Psychiatr. Epidemiol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.; Moulton, K.; Santesso, N.; Rabb, D. Cognitive Processing Therapy for Post-Traumatic Stress Disorder: A Systematic Review and Meta-Analysis; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2016. [Google Scholar]
- Matsumoto, K.; Sakuma, A.; Ueda, I.; Nagao, A.; Takahashi, Y. Psychological Trauma after the Great East Japan Earthquake. Psychiatry Clin. Neurosci. 2016. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Foa, E.B.; Gillihan, S.J.; Bryant, R.A. Challenges and Successes in Dissemination of Evidence-Based Treatments for Posttraumatic Stress: Lessons Learned From Prolonged Exposure Therapy for PTSD. Psychol. Sci. Public Interest 2013, 14, 65–111. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Suarez-Jimenez, B.; Lazarov, A.; Helpman, L.; Papini, S.; Lowell, A.; Durosky, A.; Lindquist, M.A.; Markowitz, J.C.; Schneier, F.; et al. Exposure-based therapy changes amygdala and hippocampus resting-state functional connectivity in patients with posttraumatic stress disorder. Depress. Anxiety 2018, 35, 974–984. [Google Scholar] [CrossRef]
- Sohn, E. Decoding the neuroscience of consciousness. Nature 2019, 571, S2–S5. [Google Scholar] [CrossRef] [Green Version]
- Society of Clinical Psychology Division 12 of the APA. Eye Movement Desensitization and Reprocessing for Post-Traumatic Stress Disorder. Available online: www.div12.org (accessed on 3 November 2020).
- Nardo, D.; Hogberg, G.; Looi, J.C.; Larsson, S.; Hallstrom, T.; Pagani, M. Gray matter density in limbic and paralimbic cortices is associated with trauma load and EMDR outcome in PTSD patients. J. Psychiatr. Res. 2010, 44, 477–485. [Google Scholar] [CrossRef]
- Chen, S.; Xia, W.; Li, L.; Liu, J.; He, Z.; Zhang, Z.; Yan, L.; Zhang, J.; Hu, D. Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: A voxel-based morphometric study. Psychiatry Res. 2006, 146, 65–72. [Google Scholar] [CrossRef]
- Hakamata, Y.; Matsuoka, Y.; Inagaki, M.; Nagamine, M.; Hara, E.; Imoto, S.; Murakami, K.; Kim, Y.; Uchitomi, Y. Structure of orbitofrontal cortex and its longitudinal course in cancer-related post-traumatic stress disorder. Neurosci. Res. 2007, 59, 383–389. [Google Scholar] [CrossRef]
- Carrion, V.G.; Weems, C.F.; Watson, C.; Eliez, S.; Menon, V.; Reiss, A.L. Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: An MRI study. Psychiatry Res. 2009, 172, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Tavanti, M.; Battaglini, M.; Borgogni, F.; Bossini, L.; Calossi, S.; Marino, D.; Vatti, G.; Pieraccini, F.; Federico, A.; Castrogiovanni, P.; et al. Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurol. Sci. 2012, 33, 59–68. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Q.; Yin, H.; Zhang, X.; Huan, Y.; Tang, L.; Wang, H.; Xu, J.; Li, L. Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Res. 2011, 192, 84–90. [Google Scholar] [CrossRef]
- Rogers, M.A.; Yamasue, H.; Abe, O.; Yamada, H.; Ohtani, T.; Iwanami, A.; Aoki, S.; Kato, N.; Kasai, K. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res. 2009, 174, 210–216. [Google Scholar] [CrossRef]
- Pan, P.L.; Zhong, J.G.; Shang, H.F.; Zhu, Y.L.; Xiao, P.R.; Dai, Z.Y.; Shi, H.C. Quantitative meta-analysis of grey matter anomalies in neuropathic pain. Eur. J. Pain 2015, 19, 1224–1231. [Google Scholar] [CrossRef]
- Tsur, N.; Defrin, R.; Ginzburg, K. PTSD, Orientation to Pain, and Pain Perception in Ex-prisoners of War who Underwent Torture. Psychosom. Med. 2017. [Google Scholar] [CrossRef]
- Yoshii, T.; Oishi, N.; Ikoma, K.; Nishimura, I.; Sakai, Y.; Matsuda, K.; Yamada, S.; Tanaka, M.; Kawata, M.; Narumoto, J.; et al. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model. Sci. Rep. 2017, 7, 12731. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Jin, C.; Hu, X.; Duan, L.; Li, Z.; Song, M.; Chen, H.; Feng, B.; Jiang, T.; Jin, H.; et al. Altered resting-state functional connectivity of thalamus in earthquake-induced posttraumatic stress disorder: A functional magnetic resonance imaging study. Brain Res 2011, 1411, 98–107. [Google Scholar] [CrossRef]
- Burra, N.; Hervais-Adelman, A.; Celeghin, A.; de Gelder, B.; Pegna, A.J. Affective blindsight relies on low spatial frequencies. Neuropsychologia 2019, 128, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Liberzon, I.; Abelson, J.L. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder. Neuron 2016, 92, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, A.; Amano, K.; Cortese, A.; Shibata, K.; Yoshida, W.; Seymour, B.; Kawato, M.; Lau, H. Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure. Nat. Hum. Behav. 2016, 1, 6. [Google Scholar] [CrossRef]
- Taschereau-Dumouchel, V.; Cortese, A.; Chiba, T.; Knotts, J.D.; Kawato, M.; Lau, H. Towards an unconscious neural reinforcement intervention for common fears. Proc. Natl. Acad. Sci. USA 2018, 115, 3470–3475. [Google Scholar] [CrossRef] [Green Version]
- Iyadurai, L.; Blackwell, S.E.; Meiser-Stedman, R.; Watson, P.C.; Bonsall, M.B.; Geddes, J.R.; Nobre, A.C.; Holmes, E.A. Preventing intrusive memories after trauma via a brief intervention involving Tetris computer game play in the emergency department: A proof-of-concept randomized controlled trial. Mol. Psychiatry 2017. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Sussman, D.; Pang, E.W.; Jetly, R.; Dunkley, B.T.; Taylor, M.J. Neuroanatomical features in soldiers with post-traumatic stress disorder. BMC Neurosci. 2016, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Filipovic, B.R.; Djurovic, B.; Marinkovic, S.; Stijak, L.; Aksic, M.; Nikolic, V.; Starcevic, A.; Radonjic, V. Volume changes of corpus striatum, thalamus, hippocampus and lateral ventricles in posttraumatic stress disorder (PTSD) patients suffering from headaches and without therapy. Cent. Eur. Neurosurg. 2011, 72, 133–137. [Google Scholar] [CrossRef]
- Logue, M.W.; van Rooij, S.J.H.; Dennis, E.L.; Davis, S.L.; Hayes, J.P.; Stevens, J.S.; Densmore, M.; Haswell, C.C.; Ipser, J.; Koch, S.B.J.; et al. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biol. Psychiatry 2018, 83, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Butler, O.; Herr, K.; Willmund, G.; Gallinat, J.; Zimmermann, P.; Kuhn, S. Neural correlates of response bias: Larger hippocampal volume correlates with symptom aggravation in combat-related posttraumatic stress disorder. Psychiatry Res. Neuroimag. 2018, 279, 1–7. [Google Scholar] [CrossRef]
- Shucard, J.L.; Cox, J.; Shucard, D.W.; Fetter, H.; Chung, C.; Ramasamy, D.; Violanti, J. Symptoms of posttraumatic stress disorder and exposure to traumatic stressors are related to brain structural volumes and behavioral measures of affective stimulus processing in police officers. Psychiatry Res. 2012, 204, 25–31. [Google Scholar] [CrossRef]
- Duarte, D.G.; Neves Mde, C.; Albuquerque, M.R.; de Souza-Duran, F.L.; Busatto, G.; Corrêa, H. Gray matter brain volumes in childhood-maltreated patients with bipolar disorder type I: A voxel-based morphometric study. J. Affect. Disord. 2016, 197, 74–80. [Google Scholar] [CrossRef]
- Liao, M.; Yang, F.; Zhang, Y.; He, Z.; Song, M.; Jiang, T.; Li, Z.; Lu, S.; Wu, W.; Su, L.; et al. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS ONE 2013, 8, e71898. [Google Scholar] [CrossRef]
- Hanson, J.L.; Chung, M.K.; Avants, B.B.; Shirtcliff, E.A.; Gee, J.C.; Davidson, R.J.; Pollak, S.D. Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. J. Neurosci. 2010, 30, 7466–7472. [Google Scholar] [CrossRef]
- Pechtel, P.; Lyons-Ruth, K.; Anderson, C.M.; Teicher, M.H. Sensitive periods of amygdala development: The role of maltreatment in preadolescence. NeuroImage 2014, 97, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Dagnino-Subiabre, A.; Munoz-Llancao, P.; Terreros, G.; Wyneken, U.; Diaz-Veliz, G.; Porter, B.; Kilgard, M.P.; Atzori, M.; Aboitiz, F. Chronic stress induces dendritic atrophy in the rat medial geniculate nucleus: Effects on auditory conditioning. Behav. Brain Res. 2009, 203, 88–96. [Google Scholar] [CrossRef]
- Mutluer, T.; Şar, V.; Kose-Demiray, Ç.; Arslan, H.; Tamer, S.; Inal, S.; Kaçar, A. Lateralization of Neurobiological Response in Adolescents with Post-Traumatic Stress Disorder Related to Severe Childhood Sexual Abuse: The Tri-Modal Reaction (T-MR) Model of Protection. J. Trauma Dissoc. 2018, 19, 108–125. [Google Scholar] [CrossRef]
- Lei, D.; Li, L.; Li, L.; Suo, X.; Huang, X.; Lui, S.; Li, J.; Bi, F.; Kemp, G.J.; Gong, Q. Microstructural abnormalities in children with post-traumatic stress disorder: A diffusion tensor imaging study at 3.0T. Sci. Rep. 2015, 5, 8933. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan, P.M.; Thoma, R.; Claus, E.D.; Mays, N.; Caprihan, A. Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: A diffusion tensor imaging study. Psychiatry Res. 2013, 214, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Hadanny, A.; Bechor, Y.; Catalogna, M.; Daphna-Tekoah, S.; Sigal, T.; Cohenpour, M.; Lev-Wiesel, R.; Efrati, S. Hyperbaric Oxygen Therapy Can Induce Neuroplasticity and Significant Clinical Improvement in Patients Suffering From Fibromyalgia With a History of Childhood Sexual Abuse-Randomized Controlled Trial. Front. Psychol. 2018, 9, 2495. [Google Scholar] [CrossRef]
- Lim, L.; Howells, H.; Radua, J.; Rubia, K. Aberrant structural connectivity in childhood maltreatment: A meta-analysis. Neurosci. Biobehav. Rev. 2020, 116, 406–414. [Google Scholar] [CrossRef]
- Jung, M.; Takiguchi, S.; Hamamura, S.; Mizuno, Y.; Kosaka, H.; Tomoda, A. Thalamic Volume Is Related to Increased Anterior Thalamic Radiations in Children with Reactive Attachment Disorder. Cereb. Cortex 2020, 30, 4238–4245. [Google Scholar] [CrossRef]
- Lanius, R.A.; Williamson, P.C.; Densmore, M.; Boksman, K.; Gupta, M.A.; Neufeld, R.W.; Gati, J.S.; Menon, R.S. Neural correlates of traumatic memories in posttraumatic stress disorder: A functional MRI investigation. Am. J. Psychiatry 2001, 158, 1920–1922. [Google Scholar] [CrossRef]
- Yan, X.; Brown, A.D.; Lazar, M.; Cressman, V.L.; Henn-Haase, C.; Neylan, T.C.; Shalev, A.; Wolkowitz, O.M.; Hamilton, S.P.; Yehuda, R.; et al. Spontaneous brain activity in combat related PTSD. Neurosci. Lett. 2013, 547, 1–5. [Google Scholar] [CrossRef]
- Suarez-Jimenez, B.; Albajes-Eizagirre, A.; Lazarov, A.; Zhu, X.; Harrison, B.J.; Radua, J.; Neria, Y.; Fullana, M.A. Neural signatures of conditioning, extinction learning, and extinction recall in posttraumatic stress disorder: A meta-analysis of functional magnetic resonance imaging studies. Psychol. Med. 2020, 50, 1442–1451. [Google Scholar] [CrossRef]
- Roos, A.; Fouche, J.P.; Stein, D.J. Brain network connectivity in women exposed to intimate partner violence: A graph theory analysis study. Brain Imag. Behav. 2017, 11, 1629–1639. [Google Scholar] [CrossRef]
- Peres, J.F.; Newberg, A.B.; Mercante, J.P.; Simão, M.; Albuquerque, V.E.; Peres, M.J.; Nasello, A.G. Cerebral blood flow changes during retrieval of traumatic memories before and after psychotherapy: A SPECT study. Psychol. Med. 2007, 37, 1481–1491. [Google Scholar] [CrossRef]
- Neumeister, P.; Feldker, K.; Heitmann, C.Y.; Helmich, R.; Gathmann, B.; Becker, M.P.I.; Straube, T. Interpersonal violence in posttraumatic women: Brain networks triggered by trauma-related pictures. Soc. Cogn. Affect. Neurosci. 2017, 12, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Thome, J.; Densmore, M.; Koppe, G.; Terpou, B.; Théberge, J.; McKinnon, M.C.; Lanius, R.A. Back to the Basics: Resting State Functional Connectivity of the Reticular Activation System in PTSD and its Dissociative Subtype. Chronic Stress 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zhang, R.; Li, K.; Qi, R.; Zhang, Z.; Huang, Q.; Lu, G. Altered cortical and subcortical local coherence in PTSD: Evidence from resting-state fMRI. Acta Radiol. 2015, 56, 746–753. [Google Scholar] [CrossRef]
- Mueller, S.G.; Ng, P.; Neylan, T.; Mackin, S.; Wolkowitz, O.; Mellon, S.; Yan, X.; Flory, J.; Yehuda, R.; Marmar, C.R.; et al. Evidence for disrupted gray matter structural connectivity in posttraumatic stress disorder. Psychiatry Res. 2015, 234, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Mickleborough, M.J.; Daniels, J.K.; Coupland, N.J.; Kao, R.; Williamson, P.C.; Lanius, U.F.; Hegadoren, K.; Schore, A.; Densmore, M.; Stevens, T.; et al. Effects of trauma-related cues on pain processing in posttraumatic stress disorder: An fMRI investigation. J. Psychiatry Neurosci. 2011, 36, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Philip, N.S.; Tyrka, A.R.; Albright, S.E.; Sweet, L.H.; Almeida, J.; Price, L.H.; Carpenter, L.L. Early life stress predicts thalamic hyperconnectivity: A transdiagnostic study of global connectivity. J. Psychiatr. Res. 2016, 79, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Daniels, J.K.; Hegadoren, K.M.; Coupland, N.J.; Rowe, B.H.; Densmore, M.; Neufeld, R.W.; Lanius, R.A. Neural correlates and predictive power of trait resilience in an acutely traumatized sample: A pilot investigation. J. Clin. Psychiatry 2012, 73, 327–332. [Google Scholar] [CrossRef]
- Felmingham, K.; Kemp, A.H.; Williams, L.; Falconer, E.; Olivieri, G.; Peduto, A.; Bryant, R. Dissociative responses to conscious and non-conscious fear impact underlying brain function in post-traumatic stress disorder. Psychol. Med. 2008, 38, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
- Ramage, A.E.; Laird, A.R.; Eickhoff, S.B.; Acheson, A.; Peterson, A.L.; Williamson, D.E.; Telch, M.J.; Fox, P.T. A coordinate-based meta-analytic model of trauma processing in posttraumatic stress disorder. Hum. Brain Mapp. 2013, 34, 3392–3399. [Google Scholar] [CrossRef] [Green Version]
- Bourne, C.; Mackay, C.E.; Holmes, E.A. The neural basis of flashback formation: The impact of viewing trauma. Psychol. Med. 2013, 43, 1521–1532. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Helpman, L.; Papini, S.; Schneier, F.; Markowitz, J.C.; Van Meter, P.E.; Lindquist, M.A.; Wager, T.D.; Neria, Y. Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression. Depress. Anxiety 2017, 34, 641–650. [Google Scholar] [CrossRef]
- Ben-Zion, Z.; Zeevi, Y.; Keynan, N.J.; Admon, R.; Kozlovski, T.; Sharon, H.; Halpern, P.; Liberzon, I.; Shalev, A.Y.; Benjamini, Y.; et al. Multi-domain potential biomarkers for post-traumatic stress disorder (PTSD) severity in recent trauma survivors. Transl. Psychiatry 2020, 10, 208. [Google Scholar] [CrossRef]
- Morey, R.A.; Dunsmoor, J.E.; Haswell, C.C.; Brown, V.M.; Vora, A.; Weiner, J.; Stjepanovic, D.; Wagner, H.R., 3rd; LaBar, K.S. Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder. Transl. Psychiatry 2015, 5, e700. [Google Scholar] [CrossRef] [Green Version]
- Lanius, R.A.; Williamson, P.C.; Hopper, J.; Densmore, M.; Boksman, K.; Gupta, M.A.; Neufeld, R.W.; Gati, J.S.; Menon, R.S. Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biol. Psychiatry 2003, 53, 204–210. [Google Scholar] [CrossRef]
- Kennis, M.; Rademaker, A.R.; van Rooij, S.J.; Kahn, R.S.; Geuze, E. Altered functional connectivity in posttraumatic stress disorder with versus without comorbid major depressive disorder: A resting state fMRI study. F1000Res 2013, 2, 289. [Google Scholar] [CrossRef]
- Lanius, R.A.; Williamson, P.C.; Bluhm, R.L.; Densmore, M.; Boksman, K.; Neufeld, R.W.; Gati, J.S.; Menon, R.S. Functional connectivity of dissociative responses in posttraumatic stress disorder: A functional magnetic resonance imaging investigation. Biol. Psychiatry 2005, 57, 873–884. [Google Scholar] [CrossRef]
- Steuwe, C.; Daniels, J.K.; Frewen, P.A.; Densmore, M.; Theberge, J.; Lanius, R.A. Effect of direct eye contact in women with PTSD related to interpersonal trauma: Psychophysiological interaction analysis of connectivity of an innate alarm system. Psychiatry Res. 2015, 232, 162–167. [Google Scholar] [CrossRef]
- Della Valle, R.; Mohammadmirzaei, N.; Knox, D. Single prolonged stress alters neural activation in the periacqueductal gray and midline thalamic nuclei during emotional learning and memory. Learn Mem. 2019, 26, 1–9. [Google Scholar] [CrossRef]
- Thome, J.; Densmore, M.; Frewen, P.A.; McKinnon, M.C.; Théberge, J.; Nicholson, A.A.; Koenig, J.; Thayer, J.F.; Lanius, R.A. Desynchronization of autonomic response and central autonomic network connectivity in posttraumatic stress disorder. Hum. Brain Mapp. 2017, 38, 27–40. [Google Scholar] [CrossRef]
- Magalhaes, R.; Barriere, D.A.; Novais, A.; Marques, F.; Marques, P.; Cerqueira, J.; Sousa, J.C.; Cachia, A.; Boumezbeur, F.; Bottlaender, M.; et al. The dynamics of stress: A longitudinal MRI study of rat brain structure and connectome. Mol. Psychiatry 2018, 23, 1998–2006. [Google Scholar] [CrossRef]
- De Berardis, D.; Vellante, F.; Fornaro, M.; Anastasia, A.; Olivieri, L.; Rapini, G.; Serroni, N.; Orsolini, L.; Valchera, A.; Carano, A.; et al. Alexithymia, suicide ideation, affective temperaments and homocysteine levels in drug naïve patients with post-traumatic stress disorder: An exploratory study in the everyday ‘real world’ clinical practice. Int. J. Psychiatry Clin. Pract. 2020, 24, 83–87. [Google Scholar] [CrossRef]
- Frewen, P.A.; Pain, C.; Dozois, D.J.; Lanius, R.A. Alexithymia in PTSD: Psychometric and FMRI studies. Ann. N. Y. Acad. Sci. 2006, 1071, 397–400. [Google Scholar] [CrossRef]
- Forcelli, P.A.; Waguespack, H.F.; Malkova, L. Defensive Vocalizations and Motor Asymmetry Triggered by Disinhibition of the Periaqueductal Gray in Non-human Primates. Front. Neurosci. 2017, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Thome, J.; Frewen, P.; Daniels, J.K.; Densmore, M.; Lanius, R.A. Altered connectivity within the salience network during direct eye gaze in PTSD. Borderline Pers. Disord. Emot. Dysregul. 2014, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Steuwe, C.; Daniels, J.K.; Frewen, P.A.; Densmore, M.; Pannasch, S.; Beblo, T.; Reiss, J.; Lanius, R.A. Effect of direct eye contact in PTSD related to interpersonal trauma: An fMRI study of activation of an innate alarm system. Soc. Cogn. Affect. Neurosci. 2014, 9, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Terpou, B.A.; Densmore, M.; Thome, J.; Frewen, P.; McKinnon, M.C.; Lanius, R.A. The Innate Alarm System and Subliminal Threat Presentation in Posttraumatic Stress Disorder: Neuroimaging of the Midbrain and Cerebellum. Chronic Stress 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Olivé, I.; Densmore, M.; Harricharan, S.; Théberge, J.; McKinnon, M.C.; Lanius, R. Superior colliculus resting state networks in post-traumatic stress disorder and its dissociative subtype. Hum. Brain Mapp. 2018, 39, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, A.; Zhan, M.; Ban, H.; Kida, I.; De Martino, F.; Vaessen, M.J.; de Gelder, B.; Amano, K. Threat Anticipation in Pulvinar and in Superficial Layers of Primary Visual Cortex (V1). Evidence from Layer-Specific Ultra-High Field 7T fMRI. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Bertini, C.; Pietrelli, M.; Braghittoni, D.; Ladavas, E. Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients. Front. Psychol. 2018, 9, 2329. [Google Scholar] [CrossRef] [Green Version]
- Koller, K.; Rafal, R.D.; Platt, A.; Mitchell, N.D. Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 2019, 128, 78–86. [Google Scholar] [CrossRef]
- McFadyen, J. Investigating the Subcortical Route to the Amygdala Across Species and in Disordered Fear Responses. J. Exp. Neurosci. 2019, 13, 1179069519846445. [Google Scholar] [CrossRef]
- Wei, P.; Liu, N.; Zhang, Z.; Liu, X.; Tang, Y.; He, X.; Wu, B.; Zhou, Z.; Liu, Y.; Li, J.; et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 2015, 6, 6756. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fu, K.; Feng, C.; Tang, L.; Zhang, J.; Huan, Y.; Cui, J.; Mu, Y.; Qi, S.; Xiong, L.; et al. Different regional gray matter loss in recent onset PTSD and non PTSD after a single prolonged trauma exposure. PLoS ONE 2012, 7, e48298. [Google Scholar] [CrossRef]
- Terpou, B.A.; Densmore, M.; Théberge, J.; Frewen, P.; McKinnon, M.C.; Lanius, R.A. Resting-state pulvinar-posterior parietal decoupling in PTSD and its dissociative subtype. Hum. Brain Mapp. 2018, 39, 4228–4240. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Lee, Y.J.; Park, I.; Kim, N.; Kim, S.; Jun, J.Y.; Yoo, S.Y.; Lee, S.H.; Kim, S.J. Resting State Functional Connectivity of the Thalamus in North Korean Refugees with and without Posttraumatic Stress Disorder. Sci. Rep. 2020, 10, 3194. [Google Scholar] [CrossRef] [Green Version]
- Rabellino, D.; Densmore, M.; Frewen, P.A.; Théberge, J.; McKinnon, M.C.; Lanius, R.A. Aberrant Functional Connectivity of the Amygdala Complexes in PTSD during Conscious and Subconscious Processing of Trauma-Related Stimuli. PLoS ONE 2016, 11, e0163097. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, J.E.; Hwang, J.; Kang, I.; Jeon, S.; Im, J.J.; Kim, B.R.; Lee, S.; Kim, G.H.; Rhim, H.; et al. Recovery from Posttraumatic Stress Requires Dynamic and Sequential Shifts in Amygdalar Connectivities. Neuropsychopharmacology 2017, 42, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Padilla-Coreano, N.; Do-Monte, F.H.; Quirk, G.J. A time-dependent role of midline thalamic nuclei in the retrieval of fear memory. Neuropharmacology 2012, 62, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Paydar, A.; Lee, B.; Gangadharan, G.; Lee, S.; Hwang, E.M.; Shin, H.S. Extrasynaptic GABAA receptors in mediodorsal thalamic nucleus modulate fear extinction learning. Mol. Brain 2014, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Salay, L.D.; Ishiko, N.; Huberman, A.D. A midline thalamic circuit determines reactions to visual threat. Nature 2018, 557, 183–189. [Google Scholar] [CrossRef]
- Baek, J.; Lee, S.; Cho, T.; Kim, S.W.; Kim, M.; Yoon, Y.; Kim, K.K.; Byun, J.; Kim, S.J.; Jeong, J.; et al. Neural circuits underlying a psychotherapeutic regimen for fear disorders. Nature 2019, 566, 339–343. [Google Scholar] [CrossRef]
- Bossini, L.; Santarnecchi, E.; Casolaro, I.; Koukouna, D.; Caterini, C.; Cecchini, F.; Fortini, V.; Vatti, G.; Marino, D.; Fernandez, I.; et al. Morphovolumetric changes after EMDR treatment in drug-naïve PTSD patients. Riv. Psichiatr. 2017, 52, 24–31. [Google Scholar] [CrossRef]
- Koch, S.B.J.; van Zuiden, M.; Nawijn, L.; Frijling, J.L.; Veltman, D.J.; Olff, M. Effects of intranasal oxytocin on distraction as emotion regulation strategy in patients with post-traumatic stress disorder. Eur. Neuropsychopharmacol. 2019, 29, 266–277. [Google Scholar] [CrossRef]
- Kessler, H.; Schmidt, A.C.; James, E.L.; Blackwell, S.E.; von Rauchhaupt, M.; Harren, K.; Kehyayan, A.; Clark, I.A.; Sauvage, M.; Herpertz, S.; et al. Visuospatial computer game play after memory reminder delivered three days after a traumatic film reduces the number of intrusive memories of the experimental trauma. J. Behav. Ther. Exp. Psychiatry 2020, 67, 101454. [Google Scholar] [CrossRef]
- Dremencov, E.; Lapshin, M.; Komelkova, M.; Alliluev, A.; Tseilikman, O.; Karpenko, M.; Pestereva, N.; Manukhina, E.; Downey, H.F.; Tseilikman, V. Chronic predator scent stress alters serotonin and dopamine levels in the rat thalamus and hypothalamus, respectively. Gen. Physiol. Biophys. 2019, 38, 187–190. [Google Scholar] [CrossRef]
- Han, F.; Xiao, B.; Wen, L.; Shi, Y. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings. Psychiatry Res. 2015, 232, 154–161. [Google Scholar] [CrossRef]
- Mahabir, M.; Tucholka, A.; Shin, L.M.; Etienne, P.; Brunet, A. Emotional face processing in post-traumatic stress disorder after reconsolidation impairment using propranolol: A pilot fMRI study. J. Anxiety Disord. 2015, 36, 127–133. [Google Scholar] [CrossRef] [Green Version]
- De Berardis, D.; Marini, S.; Serroni, N.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Mazza, M.; Tempesta, D.; Valchera, A.; Fornaro, M.; et al. Targeting the Noradrenergic System in Posttraumatic Stress Disorder: A Systematic Review and Meta-Analysis of Prazosin Trials. Curr. Drug Targets 2015, 16, 1094–1106. [Google Scholar] [CrossRef]
- Czermak, C.; Staley, J.K.; Kasserman, S.; Bois, F.; Young, T.; Henry, S.; Tamagnan, G.D.; Seibyl, J.P.; Krystal, J.H.; Neumeister, A. beta2 Nicotinic acetylcholine receptor availability in post-traumatic stress disorder. Int. J. Neuropsychopharmacol. 2008, 11, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Bengoetxea, X.; Goedecke, L.; Blaesse, P.; Pape, H.C.; Jungling, K. The micro-opioid system in midline thalamic nuclei modulates defence strategies towards a conditioned fear stimulus in male mice. J. Psychopharmacol. 2020. [Google Scholar] [CrossRef]
The Retinotectal Pathway in Fear-Related Learning in the Thalamus | Reference Number |
---|---|
SC directly modulates defense behavior | [69] |
SC is activated in social eye contact situations in PTSD patients | [70,71] |
Subliminal threat activates SC and periaqueductal gray | [72] |
Enhanced connectivity between SC and dorsal lateral prefrontal cortex in dissociative PTSD | [73] |
Pulvinar lesions disrupt implicit fear-related visual processing | [75] |
Pulvinar and V1 cortex contribute to fear anticipation | [74] |
Contribution of retinotectal pathway to implicit fear processing | [76,77] |
Contribution of retinotectal pathway to fear learning | [78] |
Smaller pulvinar in traumatized control | [79] |
Depletion of right pulvinar seed connectivity to sensory area in dissociative PTSD | [80] |
Discussion | Reference Number |
---|---|
Trauma-exposed control showed depleted connectivity between thalamus and postcentral gyrus | [81] |
Enhanced connectivity between the centromedial amygdala and pulvinar, and depletion between the basolateral amygdala and SC | [82] |
Amygdala−thalamus connection enhanced during recovery process | [83] |
EMDR | |
Contribution of mediodorsal thalamus to fear processing | [64,84,85,86] |
Animal EMDR model provides sustained activation between SC and mediodorsal thalamus with fear reducing effects | [87] |
EMDR reduced gray matter volume in the left thalamus | [88] |
Hyperbaric Oxygen Therapy (HBOT) | |
HBOT enhances FA in the thalamic radiation, left thalamus, and insula, with improved PTSD scores | [39] |
Oxytocin Administration | |
Enhanced activity in the left thalamus during tasks both in PTSD and controls | [89] |
Oxytocin administration decreased connectivity between left thalamus and amygdala in men with PTSD and traumatized controls, but increased connectivity in woman with PTSD | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshii, T. The Role of the Thalamus in Post-Traumatic Stress Disorder. Int. J. Mol. Sci. 2021, 22, 1730. https://doi.org/10.3390/ijms22041730
Yoshii T. The Role of the Thalamus in Post-Traumatic Stress Disorder. International Journal of Molecular Sciences. 2021; 22(4):1730. https://doi.org/10.3390/ijms22041730
Chicago/Turabian StyleYoshii, Takanobu. 2021. "The Role of the Thalamus in Post-Traumatic Stress Disorder" International Journal of Molecular Sciences 22, no. 4: 1730. https://doi.org/10.3390/ijms22041730
APA StyleYoshii, T. (2021). The Role of the Thalamus in Post-Traumatic Stress Disorder. International Journal of Molecular Sciences, 22(4), 1730. https://doi.org/10.3390/ijms22041730