Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Cell Culture and Protein Digest
3.2. Fe-IMAC Column Phosphopeptide Enrichment
3.3. Porous Graphitic Carbon Separation
3.4. Hydrophilic Strong Anion Exchange Separation
3.5. LC-MS/MS Analysis
3.6. Peptide and Protein Identification and Data Analysis
3.7. In Silico and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, P. The role of protein phosphorylation in human health and disease. Eur. J. Biochem. 2001, 268, 5001–5010. [Google Scholar] [CrossRef]
- Hunter, T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 1995, 80, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.N. The regulation of protein phosphorylation. Biochem. Soc. Trans. 2009, 37, 627–641. [Google Scholar] [CrossRef]
- Engholm-Keller, K.; Larsen, M.R. Technologies and challenges in large-scale phosphoproteomics. Proteomics 2013, 13, 910–931. [Google Scholar] [CrossRef] [PubMed]
- Solari, F.A.; Dell’Aica, M.; Sickmann, A.; Zahedi, R.P. Why phosphoproteomics is still a challenge. Mol. Biosyst. 2015, 11, 1487–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macek, B.; Mann, M.; Olsen, J.V. Global and site-specific quantitative phosphoproteomics: Principles and applications. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 199–221. [Google Scholar] [CrossRef]
- Doll, S.; Burlingame, A.L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem. Biol. 2015, 10, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Needham, E.J.; Parker, B.L.; Burykin, T.; James, D.E.; Humphrey, S.J. Illuminating the dark phosphoproteome. Sci. Signal. 2019, 12, eaau8645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, M.; Shen, H.; Wang, L.; Luo, S.; Lin, L.; Yang, J.; Tian, R. Identification, quantification, and site localization of protein posttranslational modifications via mass spectrometry-based proteomics. Adv. Exp. Med. Biol. 2016, 919, 345–382. [Google Scholar] [PubMed]
- Wilkes, E.; Cutillas, P.R. Label-free phosphoproteomic approach for kinase signaling analysis. Methods Mol. Biol. 2017, 1636, 199–217. [Google Scholar]
- Piersma, S.R.; Knol, J.C.; de Reus, I.; Labots, M.; Sampadi, B.K.; Pham, T.V.; Ishihama, Y.; Verheul, H.M.; Jimenez, C.R. Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines. J. Proteom. 2015, 127, 247–258. [Google Scholar] [CrossRef]
- Song, L.; Wang, F.; Dong, Z.; Hua, X.; Xia, Q.J. Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide. Proteomics 2017, 154, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; D’Souza, R.C.; Tyanova, S.; Schaab, C.; Wiśniewski, J.R.; Cox, J.; Mann, M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014, 8, 1583–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Isserlin, R.; Lugowski, A.; Kuzmanov, U.; Emili, A. Large-scale label-free phosphoproteomics: From technology to data interpretation. Bioanalysis 2014, 6, 2403–2420. [Google Scholar] [CrossRef]
- Jurcik, J.; Sivakova, B.; Cipakova, I.; Selicky, T.; Stupenova, E.; Jurcik, M.; Osadska, M.; Barath, P.; Cipak, L. Phosphoproteomics meets chemical genetics: Approaches for global mapping and deciphering the phosphoproteome. Int. J. Mol. Sci. 2020, 21, 7637. [Google Scholar] [CrossRef] [PubMed]
- Fila, J.; Honys, D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2012, 43, 1025–2047. [Google Scholar] [CrossRef] [Green Version]
- Hogrebe, A.; Von Stechow, L.; Bekker-Jensen, D.B.; Weinert, B.T.; Kelstrup, C.D.; Olsen, J.V. Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat. Commun. 2018, 9, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, W.; Evans, C.A.; Landels, A.; Pham, T.K.; Wright, P.C. Phosphopeptide enrichment for phosphoproteomic analysis - A tutorial and review of novel materials. Anal. Chim. Acta 2020, 1129, 158–180. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, M.; Dong, J.; Corradini, E.; Cristobal, A.; Heck, A.J.; Zou, H.; Mohammed, S. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat. Protoc. 2013, 8, 461–480. [Google Scholar] [CrossRef]
- Tsai, C.F.; Hsu, C.C.; Hung, J.N.; Wang, Y.T.; Choong, W.K.; Zeng, M.Y.; Lin, P.Y.; Hong, R.W.; Sung, T.Y.; Chen, Y.J. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal. Chem. 2014, 86, 685–693. [Google Scholar] [CrossRef]
- Lai, A.C.Y.; Tsai, C.F.; Hsu, C.C.; Sun, Y.N.; Chen, Y.J. Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun. Mass Spectrom. 2012, 26, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, B.; Rendell, N.; Edwards, M.; Katan, M.; Zimmermann, J.G. Evaluation of phosphopeptide enrichment strategies for quantitative TMT analysis of complex network dynamics in cancer-associated cell signalling. EuPA Open Proteom. 2015, 6, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Ruprecht, B.; Koch, H.; Medard, G.; Mundt, M.; Kuster, B.; Lemeer, S. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol. Cell. Prot. 2015, 14, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Barret, D.; Pawula, M.; Knaggs, R.; Shaw, P. Retention behavior of morphine and its metabolites on a porous graphitic carbon column. Chromatographia 1998, 47, 667–672. [Google Scholar] [CrossRef]
- Vacratsis, P.O.; Phinney, B.S.; Gage, D.A.; Gallo, K.A. Identification of in vivo phosphorylation sites of MLK3 by mass spectrometry and phosphopeptide mapping. Biochemistry 2002, 41, 5613–5624. [Google Scholar] [CrossRef]
- Huraiova, B.; Kanovits, J.; Polakova, S.B.; Cipak, L.; Benko, Z.; Sevcovicova, A.; Anrather, D.; Ammerer, G.; Duncan, C.D.S.; Mata, J.; et al. Proteomic analysis of meiosis and characterization of novel short open reading frames in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2020, 19, 1777–1785. [Google Scholar] [CrossRef]
- Walker, L.A.; Medway, A.M.; Walker, J.S.; Cleveland, J.C.; Buttrick, P.M. Tissue procurement strategies affect the protein biochemistry of human heart samples. J. Muscle Res. Cell. Motil. 2011, 31, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.A.; Bulygin, V.V.; Moran, D.M.; Taylor, C.; Scholin, C. Examination of microbial proteome preservation techniques applicable to autonomous environmental sample collection. Front. Microbiol. 2011, 2, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.; Kim, S.J.; Lee, S.E.; Kwon, W.; Kim, H.; Han, Y.; Jang, J.Y.; Kim, M.S.; Lee, S.W. Comprehensive proteome and phosphoproteome profiling shows negligible influence of RNAlater on protein abundance and phosphorylation. Clin. Proteom. 2019, 16, 18. [Google Scholar] [CrossRef]
- Almarza, J.; Rincon, L.; Bahsas, A.; Brito, F. Molecular mechanism for the denaturation of proteins by urea. Biochemistry 2009, 48, 7608–7613. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, T.; Cao, R.; Liu, Z.; Shen, J.; Chen, P.; Wang, X.; Liang, S. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J. Proteome Res. 2006, 5, 2547–2553. [Google Scholar] [CrossRef]
- Masuda, T.; Tomita, M.; Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008, 7, 731–740. [Google Scholar] [CrossRef]
- León, I.R.; Schwämmle, V.; Jensen, O.N.; Sprenger, R.R. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol. Cell. Proteom. 2013, 12, 2992–3005. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Triscari, J.M.; Tseng, G.C.; Pasa-Tolic, L.; Lipton, M.S.; Smith, R.D.; Wysocki, V.H. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal. Chem. 2005, 77, 5800–5813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickhut, C.; Feldmann, I.; Lambert, J.; Zahedi, R.P. Impact of digestion conditions on phosphoproteomics. J. Proteome Res. 2014, 13, 2761–2770. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Zhang, J.; Brasier, A.R.; Zhao, Y. Quantitative assessment of the effects of trypsin digestion methods on affinity purification-mass spectrometry-based protein-protein interaction analysis. J. Proteome Res. 2017, 16, 3068–3082. [Google Scholar] [CrossRef]
- Gilmore, J.M.; Kettenbach, A.N.; Gerber, S.A. Increasing phosphoproteomic coverage through sequential digestion by complementary proteases. Anal. Bioanal. Chem. 2012, 402, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewski, J.R.; Mann, M. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal. Chem. 2012, 84, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Gonczarowska-Jorge, H.; Loroch, S.; Dell’Aica, M.; Sickmann, A.; Roos, A.; Zahedi, R.P. Quantifying missing (phospho)proteome regions with the broad-specificity protease subtilisin. Anal. Chem. 2017, 89, 13137–13145. [Google Scholar] [CrossRef]
- Ruprecht, B.; Roesli, C.; Lemeer, S.; Kuster, B. MALDI-TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome. Proteomics 2016, 16, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Gonczarowska-Jorge, H.; Dell’Aica, M.; Dickhut, C.; Zahedi, R.P. Variable digestion strategies for phosphoproteomics analysis. Methods Mol. Biol. 2016, 1355, 225–239. [Google Scholar] [PubMed]
- Bodenmiller, B.; Mueller, L.N.; Mueller, M.; Domon, B.; Aebersold, R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 2007, 4, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Leitner, A.; Sturm, M.; Lindner, W. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: A review. Anal. Chim. Acta 2011, 703, 19–30. [Google Scholar] [CrossRef]
- Thingholm, T.E.; Larsen, M.R. Sequential elution from IMAC (SIMAC): An efficient method for enrichment and separation of mono- and multi-phosphorylated peptides. Methods Mol. Biol. 2016, 1355, 147–160. [Google Scholar]
- Yeh, T.T.; Ho, M.Y.; Chen, W.Y.; Hsu, Y.C.; Ku, W.C.; Tseng, H.W.; Chen, S.T.; Chen, S.F. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 3417–3424. [Google Scholar] [CrossRef]
- Li, R. Cytokinesis in development and disease: Variations on a common theme. Cell. Mol. Life Sci. 2007, 64, 3044–3058. [Google Scholar] [CrossRef] [PubMed]
- Guertin, D.A.; Trautmann, S.; McCollum, D. Cytokinesis in eukaryotes. Microbiol. Mol. Biol. Rev. 2002, 66, 155–178. [Google Scholar] [CrossRef] [Green Version]
- Pollard, T.D. Mechanics of cytokinesis in eukaryotes. Curr. Opin. Cell Biol. 2010, 22, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Pollard, T.D.; Wu, J.Q. Understanding cytokinesis: Lessons from fission yeast. Nat. Rev. Mol. Cell. Biol. 2010, 11, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Hercyk, B.S.; Onwubiko, U.N.; Das, M.E. Coordinating septum formation and the actomyosin ring during cytokinesis in Schizosaccharomyces pombe. Mol. Microbiol. 2019, 112, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Kettenbach, A.N.; Deng, L.; Wu, Y.; Baldissard, S.; Adamo, M.E.; Gerber, S.A.; Moseley, J.B. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Mol. Cell. Proteom. 2015, 14, 1275–1287. [Google Scholar] [CrossRef] [Green Version]
- Villar-Tajadura, M.A.; Coll, P.M.; Madrid, M.; Cansado, J.; Santos, B.; Pérez, P. Rga2 is a Rho2 GAP that regulates morphogenesis and cell integrity in S. pombe. Mol. Microbiol. 2008, 70, 867–881. [Google Scholar] [CrossRef] [PubMed]
- Soto, T.; Villar-Tajadura, M.A.; Madrid, M.; Vicente, J.; Gacto, M.; Pérez, P.; Cansado, J. Rga4 modulates the activity of the fission yeast cell integrity MAPK pathway by acting as a Rho2 GTPase-activating protein. J. Biol. Chem. 2010, 285, 11516–11525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Nuñez, I.; Rodriguez, M.; Wiley, D.J.; Rodriguez, J.; Sarkeshik, A.; Yates, J.R., 3rd; Buchwald, P.; Verde, F. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis. Mol. Biol. Cell. 2015, 26, 3520–3534. [Google Scholar] [CrossRef]
- Zheng, S.; Dong, F.; Rasul, F.; Yao, X.; Jin, Q.W.; Zheng, F.; Fu, C. Septins regulate the equatorial dynamics of the separation initiation network kinase Sid2p and glucan synthases to ensure proper cytokinesis. FEBS J. 2018, 285, 2468–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
Samples | Protein Groups | Peptides | Phosphosites | |||
---|---|---|---|---|---|---|
PGC | SAX | PGC | SAX | PGC | SAX | |
S1 | 2575 | 2820 | 10245 | 14509 | 3690 | 4629 |
S2 | 2581 | 2758 | 10813 | 13529 | 4213 | 4522 |
S3 | 2512 | 2753 | 9597 | 13909 | 3628 | 4802 |
S4 | 2463 | 2705 | 8855 | 12999 | 3628 | 4725 |
Unique | 2760 | 2905 | 13,248 | 16,338 | 5149 | 5875 |
3139 | 22,240 | 8353 |
LFQ Phosphoproteomics Steps | Duration (h) |
---|---|
Denaturation, reduction, and alkylation | 3 |
Tryptic digestion | 16 |
Reversed-phase chromatography, ethyl acetate extraction | 4 |
Fe-IMAC enrichment for phosphopeptides | 5 |
PGC and SAX fractionation, reversed phase chromatography | 3 (PGC)/9 (SAX) |
LC-MS/MS analysis | 14 |
Protein identification, in silico analysis | 4 |
Total Time: | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivakova, B.; Jurcik, J.; Lukacova, V.; Selicky, T.; Cipakova, I.; Barath, P.; Cipak, L. Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies. Int. J. Mol. Sci. 2021, 22, 1747. https://doi.org/10.3390/ijms22041747
Sivakova B, Jurcik J, Lukacova V, Selicky T, Cipakova I, Barath P, Cipak L. Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies. International Journal of Molecular Sciences. 2021; 22(4):1747. https://doi.org/10.3390/ijms22041747
Chicago/Turabian StyleSivakova, Barbara, Jan Jurcik, Veronika Lukacova, Tomas Selicky, Ingrid Cipakova, Peter Barath, and Lubos Cipak. 2021. "Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies" International Journal of Molecular Sciences 22, no. 4: 1747. https://doi.org/10.3390/ijms22041747
APA StyleSivakova, B., Jurcik, J., Lukacova, V., Selicky, T., Cipakova, I., Barath, P., & Cipak, L. (2021). Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies. International Journal of Molecular Sciences, 22(4), 1747. https://doi.org/10.3390/ijms22041747