Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach
Abstract
:1. Introduction
2. Results
2.1. Animals and Lesion Characterization
2.2. Gene Expression Profile in the Spinal Cord Segment Rostrally and Caudally to the Lesion Center of the Lesion
2.3. Bioinformatic Analysis and PPI Interaction from Cluster Analysis
2.4. In Vitro Evaluation of the Cd44 and Timp1 Response to Inflammation and Timp1 Protein Quantification in the Spinal Cord
3. Discussion
4. Materials and Methods
4.1. Animals and Surgery
4.2. Molecular Biology Analysis
4.3. Bioinformatic Data Analysis
4.4. Histology
4.5. Western Blot
4.6. Cell Cultures, Gene Expression Analysis and Immunocytochemistry
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPL | Days post-lesion |
ECM | Extracellular matrix |
MMPs | Metalloproteases |
OPC | Oligodendrocyte precursor cell |
SCI | Spinal cord injury |
References
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C.; et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sroga, J.M.; Jones, T.B.; Kigerl, K.A.; McGaughy, V.M.; Popovich, P.G. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J. Comp. Neurol. 2003, 462, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-H.; Ni, S.; Cao, Y.; Yin, X.; Wu, T.; Lu, H.; Hu, J.; Wu, H.; Lang, Y. The 3D characteristics of post-traumatic syringomyelia in a rat model: A propagation-based synchrotron radiation microtomography study. J. Synchrotron Radiat. 2017, 24, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.; Huang, W.; Kostusiak, M.; Pallier, P.; Michael-Titus, A.; Priestley, J. A characterization of white matter pathology following spinal cord compression injury in the rat. Neuroscience 2014, 260, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Abou-El-Hassan, H.; Bsat, S.; Sukhon, F.; Assaf, E.J.; Mondello, S.; Kobeissy, F.; Wang, K.K.W.; Weiner, H.L.; Omeis, I.A. Protein degradome of spinal cord injury: Biomarkers and potential therapeutic targets. Mol. Neurobiol. 2020, 57, 2702–2726. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, A.D.; Popovich, P.G. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp. Neurol. 2014, 258, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Dou, C.; Levine, J. Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J. Neurosci. 1994, 14, 7616–7628. [Google Scholar] [CrossRef]
- Jones, L.L.; Sajed, D.; Tuszynski, M.H. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: A balance of permissiveness and inhibition. J. Neurosci. 2003, 23, 9276–9288. [Google Scholar] [CrossRef] [PubMed]
- Pukos, N.; Goodus, M.T.; Sahinkaya, F.R.; McTigue, D.M. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019, 67, 2178–2202. [Google Scholar] [CrossRef]
- Haggerty, A.; Marlow, M.M.; Oudega, M. Extracellular matrix components as therapeutics for spinal cord injury. Neurosci. Lett. 2017, 652, 50–55. [Google Scholar] [CrossRef]
- Quraishe, S.; Forbes, L.H.; Andrews, M.R. The extracellular environment of the CNS: Influence on plasticity, sprouting, and axonal regeneration after spinal cord injury. Neural Plast. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kendziorski, C.M.; Newton, M.A.; Lan, H.; Gould, M.N. On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression proÿles. Stat. Med. 2003, 22, 3899–3914. [Google Scholar] [CrossRef]
- Kendziorski, C.; Zhang, Y.; Lan, H.; Attie, A.D. The efficiency of pooling mRNA in microarray experiments. Biostatistics 2003, 4, 465–477. [Google Scholar] [CrossRef]
- Borjini, N.; Fernández, M.; Giardino, L.; Calzà, L. Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. J. Neuroinflamm. 2016, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, M.; Baldassarro, V.A.; Capirossi, R.; Montevecchi, R.; Bonavita, J.; Cescatti, M.; Giovannini, T.; Giovannini, G.; Uneddu, M.; Giovanni, G.; et al. Possible strategies to optimize a biomarker discovery approach to correlate with neurological outcome in patients with spinal cord injury: A pilot study. J. Neurotrauma 2020, 37, 431–440. [Google Scholar] [CrossRef]
- Fernández, M.; Baldassarro, V.A.; Sivilia, S.; Giardino, L.; Calzà, L. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure. Glia 2016, 64, 1573–1589. [Google Scholar] [CrossRef] [PubMed]
- Baldassarro, V.A.; Krężel, W.; Fernández, M.; Schuhbaur, B.; Giardino, L.; Calzà, L. The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res. 2019, 37, 101443. [Google Scholar] [CrossRef]
- Wang, S.; Smith, G.M.; Selzer, M.E.; Li, S. Emerging molecular therapeutic targets for spinal cord injury. Expert Opin. Targets 2019, 23, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Kjell, J.; Götz, M. Filling the gaps-a call for comprehensive analysis of extracellular matrix of the glial scar in region- and injury-specific contexts. Front. Cell. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- O’Shea, T.M.; Burda, J.E.; Sofroniew, M.V. Cell biology of spinal cord injury and repair. J. Clin. Investig. 2017, 127, 3259–3270. [Google Scholar] [CrossRef]
- Liu, X.Z.; Xu, X.M.; Hu, R.; Du, C.; Zhang, S.X.; McDonald, J.W.; Dong, H.X.; Wu, Y.J.; Fan, G.S.; Jacquin, M.F.; et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 1997, 17, 5395–5406. [Google Scholar] [CrossRef] [Green Version]
- Tomko, P.; Farkaš, D.; Cizkova, D.; Vanický, I. Longitudinal enlargement of the lesion after spinal cord injury in the rat: A consequence of malignant edema? Spinal Cord 2016, 55, 255–263. [Google Scholar] [CrossRef]
- Bighinati, A.; Focarete, M.L.; Gualandi, C.; Pannella, M.; Giuliani, A.; Beggiato, S.; Ferraro, L.; Lorenzini, L.; Giardino, L.; Calzà, L.; et al. Improved functional recovery in rat spinal cord injury induced by a drug combination administered with an implantable polymeric delivery system. J. Neurotrauma 2020, 37, 1708–1719. [Google Scholar] [CrossRef]
- Kozlowski, P.; Raj, D.; Liu, J.; Lam, C.; Yung, A.C.; Tetzlaff, W. Characterizing white matter damage in rat spinal cord with quantitative MRI and histology. J. Neurotrauma 2008, 25, 653–676. [Google Scholar] [CrossRef] [PubMed]
- Burnside, E.R.; Bradbury, E.J. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 2014, 40, 26–59. [Google Scholar] [CrossRef] [PubMed]
- Moghieb, A.; Bramlett, H.M.; Das, J.H.; Yang, Z.; Selig, T.; Yost, R.A.; Wang, M.S.; Dietrich, W.D.; Wang, K.K.W. Differential neuroproteomic and systems biology analysis of spinal cord injury. Mol. Cell. Proteom. 2016, 15, 2379–2395. [Google Scholar] [CrossRef] [Green Version]
- Devaux, S.; Cizkova, D.; Quanico, J.; Franck, J.; Nataf, S.; Pays, L.; Hauberg-Lotte, L.; Maass, P.; Kobarg, J.H.; Kobeissy, F.; et al. Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol. Cell. Proteom. 2016, 15, 2641–2670. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, E.J.; Burnside, E.R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Buss, A.; Pech, K.; Kakulas, B.A.; Martin, D.; Schoenen, J.; Noth, J.; Brook, G.A. Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC Neurol. 2007, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Cui, Z.; Xia, X.; Liu, C.; Zhu, X.; Cao, J.; Wu, Y.; Zhou, L.; Ben, Z.; Song, Y.; et al. Matrix metalloproteinase-1 (MMP-1) expression in rat spinal cord injury model. Cell. Mol. Neurobiol. 2014, 34, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H.; Suzuki, K.; Morodomi, T.; Enghild, J.J.; Salvesen, G. Activation mechanisms of the precursors of matrix metal-loproteinases 1, 2 and 3. Matrix 1992, 1, 237–244. [Google Scholar] [PubMed]
- Okada, M.; Miyamoto, O.; Shibuya, S.; Zhang, X.; Yamamoto, T.; Itano, T. Expression and role of type I collagen in a rat spinal cord contusion injury model. Neurosci. Res. 2007, 58, 371–377. [Google Scholar] [CrossRef]
- Fox, M.A. Novel roles for collagens in wiring the vertebrate nervous system. Curr. Opin. Cell Biol. 2008, 20, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Hubert, T.; Grimal, S.; Carroll, P.; Fichard-Carroll, A. Collagens in the developing and diseased nervous system. Cell. Mol. Life Sci. 2009, 66, 1223–1238. [Google Scholar] [CrossRef] [PubMed]
- Klapka, N.; Müller, H.W. Collagen matrix in spinal cord injury. J. Neurotrauma 2006, 23, 422–436. [Google Scholar] [CrossRef]
- Tang, B.L.; Neo, S.H. Collagen 1 signaling at the central nervous system injury site and astrogliosis. Neural Regen. Res. 2017, 12, 1600–1601. [Google Scholar] [CrossRef]
- Kelly, K.K.; MacPherson, A.M.; Grewal, H.; Strnad, F.; Jones, J.W.; Yu, J.; Pierzchalski, K.; Kane, M.A.; Herson, P.S.; Siegenthaler, J.A.; et al. Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neurosci. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Kipnis, J. Thrombospondin 1-a key astrocyte-derived neurogenic factor. FASEB J. 2010, 24, 1925–1934. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.; Meng, K.; Gu, C.; Wang, L.; Zhang, X. Thrombospondin-1 modified bone marrow mesenchymal stem cells (BMSCs) promote neurite outgrowth and functional recovery in rats with spinal cord injury. Oncotarget 2017, 8, 96276–96289. [Google Scholar] [CrossRef] [Green Version]
- Hennekinne, L.; Colasse, S.; Triller, A.; Renner, M. Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons. J. Neurosci. 2013, 33, 11432–11439. [Google Scholar] [CrossRef] [Green Version]
- Tyzack, G.E.; Sitnikov, S.; Barson, D.; Adams-Carr, K.L.; Lau, N.K.; Kwok, J.C.; Zhao, C.; Franklin, R.J.M.; Karadottir, R.T.; Fawcett, J.W.; et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun. 2014, 5, 4294. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-J.; Maier, K.; Fuse, S.; Willis, A.I.; Olson, E.; Nesselroth, S.; Sumpio, B.E.; Gahtan, V. Thrombospondin-1-induced migration is functionally dependent upon focal adhesion kinase. Vasc. Endovasc. Surg. 2008, 42, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-H.; Lacagnina, M.; Leuer-Bisciotti, K.; Pröschel, C. Astroglial-derived periostin promotes axonal regeneration after spinal cord injury. J. Neurosci. 2014, 34, 2438–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, K.; Kobayakawa, K.; Saito, T.; Hara, M.; Kijima, K.; Ohkawa, Y.; Harada, A.; Okazaki, K.; Ishihara, K.; Yoshida, S.; et al. Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am. J. Pathol. 2017, 187, 639–653. [Google Scholar] [CrossRef] [Green Version]
- Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015, 44, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.; Noble-Haeusslein, L.J.; Levine, J.M.; Santucci, A.D.; Reeves, T.M.; Phillips, L.L. Matrix metalloproteinase signals following neurotrauma are right on cue. Cell. Mol. Life Sci. 2019, 76, 3141–3156. [Google Scholar] [CrossRef] [PubMed]
- Nicaise, A.M.; Johnson, K.M.; Willis, C.M.; Guzzo, R.M.; Crocker, S.J. TIMP-1 Promotes oligodendrocyte differentiation through receptor-mediated signaling. Mol. Neurobiol. 2019, 56, 3380–3392. [Google Scholar] [CrossRef]
- Houben, E.; Janssens, K.; Hermans, D.; Vandooren, J.; Haute, C.V.D.; Schepers, M.; Vanmierlo, T.; Lambrichts, I.; Van Horssen, J.; Baekelandt, V.; et al. Oncostatin M-induced astrocytic tissue inhibitor of metalloproteinases-1 drives remyelination. Proc. Natl. Acad. Sci. USA 2020, 117, 5028–5038. [Google Scholar] [CrossRef]
- Baron, W.; Colognato, H.; Ffrench-Constant, C. Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 2005, 49, 467–479. [Google Scholar] [CrossRef]
- Shilts, J.; Broadie, K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. J. Cell Sci. 2017, 130, 2344–2358. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Angert, M.; Nishihara, T.; Shubayev, I.; Dolkas, J.; Shubayev, V.I. Spinal glia division contributes to conditioning lesion–induced axon regeneration into the injured spinal cord. J. Neuropathol. Exp. Neurol. 2015, 74, 500–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, E.L.; Yong, V.W. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol. 2018, 71, 432–442. [Google Scholar] [CrossRef]
- Piao, J.-H.; Wang, Y.; Duncan, I. CD44 is required for the migration of transplanted oligodendrocyte progenitor cells to focal inflammatory demyelinating lesions in the spinal cord. Glia 2012, 61, 361–367. [Google Scholar] [CrossRef]
- Struve, J.; Maher, P.C.; Li, Y.-Q.; Kinney, S.; Fehlings, M.G.; Kuntz, C.; Sherman, L.S. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia 2005, 52, 16–24. [Google Scholar] [CrossRef]
- Moon, C.; Heo, S.; Sim, K.-B.; Shin, T. Upregulation of CD44 expression in the spinal cords of rats with clip compression injury. Neurosci. Lett. 2004, 367, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.; Ghorpade, A. Tissue inhibitor of metalloproteinase (TIMP)-1: The TIMPed balance of matrix metalloproteinases in the central nervous system. J. Neurosci. Res. 2003, 74, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995, 12, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Baldassarro, V.A.; Marchesini, A.; Giardino, L.; Calzà, L. Vulnerability of primary neurons derived from Tg2576 Alzheimer mice to oxygen and glucose deprivation: Role of intraneuronal amyloid-β accumulation and astrocytes. Dis. Model. Mech. 2017, 10, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Specificity | Genetic Locus | Forward Sequence (5’–3’) | Reverse Sequence (5’–3’) |
---|---|---|---|---|
Acan | rat | NM_022190.1 | GTGAGATCGACCAGGAGCCA | TCGGGAAAGTGGCGATAACA |
Agrin | rat | NM_175754.1 | CCTGCAACATCTGCTTGATCC | GGATTCCAGGTTTGTAGTTGCTG |
Bcan | rat | NM_001033665.1 | GGACCTCACAAGTTCTTCCAAGT | CTTTCAGGTCATCAGCGAGGG |
Cd44 | rat | NM_012924.2 | AACTACAGCCTTGATGACTACCC | ATGACTCTTGGACTCTGATGGTT |
Cd44 | mouse | NM_009851.2 | AGAAGAGCACCCCAGAAAGC | CTTGCAATGGTGGCCAAGG |
Cspg4 | rat | NM_031022.1 | AACAGGAAAAAGCACCCCCA | ACCTGTCTTGTTGCGTTTGC |
Fn1 | rat | NM_019143.2 | AAGACAGATGAGCTTCCCCAA | TGAACTGTGGAGGGAACATCC |
Gapdh | rat/mouse | NM_001113417.1 | GGCAAGTTCAATGGCACAGTCAAG | CATACTCAGCACCAGCATCAC |
Lgals1 | rat | NM_019904.1 | TTCAATCATGGCCTGTGGTCT | CTCTCCCCGAACTTTGAGACA |
Ntn1 | rat | NM_053731.2 | AGGACTATGCTGTCCAGATCCA | TACGACTTGTGCCCTGCTTG |
Postn | rat | NM_001108550.1 | TGCAAAAAGACACACCTGCAAA | GGCCTTCTCTTGATCGCCTT |
Rplp1 | rat | NM_001007604.2 | GGCAGTCTACAGCATGGCTT | GTTGACATTGGCCAGAGCCT |
Sell | rat | NM_019177.3 | ATCGCAGGAAAGGATGGATGAT | GGTTTTTGGTGGCGGTTGTT |
Slit1 | rat | NM_022953.2 | CGCAAGGGCGCATCGT | GGGGCTATCTCCAGGTGCTAT |
Slit2 | rat | NM_022632.2 | GGGGCCATAATGTAGCAGAGG | GACTGGTGACCTTCTTCCTCA |
Tnc | rat | NM_053861.1 | ATTGTCTACCTCTCTGGAATTGCTC | TTCCGGTTCAGCTTCTGTGG |
Tnr | rat | NM_013045.1 | CCTCAATGGGGAGTTAAGCCA | CTGGAAAACAATCCAGCCGC |
Timp1-a | mouse | NM_011593.2 | TGGGTGGATGAGTAATGCGTC | GGCCATCATGGTATCTCTGGT |
Timp1-b | mouse | NM_001294280.2 | CAACTCGGACCTGGATGCTAA | ACTCTTCACTGCGGTTCTGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bighinati, A.; Khalajzeyqami, Z.; Baldassarro, V.A.; Lorenzini, L.; Cescatti, M.; Moretti, M.; Giardino, L.; Calzà, L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach. Int. J. Mol. Sci. 2021, 22, 1744. https://doi.org/10.3390/ijms22041744
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach. International Journal of Molecular Sciences. 2021; 22(4):1744. https://doi.org/10.3390/ijms22041744
Chicago/Turabian StyleBighinati, Andrea, Zahra Khalajzeyqami, Vito Antonio Baldassarro, Luca Lorenzini, Maura Cescatti, Marzia Moretti, Luciana Giardino, and Laura Calzà. 2021. "Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach" International Journal of Molecular Sciences 22, no. 4: 1744. https://doi.org/10.3390/ijms22041744
APA StyleBighinati, A., Khalajzeyqami, Z., Baldassarro, V. A., Lorenzini, L., Cescatti, M., Moretti, M., Giardino, L., & Calzà, L. (2021). Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach. International Journal of Molecular Sciences, 22(4), 1744. https://doi.org/10.3390/ijms22041744