Strong Dependence between Tryptophan-Related Fluorescence of Urine and Malignant Melanoma
Abstract
:1. Introduction
2. Results
2.1. Fluorescence Measurements in Control and Malignant Melanoma Group
2.2. Confrontation of Fluorescence Analysis and Histological Findings in Malignant Melanoma Group
3. Discussion
4. Materials and Methods
4.1. Composition of the Study Group
4.2. Urine Samples
4.3. Instrumentation and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valko-Rokytovská, M.; Hubková, B.; Birková, A.; Mareková, M. Factors Affecting Fluorescence Analysis of Diagnostically Important Urinary Metabolites—Influence of Mixture Composition. Spectrosc. Lett. 2014, 48, 227–233. [Google Scholar] [CrossRef]
- Birková, A.; Oboril, J.; Kréta, R.; Čižmárová, B.; Hubková, B.; Šteffeková, Z.; Genči, J.; Paralič, J.; Mareková, M. Human fluorescent profile of urine as a simple tool of mining in data from autofluorescence spectroscopy. Biomed. Signal Process. Control. 2020, 56, 101693. [Google Scholar] [CrossRef]
- Masilamani, V.; Vijmasi, T.; Al Salhi, M.; Govindaraj, K.; Vijaya-Raghavan, A.P.; Antonisamy, B. Cancer detection by native fluorescence of urine. J. Biomed. Opt. 2010, 15, 057003. [Google Scholar] [CrossRef] [PubMed]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko-Rokytovská, M.; Očenáš, P.; Salayová, A.; Kostecká, Z. New Developed UHPLC Method for Selected Urine Metabolites. J. Chromatogr. Sep. Tech. 2018, 9, 2. [Google Scholar] [CrossRef]
- Zvarik, M.; Martinicky, D.; Hunakova, L.; Lajdova, I.; Sikurova, L. Fluorescence characteristics of human urine from normal individuals and ovarian cancer patients. Neoplasma 2013, 60, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Birkova, A.; Grešová, A.; Steffekova, Z.; Kraus, V.; Ostró, A.; Toth, R.; Mareková, M. Changes in urine autofluorescence in ovarian cancer patients. Neoplasma 2014, 61, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Lwin, T.M.; Hoffman, R.M.; Bouvet, M. The development of fluorescence guided surgery for pancreatic cancer: From bench to clinic. Expert Rev. Anticancer. Ther. 2018, 18, 651–662. [Google Scholar] [CrossRef]
- Veys, I.; Pop, C.; Barbieux, R.; Moreau, M.; Noterman, D.; De Neubourg, F.; Nogaret, J.; Liberale, G.; Larsimont, D.; Bourgeois, P. ICG Fluorescence Imaging as a New Tool for Optimization of Pathological Evaluation in Breast Cancer Tumors after Neo-adjuvant Chemotherapy. PLoS ONE 2018, 13, e0197857. [Google Scholar] [CrossRef] [Green Version]
- Sordillo, L.A.; Sordillo, P.P.; Budansky, Y.; Pu, Y.; Alfano, R.R. Optical Spectral Fingerprints of Tissues from Patients with Different Breast Cancer Histologies Using a Novel Fluorescence Spectroscopic Device. Technol. Cancer Res. Treat. 2013, 12, 455–461. [Google Scholar] [CrossRef]
- Kollarik, B.; Zvarik, M.; Bujdak, P.; Weibl, P.; Rybar, L.; Sikurova, L.; Hunakova, L. Urinary Fl Uorescence Analysis in Diagnosis of Bladder Cancer. Neoplasma 2018, 65, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko-Rokytovska, M.; Bruchatá, K.; Šimková, J.; Milkovicova, M.; Kostecka, Z. Current trends in the treatment of malignant melanoma. Neoplasma 2016, 63, 333–341. [Google Scholar] [CrossRef]
- Levine, S.M.; Shapiro, R.L. Surgical Treatment of Malignant Melanoma. Dermatol. Clin. 2012, 30, 487–501. [Google Scholar] [CrossRef]
- Slominski, A.; Zmijewski, M.A.; Pawelek, J.M. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012, 25, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Zucca, F.A.; Segura-Aguilar, J.; Ferrari, E.; Muñoz, P.; Paris, I.; Sulzer, D.; Sarna, T.; Casella, L.; Zecca, L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol. 2017, 155, 96–119. [Google Scholar] [CrossRef]
- Slominski, A.T.; Pisarchik, A.; Semak, I.; Sweatman, T.; Wortsman, J.; Szczesniewski, A.; Slugocki, G.; McNulty, J.; Kauser, S.; Tobin, D.J.; et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 2002, 16, 896–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Park, M.; Kim, S.; Choo, H.P.; Lee, A.; Lee, C. Serotonin induces melanogenesis via serotonin receptor 2A. Br. J. Dermatol. 2011, 165, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Valko-Rokytovská, M.; Hubková, B.; Birková, A.; Mašlanková, J.; Stupák, M.; Zábavníková, M.; Čižmárová, B.; Mareková, M. Specific Urinary Metabolites in Malignant Melanoma. Medicina 2019, 55, 145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pu, Y.; Jianpeng, X.; Pratavieira, S.; Xu, B.; Achilefu, S.; Alfano, R.R. Tryptophan as the Fingerprint for Distin-guishing Aggressiveness among Breast Cancer Cell Lines Using Native Fluorescence Spectroscopy Aggressiveness among Breast Cancer Cell Lines Using. J. Biomed. Opt. 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, R.; Aruna, P.R.; Koteeswaran, D.; Padmanabhan, L.; Muthuvelu, K.; Rai, R.R.; Thamilkumar, P.; Krishna, C.M.; Ganesan, S. Characterization and Diagnosis of Cancer by Native Fluorescence Spectroscopy of Human Urine. Photochem. Photobiol. 2012, 89, 483–491. [Google Scholar] [CrossRef]
- Bilská, K.; Šteffeková, Z.; Birková, A.; Mareková, M.; Ledecký, V.; Hluchý, M.; Kisková, T. The use of native fluorescence analysis of synovial fluid in the diagnosis of medial compartment disease in medium- and large-breed dogs. J. Veter- Diagn. Investig. 2016, 28, 332–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chwirot, B.W.; Sypniewska, N.; Michniewicz, Z.; Redzinski, J.; Chwirot, S.; Kurzawski, G.; Ruka, W. Fluorescence In Situ Detection of Human Cutaneous Melanoma: Study of Diagnostic Parameters of the Method. J. Investig. Dermatol. 2001, 117, 1449–1451. [Google Scholar] [CrossRef] [Green Version]
- Borisova, E. Fluorescence detection improves malignant melanoma diagnosis. SPIE Newsroom 2006. [Google Scholar] [CrossRef]
- Elwood, J.M.; Williamson, C.; Stapleton, P.J. Malignant melanoma in relation to moles, pigmentation, and exposure to fluorescent and other lighting sources. Br. J. Cancer 1986, 53, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Beral, V.; Evans, S.; Shaw, H.; Milton, G. Malignant melanoma and exposure to fluorescent lighting at work. Lancet 1982, 320, 290–293. [Google Scholar] [CrossRef]
- Špaková, I.; Dubayová, K.; Nagyová, V.; Mareková, M. Fluorescence Biomarkers of Malignant Melanoma Detectable in Urine. Open Chem. 2020, 18, 898–910. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: New York, NY, USA, 1999; ISBN 978-1-4757-3063-0. [Google Scholar]
- Khatun, M.; Jana, G.C.; Nayim, S.; Das, S.; Patra, A.; Dhal, A.; Hossain, M. Hydrophobic ring substitution on 9-O position of berberine act as a selective fluorescent sensor for the recognition of bovine serum albumin. Microchem. J. 2020, 153, 104453. [Google Scholar] [CrossRef]
- Belter, B.; Haase-Kohn, C.; Pietzsch, J. Biomarkers in Malignant Melanoma: Recent Trends and Critical Perspective. In Cutaneous Melanoma: Etiology and Therapy; Codon Publications: Singapore, 2017; pp. 39–56. [Google Scholar]
- Wakamatsu, K.; Fukushima, S.; Minagawa, A.; Omodaka, T.; Hida, T.; Hatta, N.; Takata, M.; Uhara, H.; Okuyama, R.; Ihn, H. Significance of 5-S-Cysteinyldopa as a Marker for Melanoma. Int. J. Mol. Sci. 2020, 21, 432. [Google Scholar] [CrossRef] [Green Version]
- Hara, H.; Walsh, N.; Yamada, K.; Jimbow, K. High Plasma Level of a Eumelanin Precursor, 6-Hydroxy-5-Methoxyindole-2-Carboxylic Acid as a Prognostic Marker for Malignant Melanoma. J. Investig. Dermatol. 1994, 102, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Ghisaidoobe, A.B.T.; Chung, S.J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef]
- Funai, K.; Honzawa, K.; Suzuki, M.; Momiki, S.; Asai, K.; Kasamatsu, N.; Kawase, A.; Shinke, T.; Okada, H.; Nishizawa, S.; et al. Urinary fluorescent metabolite O-aminohippuric acid is a useful biomarker for lung cancer detection. Metabolomics 2020, 16, 1–8. [Google Scholar] [CrossRef]
- Roy, R.; Louis, G.; Loughlin, K.R.; Wiederschain, D.; Kilroy, M.; Lamb, C.C.; Zurakowski, D.; Moses, M.A. Tumor-Specific Urinary MMP Fingerprinting: Identification of High Molecular Weight Urinary MMP Species. Clin Cancer Res. 2008, 14, 6610–6617. [Google Scholar] [CrossRef] [Green Version]
- Giricz, O.; Lauer, J.L.; Fields, G.B. Variability in melanoma metalloproteinase expression profiling. J. Biomol. Tech. JBT 2010, 21, 194–204. [Google Scholar]
- Keung, E.Z.; Gershenwald, J.E. The eight edition American Joint Committee on Cancer (AJCC) melanoma staging system: Implications for melanoma treatment and care. Expert Rev. Anticancer Ther. 2018, 18, 775–784. [Google Scholar] [CrossRef]
λ (nm) | Group | p-Value of Student’s t-Test | |
---|---|---|---|
Control | Malignant Melanoma | ||
250 | 9.8 ± 2.6 | 9.6 ± 5.1 | 0.74 |
275 | 171.4 ± 51.2 | 199.7 ± 68.8 | 0.00069 |
300 | 134.8 ± 40.7 | 204.4 ± 85.7 | 3.5 × 10−12 |
325 | 228.1 ± 78.9 | 273.1 ± 146.2 | 0.0056 |
350 | 492.9 ± 128.5 | 527.5 ± 175.9 | 0.098 |
375 | 417.4 ± 169.2 | 440.8 ± 201.3 | 0.35 |
400 | 216.1 ± 95.7 | 215.0 ± 68.8 | 0.92 |
425 | 132.1 ± 53.0 | 121.8 ± 42.2 | 0.11 |
450 | 94.7 ± 37.8 | 86.7 ± 24.7 | 0.059 |
475 | 220.6 ± 134.5 | 187.4 ± 117.1 | 0.052 |
500 | 85.0 ± 64.4 | 74.5 ± 41.6 | 0.14 |
525 | 14.9 ± 8.7 | 17.0 ± 12.3 | 0.15 |
550 | 9.4 ± 15.3 | 8.2 ± 4.2 | 0.42 |
Control | Nodular Type | Superficial Spreading Type | Acral Lentiginous Melanoma + Lentigo Maligna | Melanoma In Situ | Nevoid Type | |
---|---|---|---|---|---|---|
N | 119 | 26 | 54 | 7 | 6 | 3 |
Fluorescence intensity Mean ± SD | 127.9 ± 31.0 | 164.3 ± 40.6 | 199.5 ± 82.1 | 181.5 ± 65.9 | 208.9 ± 58.7 | 154.3 ± 29.8 |
t-test | 1 × 10−5 | 5.6 × 10−8 | 0.077 | 0.011 | 0.097 |
N | Age in Years | |||
---|---|---|---|---|
Minimum | Maximum | Mean | ||
Healthy Control | 119 | 22 | 65 | 40.4 ± 11 |
Malignant Melanoma | 105 | 17 | 87 | 56.0 ± 15.5 |
Clinical Stage 0 | 6 | 17 | 64 | 45.2 ± 20.2 |
Clinical Stage I | 42 | 17 | 87 | 52.7 ± 17.6 |
Clinical Stage II | 24 | 43 | 81 | 59.5 ± 11.1 |
Clinical Stage III | 23 | 29 | 85 | 59.7 ± 14.0 |
Clinical Stage IV | 10 | 34 | 78 | 58.1 ± 13.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birková, A.; Valko-Rokytovská, M.; Hubková, B.; Zábavníková, M.; Mareková, M. Strong Dependence between Tryptophan-Related Fluorescence of Urine and Malignant Melanoma. Int. J. Mol. Sci. 2021, 22, 1884. https://doi.org/10.3390/ijms22041884
Birková A, Valko-Rokytovská M, Hubková B, Zábavníková M, Mareková M. Strong Dependence between Tryptophan-Related Fluorescence of Urine and Malignant Melanoma. International Journal of Molecular Sciences. 2021; 22(4):1884. https://doi.org/10.3390/ijms22041884
Chicago/Turabian StyleBirková, Anna, Marcela Valko-Rokytovská, Beáta Hubková, Marianna Zábavníková, and Mária Mareková. 2021. "Strong Dependence between Tryptophan-Related Fluorescence of Urine and Malignant Melanoma" International Journal of Molecular Sciences 22, no. 4: 1884. https://doi.org/10.3390/ijms22041884
APA StyleBirková, A., Valko-Rokytovská, M., Hubková, B., Zábavníková, M., & Mareková, M. (2021). Strong Dependence between Tryptophan-Related Fluorescence of Urine and Malignant Melanoma. International Journal of Molecular Sciences, 22(4), 1884. https://doi.org/10.3390/ijms22041884