Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation
Abstract
:1. Introduction
2. The Tryptophan-Kynurenine Pathway, Its Enzymes and Metabolites: An Overview
3. Role of Tryptophan and Its Metabolites in IRI
Reference | Experimental Model | Treatment/Intervention | Outcomes |
---|---|---|---|
Peng et al. [45], 2012 | Mice kidney IRI model | Tryptophan deficient diet for 6 days before induction of kidney or liver ischemia. | ↓serum creatinine and urea 1 day after bilateral renal ischemia-reperfusion; ↓expression of KIM-1 mRNA; ↓level of acute tubular necrosis in histology; ↓serum levels of ALT, AST, LDH after liver ischemia-reperfusion; ↓P-selectin and IL-6 gene expression; ↓number of circulating neutrophils. Effect dependent on GCN2. |
Liu et al. [28], 2007 | Rats model of lung Tx after 5 h of warm ischemia | Sleeping beauty transposon mediated hIDO gene delivery to donor animals intravenously 24 h prior to Tx. | ↓apoptosis of endothelial cells; ↓leukocyte infiltration; ↑antioxidant capacity; ↓levels of oxidative stress markers (protein carbonyl, MDA); ↓alveolar edema, hemorrhage and formation of focal congestion of lung tissue; preserved mitochondrial structure and function; ↓peak airway pressure, ↑PaO2. |
Mohib et al. [52], 2008 | Mice kidney IRI model | IDO gene knock-out or IDO inhibition by intraperitoneal injections of 3 mg of 1-MT twice a day for 48 h following reperfusion. Some mice received 1-MT 1 h before ischemia, as well as following reperfusion. | ↓serum creatinine and blood urea nitrogen in IDO-knockout mice; ↓blood urea nitrogen but no difference in serum creatinine in 1-MT-treated mice; preserved architecture of kidney tissue; ↓apoptosis and necrosis; ↓neutrophil infiltration in IDO-knockout and 1-MT treated mice. |
Merchen et al. [53], 2014 | Rats kidney IRI model | IDO inhibition by pretreating rats with 1-MT 140 mg/kg po 1 and 24 h prior to renal ischemia. | IRI alone changed 105 coding genes and 3 noncoding RNA transcripts. In IRI rats pretreated with 1-MT, altered coding transcripts declined to 18 sequences and altered noncoding RNA genes increased to 66. |
Zheng et al. [25], 2019 | Mice kidney IRI model | KMO gene knockout. | ↓plasma creatinine; ↓tubular damage; ↓number of apoptotic cells; ↓neutrophil infiltration; ↓Cxcl 1 and Cxcl2 mRNA levels in kidney tissue. |
Wang et al. [62], 2019 Li et al. [63], 2020 | Rats liver IRI mode | Intraperitoneal administration of L-NAT (10 mg/kg) 30 min before ischemia. | ↓IRI-induced histological changes in hepatocytes; ↓mRNA expression of RIP2, caspase-1 and IL-1b [62]; ↓caspase-1 activity and IL-1b expression; ↓expression of autophagy markers: LC3-II, Beclin1, and ATG-7 and ↑expression of P62; ↓formation of autophagosome; improved morphological and functional changes of mitochondria, maintained the quantity and quality of mtDNA stability; ↓excessive mitophagy [63]. |
4. The Role of the Tryptophan-Kynurenine Pathway in Immune Regulation after Tx
4.1. Heart
4.2. Lungs
4.3. Liver
4.4. Kidneys
4.5. Pancreas
4.6. Small Bowel
Reference | Experimental Model | Treatment/Intervention | Outcomes |
---|---|---|---|
Heart | |||
Li et al. [97], 2007 | Rats model of heart Tx | IDO gene transfer into the donor heart via adenoviral vector by an intracoronary infusion or intracardiac injections of vector-containing (1010 PFU) solution immediately before Tx. | ↓mRNA levels of IFN-γ, TNF-α, TGF-β, IL-1β; ↓graft infiltration with monocytes, macrophages, T effector cells; ↑graft survival. |
Yu et al. [98], 2008 | Mice model of heart Tx | IDO gene transfer into the donor heart via adenoviral vector by intracardiac injections of vector-containing (1010 PFU) solution immediately after Tx. | ↓mRNA levels for IL-2, IL-17, IFN-γ; ↑proportion of Tregs, no difference in leucocyte infiltration; delayed rejection, ↑graft survival. |
Dai et al. [83], 2009 | Rats model of heart Tx | Single injection of allogeneic bone marrow dendritic cells+3-HAA for recipient animals 7 days before receiving the graft. | ↓mRNA levels for IL-2, IL-17, IFN-γ; ↑proportion of Tregs, no difference in leucocyte infiltration; delayed rejection, ↑graft survival. |
Li et al. [99], 2016 | Mice model of heart Tx | 106 donor’s DCs transfected with IDO gene via adenoviral vector, infused intravenously 3- and 1- day before Tx. | ↓mRNA levels of IFN-γ, ↑ IL-10; ↑ CD4+ T cells apoptosis; ↓histopathological changes; ↑ graft survival. |
Lv et al. [100], 2018 | Mice model of heart Tx | 106 donor’s DCs transfected with IDO gene via adenoviral vector, infused intravenously 5- and 3- days before Tx, combined with 250-μg/d CD40L mAb infused intravenously at 0, 1, 2 and 4 days after Tx. | ↓serum levels of INF-γ and IL-2; ↑apoptosis of peripheral CD3+ T cells; ↓serum CK and LDH levels. More significant effect of combined therapy than IDO+ DCs alone. |
He et al. [103], 2018 | Rats model of heart Tx | IDO 1-overexpressing (lentivirus-transfected) bone marrow mesenchymal stem cells exosomes injected intravenously (1 mL; 20 mg/mL) 48 h after heart Tx. | ↑graft function (↑ejection fraction and left ventricular fractional shortening on days 2, 4 and 7); ↓graft infiltration by inflammatory cells; ↓serum levels of IL-1α, IL-4, IL-1β, IL-2, IFN-γ, IL-18; ↑levels of IL-10, TGFβ1, TGFβ2 and TGFβ3; ↓expression of CD40, CD86, CD80, MHC-II, CD45RA and CD45RA+CD45RB and ↑expression of CD274; ↑proportion of Tregs in spleen; ↑immunoregulatory protein FHL-1. miR-540-3p was the most highly upregulated microRNA, and miR-338-5p was the most highly downregulated microRNA in IDO+ exosomes. |
He et al. [102], 2020 | Rats model of heart Tx | 106 donor bone marrow mesenchymal stem cells transfected with IDO via the lentivirus injected intravenously 48 h after heart Tx. | ↑graft function (↑ejection fraction and left ventricular fractional shortening on days 2, 4 and 7 post-Tx; ↓graft infiltration by inflammatory cells; ↓hemorrhage, edema, and myocardial damage; ↓serum levels of IL-1, IL-4, IL-2, IFN-γ, IL-18 and ↑ IL-10, TGFβ1, TGFβ2 and TGFβ3. ↓expression of CD40, CD86, CD80, MHCII, and CD45RA+CD45RB, and ↑ CD274; ↑Tregs. |
Li et al. [101], 2020 | Mice model of heart Tx | Donors DCs transfected with IDO gene via adenoviral vector combined + tryptophan catabolic products infused intravenously to recipient 3 days before Tx. | ↓IL-2, IFN-γ and TFN-α, ↑IL-10 mRNA and protein expression; ↑CD4+ T cells apoptosis; ↓histopathological injury level; ↑allograft survival. Effect more significant with combined therapy than either of therapies alone. |
Lungs | |||
Swanson et al. [108], 2004 | Rats model of lung Tx | IDO gene transfer into the donor lungs via adenoviral vector by instillation of vector-containing (107 PFU) solution 24 h before Tx. | ↓delayed-type hypersensitivity responses to donor antigens, ↓graft rejection histopathological grade. |
Liu et al. [109], 2006 | Rats model of lung Tx | hIDO gene transfer via PEI carrier. 0.2 mL of transfection solution containing 20 mcg of plasmid DNA delivered to donor rat lung via an intratracheal catheter 24 h before Tx. | ↓peak airway pressure, ↑PaO2; ↓level of acute cellular rejection and preserved graft architecture in histopathology; ↓CD3 and MPO-positive cells infiltration; ↓necrosis and apoptosis of lung cells, ↓ intracellular ROS formation. |
Liu et al. [110], 2006 | Rats model of lung Tx | Sleeping beauty transposon mediated hIDO gene delivery (50 mcg of plasmid DNA) to donor rat lung via an intratracheal catheter 24 h before Tx. | ↓peak airway pressure, ↑PaO2; inhibition of TGFβ mediated proliferation of fibroblasts; ↓graft fibrosis; preserved bronchus-alveolar architecture. |
Liu et al. [111], 2009 | Rats model of lung Tx | Sleeping beauty transposon mediated hIDO gene delivery. 450 mcg of plasmid DNA delivered to donors intravenously 24 h before Tx. | ↓acute cellular rejection grade and graft injury; ↓peak airway pressure, ↑PaO2. Impaired function of complex I of the electron transport chain in mitochondria, inhibited cytotoxic function of lung infiltrating T cells; ↓production of IL-2 and TNF-α, but remaining production of IFN-γ (in CD8+ T cells isolated from lung allografts). |
Iken et al. [84], 2012 | Mice model of lung Tx | hIDO gene transferred to donor lung via non-viral PEI carrier; Intraperitoneal injections of 250–350 mg/kg 3-HAA for 7 days. | ↓acute cellular reduction grade and graft injury; ↓peak airway pressure, ↑PaO2; ↑graft survival due to T cell inhibition: (a) Impaired TCR activation through the interruption of intracellular calcium (Ca21) and of the TCR/Ca21 signaling pathway; (b) ↓levels of proinflammatory cytokines and chemokines (evident ↓IL-2, IL-4 IL-6, IL-5, IL-13, 50% ↓IFN-γ, TNF-α, IL-12, no change of IL-10, IL-17) in allografts; Maintenance of naïve T cells rather than the generation of effector memory T cells. |
Ebrahimi et al. [112], 2016 | Rats model of engineered lung tissue Tx | IDO transduction to the engineered Lung Tissue via IDO expressing lentivirus. | ↓histopathological score of acute rejection, ↓TNF-α and IFN-γ gene expression, ↑level of FOXP3 expression (↑Tregs), ↓RANTES. |
Liver | |||
Laurence et al. [119], 2009 | Rats model of liver Tx | IDO gene transfer via recombinant adeno-associated virus vector. Donors pretreated with 1013 Vg of the recombinant virus (rAAV2/8-LSP1-rIDO) by infusion into the portal vein 2 weeks prior to Tx. | Despite confirmed in vivo IDO activity, rAAV2/8-LSP1-rIDO failed to prevent liver allograft rejection (recipient and graft survival, histological features did not differ between groups). |
Sun et al. [120], 2011 | Rats model of liver Tx | 200 mg·kg−1·day−1 of 3,4-DAA injected intraperitoneally immediately after surgery. | ↓serum ALT; ↓level of injury in histopathology; ↓TNF-α, IFN-γ, ↑IL-10 mRNA expression. |
Kidney | |||
Vavrincova-Yaghi et al. [128], 2011 | Rats model of kidney Tx | IDO gene transfer to donor kidneys via RGD-modified adenovirus. Solution with 4 × 1011 viral particles infused into renal artery of retrieved kidney and incubated for 20 min in 4 °C saline. | ↓increase in plasma creatinine; ↓the interstitial infiltration of CD8+ T cells and macrophages; ↓expression of SMA- α and KIM-1 mRNA; ↓expression of IL-2, IL-17, TGF-β mRNA, ↑levels of foxp3 mRNA (↑Tregs). |
He et al. [127], 2015 | Rabbits model of kidney Tx | Mesenchymal stem cells transfected with IDO gene via recombinant lentivirus. IDO-MSCs (2 × 106 cells/kg) injected intravenously to recipient mice after Tx. | Induced donor specific allograft tolerance via ↓of CD4+CD25− T-cells, ↑of CD4+CD25+ Foxp3+ (Tregs), ↑ antigen-specific immune-suppressive functions of CD4+CD25+ Tregs, ↑CTLA-4 expression by CD4+CD25+ Tregs, stimulation of Treg cells to secrete IL-10 and TGF-β1; ↑graft survival, ↓acute rejection signs (↓serum creatinine levels, preserved normal histological graft structure). |
Vavrincova-Yaghi et al. [129], 2016 | Rats model of kidney Tx | IDO gene transfer to donor kidneys via RGD-modified adenovirus. Solution with 4 × 1011 viral particles infused into renal artery of retrieved kidney and incubated for 20 min in 4 °C saline. | In a long-time period (12 weeks) treatment protected against development of transplant vasculopathy, rise of systolic blood pressure and proteinuria; plasma creatinine did not reduce significantly; ↑expression of TGF-β and foxp3 mRNA; ↓expression of ACE mRNA. |
Pancreas | |||
Alexander et al. [132], 2002 | Mice model of pancreatic islets Tx | IDO gene transfected into pancreatic islets via recombinant adenovirus. | ↑graft survival, ↓proliferation of T cells, ↑remaining insulin producing cells. |
Jalili et al. [135], 2010 | Mice model of pancreatic islets Tx | Composite three-dimensional islet grafts engineered by embedding allogeneic mouse islets and adenoviral-transduced IDO–expressing syngeneic fibroblasts within collagen gel matrix. | ↓CD4+ and CD8+ effector T-cells infiltration at the graft site, ↑number of Treg cells in graft-draining lymph nodes; ↓gene expression of proinflammatory cytokines (IL-2, IL-17, CXCL9 and CXCL10), ↑gene expression of anti-inflammatory cytokines (IL-4, IL-10); delayed allo-specific antibody production, ↑viability of insulin secreting cells. Immunosuppressive effect limited to 5 weeks post-Tx. |
Poormasjedi-Meibod et al. [76], 2013 | Mice model of pancreatic islets xenoTx | Composite three-dimensional islet grafts engineered by embedding allogeneic rat islets and adenoviral-transduced IDO-expressing syngeneic mouse fibroblasts within the collagen gel matrix. | Well-preserved islet morphology, ↑number of insulin and glucagon expressing β cells, ↓number of infiltrating macrophages and CD3+ T cells, ↓iNOS expression. |
Hosseini-Tabatabaei et al. [136], 2015 | Mice model of pancreatic islets Tx | Composite three-dimensional islet grafts engineered by embedding allogeneic rat islets and lentivirus-transduced IDO-expressing syngeneic mouse fibroblasts within protease-resistant scaffold. | ↑islet allograft survival (until 7 weeks); ↑population of foxp3+ Tregs at the graft site and graft-draining lymph nodes, ↓T-cell infiltration. Better-preserved functional β cell mass. |
Small bowel | |||
Xie et al. [82], 2015 | Mice model of small bowel Tx | IDO gene transfected to DCs via adenoviral vector. Three treatment groups: (A) 2 × 106 IDO gene-transfected DCs injected intravenously immediately after Tx; (B) 120-mg/kg 3-HAA injected intravenously 7 days before Tx; (C) Both. | All treatment types ↓effector T cells and ↑Foxp3+ Tregs, ↓plasma pro-inflammatory cytokines (IFN-γ, IL-2) and ↑anti-inflammatory cytokines (IL-10, TGFβ), preserved histological graft structure. All strategies ↑graft survival compared to control, however IDO-DCs were more effective than 3-HAA. No significant difference in graft survival when used both. |
5. Diagnostic and Prognostic Role of Tryptophan and Its Metabolites in Solid Organ Tx
Reference | Study Design | Population | Measurement | Follow-Up | Outcome Association | |||
---|---|---|---|---|---|---|---|---|
Graft Function | AR | Infection | Recipient Mortality | |||||
Holmes et al. [143], 1992 | Retrospective | 32 kidney Tx recipients | Post-Tx serum Trp and Kyn | 3 weeks post-Tx | DGF: Trp↓, Kyn↑; SCr: Trp↓, Kyn↔ | Trp↔, but ↓if failed AR treatment or concomitant infection; Kyn↑ | CMV, EBV, pneumonia, UTI: Trp↓, Kyn↑ | n.d. |
Brandacher et al. [141], 2007 | Prospective | 43 kidney Tx recipients | Serum and urine Trp and Kyn 1, 8, 15 and 21 days post-Tx and at the time of AR | 3 weeks post-Tx | n.d. | Serum Trp↓, Kyn↑, Kyn/Trp↓ Urine Kyn/Trp↓ | H. simplex (n = 4), UTI (n = 1), sepsis (n = 1): serum Trp↔, Kyn↔, Kyn/Trp↔ | n.d. |
Lahdou et al. [140], 2010 | Retrospective | 210 first kidney Tx recipients | Pre-Tx plasma Trp, Kyn, post-Tx plasma Trp, Kyn, Kyn/Trp *available for 10 AR+ patients (median 7 days post-Tx) and 24 AR- patients (median 11 days post-Tx) | 6 months post-Tx | n.d. | Pre-Tx Trp↑ (sens. 61%, spec. 71%), Kyn↑ (sens. 64%, spec. 71%); Post-Tx Trp↔, Kyn↑ (sens. 80%, spec. 79%), Kyn/Trp↑ (sens. 70%, spec. 79%) | n.d. | n.d. |
Kaden et al. [144], 2015 | Retrospective | 355 kidney Tx recipients | Post-Tx serum Kyn | 3 weeks post-Tx | DGF and PNF: slowed decrease or increase of serum Kyn | Kyn ↑ (level of increase strongly depends on AR severity in non-dialyzed patients) | CMV: Kyn↑ Pneumonia: Kyn↑ Sepsis: Kyn↑ | n.d. |
Vavrincova- Yaghi et al. [145], 2015 | Prospective | 48 kidney Tx recipients | Serum and urine Trp, Kyn, Kyn/Trp at 2 weeks, 6 months and 2 years post-Tx | 24 months | SCr at 2 years: serum Kyn/Trp at 6 months↑; Kyn at 6 months↑ (AUC 0.76); CrCl at 2 years: urine Trp at 2 weeks↓ (AUC 0.44). Albuminuria at 2 years: Urine Trp↓; Kyn↑ at 2 weeks, Kyn/Trp↑ at 6 months | n.d. | n.d. | n.d. |
Kim et al. [146], 2019 | Cross-sectional | 385 kidney Tx recipients | Urine metabolomic analysis (LC-MS) | n.d. | n.d. | TCMR: Trp↓; Panel of 5 top metabolites, including Trp showed AUC 0.926, acc. 87.0% (training set) and 62.5% (validation set) | n.d. | n.d. |
Blydt-Hansen et al. [147], 2014 | Cross-sectional | 277 biopsy-paired urine samples from 57 pediatric kidney Tx recipients | Urine metabolomic analysis (LC-MS) | n.d. | n.d. | TCMR: Kyn↑; TMCR discriminant score of 10 top metabolites, including Kyn showed AUC 0.892 | n.d. | n.d. |
Dharnidharka et al. [148], 2013 | Prospective | 29 pediatric kidney Tx recipients | Serum and urine Trp, Kyn, Kyn/Trp | 12 months after Tx | n.d. | AR within the next 30 days from the test: serum Kyn/Trp↑; urine Kyn/Trp↔; serum and urine Trp and Kyn↔ | MIE (CMV, EBV, BKV, Tx pyelonephritis, fever with bacteriemia): serum and urine Kyn/Trp↔; serum and urine Trp and Kyn↔ | n.d. |
Zhao et al. [149], 2014 | Cross-sectional | 27 primary kidney Tx recipients | Serum metabolomics analysis (LC-MS) pre-Tx and 7 days post-Tx | n.d. | n.d. | In non-rejecting patients: Trp↓; Kyn↑; Kyn/Trp↑ | n.d. | n.d. |
Sadeghi et al. [150], 2012 | Cross-sectional | 86 kidney Tx recipients | Plasma Trp, Kyn, Quin, Kyn/Trp, Quin/Trp | n.d. | n.d. | n.d. | CMV: Trp↔; Kyn↑ (AUC 0.82), Kyn/Trp↑ (AUC 0.83) Quin↑ (AUC 0.85), Quin/Trp (sens. 83%, spec. 74%) (correlate with the severity); BKV: Trp, Kyn, Quin, Kyn/Trp, Quin/Trp↔ | n.d. |
Zhang et al. [152], 2018 | Retrospective | 42 kidney Tx recipients | Plasma metabolomics (25 amino acids) analysis (UHPLC–MS/MS) | n.d. | AKI (↑ of SCr of > 0.3 mg/dL or ↑ ≥50% over baseline): Trp↓ (AUC 0.78); Trp+SDMA↓ (AUC 0.901) | n.d. | n.d. | n.d. |
Bassi et al. [11], 2017 | Cross-sectional | 40 kidney Tx recipients at least 6 months after Tx | Ex vivo (serum and urine) and in vivo metabolomics (LC-MS/MS, FIA-MS/MS (n = 40), 2D COSY with 3D-image transformation (n = 15) | n.d. | GFR 21–39 mL/min: serum Trp↓ | n.d. | n.d. | n.d. |
de Vries et al. [153], 2017 | Prospective | 561 stable kidney Tx recipients with functioning graft for at least 1 year | Serum and urine Trp, Kyn, 3-HK, Kyn/Trp, 3-HK/Kyn | Median 7.0 [6.2–7.5] years | Graft failure, SCr, proteinuria: serum Trp↓, Kyn, 3-HK, Kyn/Trp, 3-HK/Trp↑; no significant changes in urine; GFR: serum Trp↑, Kyn, 3-HK, Kyn/Trp, 3-HK/Trp↓ | n.d. | n.d. | Serum Trp↔; Kyn; 3-HK; Kyn/Trp; 3-HK/Kyn↑; no significant changes in urine |
Meloni et al. [154], 2009 | Cross-sectional | 90 lung Tx recipients | Plasma Trp, Kyn, Kyn/Trp | n.d. | n.d. | BOS: Trp↔, Kyn↑, Kyn/Trp↑ | n.d. | n.d. |
Oweira et al. [155], 2018 | Retrospective | 89 liver Tx recipients | Pre-Tx and early post-Tx serum Trp, Kyn, Quin, KYNA | 1 year | EAD: pre-Tx Kyn↑ (AUC 0.64); post-Tx day 3 Kyn↑ (AUC 0.69); day 5 Kyn↑ (AUC 0.74); day 10 Kyn↑ (AUC 0.77) | n.d. | n.d. | 1-year mortality: pre-Tx Kyn↑ (AUC 0.77), KYNA↑ (AUC 0.74), Quin↑ (AUC 0.72), Trp↑ (AUC 0.72); Post-Tx day 1 KYNA↑ (AUC 0.73); day 5 KYNA↑ (AUC 0.71); Kyn↑ (AUC 0.73). Pre-Tx Kyn↑ associated with 1-year mortality in univariate analysis |
Perera et al. [156], 2014 | Prospective | 40 liver Tx recipients | Metabolomic analysis (CEAD) of liver micro-dialysis samples: pre-Tx (bench micro-dialysis) and every 6 h for 48 h post-Tx | 7 days post Tx | PNF/IPF: pre-Tx (bench) Kyn↑; Kyn↑ in DCD vs. DBD grafts at the end of cold ischemia | n.d. | n.d. | n.d. |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Black, C.K.; Termanini, K.M.; Aguirre, O.; Hawksworth, J.S.; Sosin, M. Solid Organ Transplantation in the 21st Century. Ann. Transl. Med. 2018, 6, 409. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Kobashigawa, J.A. Cardiac Transplantation: Current Outcomes and Contemporary Controversies. JACC Heart Fail. 2017, 5, 857–868. [Google Scholar] [CrossRef]
- Annual Reports. Available online: https://www.eurotransplant.org/statistics/annual-report/ (accessed on 29 November 2020).
- Organ Specific Reports. Available online: https://statistics-and-reports/organ-specific-reports/ (accessed on 29 November 2020).
- Jochmans, I.; Brat, A.; Davies, L.; Hofker, H.S.; van de Leemkolk, F.E.M.; Leuvenink, H.G.D.; Knight, S.R.; Pirenne, J.; Ploeg, R.J. COMPARE Trial Collaboration and Consortium for Organ Preservation in Europe (COPE). Oxygenated versus Standard Cold Perfusion Preservation in Kidney Transplantation (COMPARE): A Randomised, Double-Blind, Paired, Phase 3 Trial. Lancet 2020, 396, 1653–1662. [Google Scholar] [CrossRef]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. Consortium for Organ Preservation in Europe. A Randomized Trial of Normothermic Preservation in Liver Transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Moreau, A.; Varey, E.; Anegon, I.; Cuturi, M.-C. Effector Mechanisms of Rejection. Cold Spring Harb. Perspect. Med. 2013, 3, a015461. [Google Scholar] [CrossRef] [Green Version]
- Charlton, M.; Levitsky, J.; Aqel, B.; O’Grady, J.; Hemibach, J.; Rinella, M.; Fung, J.; Ghabril, M.; Thomason, R.; Burra, P.; et al. International Liver Transplantation Society Consensus Statement on Immunosuppression in Liver Transplant Recipients. Transplantation 2018, 102, 727–743. [Google Scholar] [CrossRef] [PubMed]
- Abbas, K.; Zafar, M.N.; Aziz, T.; Musharraf, W.; Naqvi, A.; Rizvi, A. Renal Transplantation in Highly Sensitized Patients: SIUT Experience. Transplantation 2018, 102, S618. [Google Scholar] [CrossRef]
- Hrydziuszko, O.; Perera, M.T.P.R.; Laing, R.; Kirwan, J.; Silva, M.A.; Richards, D.A.; Murphy, N.; Mirza, D.F.; Viant, M.R. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation. PLoS ONE 2016, 11, e0165884. [Google Scholar] [CrossRef]
- Bassi, R.; Niewczas, M.A.; Biancone, L.; Bussolino, S.; Merugumala, S.; Tezza, S.; D’Addio, F.; Ben Nasr, M.; Valderrama-Vasquez, A.; Usuelli, V.; et al. Metabolomic Profiling in Individuals with a Failing Kidney Allograft. PLoS ONE 2017, 12, e0169077. [Google Scholar] [CrossRef]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Cetina Biefer, H.; Vasudevan, A.; Elkhal, A. Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale. Int. J. Tryptophan Res. 2017, 10, 1178646917713491. [Google Scholar] [CrossRef] [Green Version]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front. Endocrinol. 2019, 10, 158. [Google Scholar]
- Gostner, J.M.; Geisler, S.; Stonig, M.; Mair, L.; Sperner-Unterweger, B.; Fuchs, D. Tryptophan Metabolism and Related Pathways in PsychoneuroImmunol.ogy: The Impact of Nutrition and Lifestyle. Neuropsychobiology 2020, 79, 89–99. [Google Scholar] [CrossRef]
- Opitz, C.A.; Wick, W.; Steinman, L.; Platten, M. Tryptophan Degradation in Autoimmune Diseases. Cell. Mol. Life Sci. 2007, 64, 2542–2563. [Google Scholar] [CrossRef] [PubMed]
- Boros, F.A.; Vécsei, L. Immunomodulatory Effects of Genetic Alterations Affecting the Kynurenine Pathway. Front. Immunol. 2019, 10, 2570. [Google Scholar] [CrossRef]
- Zhai, L.; Lauing, K.L.; Chang, A.L.; Dey, M.; Qian, J.; Cheng, Y.; Lesniak, M.S.; Wainwright, D.A. The Role of IDO in Brain Tumor Immunotherapy. J. Neuro-Oncol. 2015, 123, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan Metabolism as a Common Therapeutic Target in Cancer, Neurodegeneration and Beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [PubMed]
- Badawy, A.A.-B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oxenkrug, G.F. Genetic and Hormonal Regulation of Tryptophan–Kynurenine Metabolism. Ann. N. Y. Acad. Sci. 2007, 1122, 35–49. [Google Scholar] [CrossRef]
- Badawy, A.A.-B. Tryptophan Metabolism, Disposition and Utilization in Pregnancy. Biosci. Rep. 2015, 35, e00261. [Google Scholar]
- Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of Allogeneic Fetal Rejection by Tryptophan Catabolism. Science 1998, 281, 1191–1193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Carroll, C.; Raigani, S.; Karimian, N.; Huang, V.; Nagpal, S.; Beijert, I.; Porte, R.J.; Yarmush, M.; Uygun, K.; et al. Tryptophan Metabolism via the Kynurenine Pathway: Implications for Graft Optimization during Machine Perfusion. J. Clin. Med. 2020, 9, 1864. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, A.; Binnie, M.; McGuire, K.; Webster, S.P.; Hughes, J.; Howie, S.E.M.; Mole, D.J. Kynurenine 3-Monooxygenase Is a Critical Regulator of Renal Ischemia-Reperfusion Injury. Exp. Mol. Med. 2019, 51, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell Biology of Ischemia/Reperfusion Injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar]
- Thomas, S.R.; Stocker, R. Redox Reactions Related to Indoleamine 2,3-Dioxygenase and Tryptophan Metabolism along the Kynurenine Pathway. Redox Rep. 1999, 4, 199–220. [Google Scholar]
- Liu, H.; Liu, L.; Visner, G.A. Nonviral Gene Delivery with Indoleamine 2,3-Dioxygenase Targeting Pulmonary Endothelium Protects against Ischemia-Reperfusion Injury. Am. J. Transpl. 2007, 7, 2291–2300. [Google Scholar] [CrossRef]
- Kanai, M.; Nakamura, T.; Funakoshi, H. Identification and Characterization of Novel Variants of the Tryptophan 2,3-Dioxygenase Gene: Differential Regulation in the Mouse Nervous System during Development. Neurosci. Res. 2009, 64, 111–117. [Google Scholar] [CrossRef]
- Opitz, C.A.; Litzenburger, U.M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; et al. An Endogenous Tumour-Promoting Ligand of the Human Aryl Hydrocarbon Receptor. Nature 2011, 478, 197–203. [Google Scholar] [CrossRef]
- Badawy, A.A.-B.; Bano, S. Tryptophan Metabolism in Rat Liver After Administration of Tryptophan, Kynurenine Metabolites, and Kynureninase Inhibitors. Int. J. Tryptophan Res. 2016, 9, 51–65. [Google Scholar]
- Nakamura, T.; Niimi, S.; Nawa, K.; Noda, C.; Ichihara, A.; Takagi, Y.; Anai, M.; Sakaki, Y. Multihormonal Regulation of Transcription of the Tryptophan 2,3-Dioxygenase Gene in Primary Cultures of Adult Rat Hepatocytes with Special Reference to the Presence of a Transcriptional Protein Mediating the Action of Glucocorticoids. J. Biol. Chem. 1987, 262, 727–733. [Google Scholar] [CrossRef]
- Badawy, A.A.-B. Tryptophan Availability for Kynurenine Pathway Metabolism across the Life Span: Control Mechanisms and Focus on Aging, Exercise, Diet and Nutritional Supplements. Neuropharmacology 2017, 112, 248–263. [Google Scholar]
- Ozaki, Y.; Reinhard, J.F.; Nichol, C.A. Cofactor Activity of Dihydroflavin Mononucleotide and Tetrahydrobiopterin for Murine Epididymal Indoleamine 2,3-Dioxygenase. Biochem. Biophys. Res. Commun. 1986, 137, 1106–1111. [Google Scholar] [CrossRef]
- Cook, J.S.; Pogson, C.I.; Smith, S.A. Indoleamine 2,3-Dioxygenase. A New, Rapid, Sensitive Radiometric Assay and Its Application to the Study of the Enzyme in Rat Tissues. Biochem. J. 1980, 189, 461–466. [Google Scholar]
- Thomas, S.R.; Salahifar, H.; Mashima, R.; Hunt, N.H.; Richardson, D.R.; Stocker, R. AntiOxid.ants Inhibit Indoleamine 2,3-Dioxygenase in IFN-Gamma-Activated Human Macrophages: Posttranslational Regulation by Pyrrolidine Dithiocarbamate. J. Immunol. 2001, 166, 6332–6340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucher, R.; Hautz, T.; Mohr, E.; Mackowitz, M.; Mellitzer, V.; Steger, C.; Cardini, B.; Resch, T.; Margreiter, C.; Schneeberger, S.; et al. Sodium Sulfite Exacerbates Allograft Vasculopathy and Affects Tryptophan Breakdown in Murine Heterotopic Aortic Transplantation. Oxid. Med. Cell. Longev. 2019, 2019, 8461048. [Google Scholar] [CrossRef] [PubMed]
- Hucke, C.; MacKenzie, C.R.; Adjogble, K.D.Z.; Takikawa, O.; Däubener, W. Nitric Oxid.e-Mediated Regulation of Gamma Int.erferon-Induced Bacteriostasis: Inhibition and Degradation of Human Indoleamine 2,3-Dioxygenase. Infect. Immun. 2004, 72, 2723–2730. [Google Scholar] [CrossRef] [Green Version]
- Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. 3-Hydroxykynurenine, an Endogenous Oxid.ative Stress Generator, Causes Neuronal Cell Death with Apoptotic Features and Region Selectivity. J. Neurochem. 1998, 70, 299–307. [Google Scholar] [CrossRef]
- Zhuravlev, A.V.; Zakharov, G.A.; Shchegolev, B.F.; Savvateeva-Popova, E.V. AntiOxid.ant Properties of Kynurenines: Density Functional Theory Calculations. PLoS Comput. Biol. 2016, 12, e1005213. [Google Scholar]
- Bender, D.A. Biochemistry of Tryptophan in Health and Disease. Mol. Asp. Med. 1983, 6, 101–197. [Google Scholar] [CrossRef]
- Mohr, A.; Brockmann, J.G.; Becker, F. HTK-N: Modified Histidine-Tryptophan-Ketoglutarate Solution-A Promising New Tool in Solid Organ Preservation. Int. J. Mol. Sci. 2020, 21, 6468. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.R.; Verweij, M.; Brand, K.; van de Ven, M.; Goemaere, N.; van den Engel, S.; Chu, T.; Forrer, F.; Müller, C.; de Jong, M.; et al. Short-Term Dietary Restriction and Fasting Precondition against Ischemia Reperfusion Injury in Mice. Aging Cell 2010, 9, 40–53. [Google Scholar] [PubMed] [Green Version]
- Ahmet, I.; Wan, R.; Mattson, M.P.; Lakatta, E.G.; Talan, M. Cardioprotection by Int.ermittent Fasting in Rats. Circulation 2005, 112, 3115–3121. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Robertson, L.; Gallinetti, J.; Mejia, P.; Vose, S.; Charlip, A.; Chu, T.; Mitchell, J.R. Surgical Stress Resistance Induced by Single Amino Acid Deprivation Requires Gcn2 in Mice. Sci. Transl. Med. 2012, 4, 118ra11. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriadis, T.; Pissas, G.; Sounidaki, M.; Antoniadis, N.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I. Preconditioning of Primary Human Renal Proximal Tubular Epithelial Cells without Tryptophan Increases Survival under Hypoxia by Inducing Autophagy. Int. Urol. Nephrol. 2017, 49, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Fougeray, S.; Mami, I.; Bertho, G.; Beaune, P.; Thervet, E.; Pallet, N. Tryptophan Depletion and the Kinase GCN2 Mediate IFN-γ-Induced Autophagy. J. Immunol. 2012, 189, 2954–2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, X.; Qian, Y.; Shen, Y.; Zhang, L.; Du, Y.; Dai, H.; Qian, J.; Yan, Y. Autophagy Protects Renal Tubular Cells against Ischemia/Reperfusion Injury in a Time-Dependent Manner. Cell. Physiol. Biochem. 2015, 36, 285–298. [Google Scholar]
- Liu, S.; Hartleben, B.; Kretz, O.; Wiech, T.; Igarashi, P.; Mizushima, N.; Walz, G.; Huber, T.B. Autophagy Plays a Critical Role in Kidney Tubule Maintenance, Aging and Ischemia-Reperfusion Injury. Autophagy 2012, 8, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Kozower, B.D.; Christofidou-Solomidou, M.; Sweitzer, T.D.; Muro, S.; Buerk, D.G.; Solomides, C.C.; Albelda, S.M.; Patterson, G.A.; Muzykantov, V.R. Immunotargeting of Catalase to the Pulmonary Endothelium Alleviates Oxidative Stress and Reduces Acute Lung Transplantation Injury. Nat. Biotechnol. 2003, 21, 392–398. [Google Scholar] [CrossRef]
- Mohib, K.; Guan, Q.; Diao, H.; Du, C.; Jevnikar, A.M. Proapoptotic Activity of Indoleamine 2,3-Dioxygenase Expressed in Renal Tubular Epithelial Cells. Am. J. Physiol. Ren. Physiol. 2007, 293, F801–F812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohib, K.; Wang, S.; Guan, Q.; Mellor, A.L.; Sun, H.; Du, C.; Jevnikar, A.M. Indoleamine 2,3-Dioxygenase Expression Promotes Renal Ischemia-Reperfusion Injury. Am. J. Physiol. Ren. Physiol. 2008, 295, F226–F234. [Google Scholar] [CrossRef] [Green Version]
- Merchen, T.D.; Boesen, E.I.; Gardner, J.R.; Harbarger, R.; Kitamura, E.; Mellor, A.; Pollock, D.M.; Ghaffari, A.; Podolsky, R.; Nahman, N.S. Indoleamine 2,3-Dioxygenase Inhibition Alters the Non-Coding RNA Transcriptome Following Renal Ischemia-Reperfusion Injury. Transpl. Immunol. 2014, 30, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.-H. Tryptophan-Kynurenine Pathway Is Dysregulated in Inflammation, and Immune Activation. Front. Biosci. 2015, 20, 1116–1143. [Google Scholar]
- Giorgini, F.; Huang, S.-Y.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Thomas, M.A.R.; Tararina, M.; Wu, H.-Q.; Schwarcz, R.; Muchowski, P.J. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice: A New Tool for Studying Kynurenine Pathway Metabolism in Periphery and Brain. J. Biol. Chem. 2013, 288, 36554–36566. [Google Scholar] [CrossRef] [Green Version]
- Thul, P.J.; Lindskog, C. The Human Protein Atlas: A Spatial Map of the Human Proteome. Protein Sci. 2018, 27, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mole, D.J.; Webster, S.P.; Uings, I.; Zheng, X.; Binnie, M.; Wilson, K.; Hutchinson, J.P.; Mirguet, O.; Walker, A.; Beaufils, B.; et al. Kynurenine-3-Monooxygenase Inhibition Prevents Multiple Organ Failure in Rodent Models of Acute Pancreatitis. Nat. Med. 2016, 22, 202–209. [Google Scholar]
- Hutchinson, J.P.; Rowland, P.; Taylor, M.R.D.; Christodoulou, E.M.; Haslam, C.; Hobbs, C.I.; Holmes, D.S.; Homes, P.; Liddle, J.; Mole, D.J.; et al. Structural and Mechanistic Basis of Differentiated Inhibitors of the Acute Pancreatitis Target Kynurenine-3-Monooxygenase. Nat. Commun. 2017, 8, 15827. [Google Scholar]
- Liddle, J.; Beaufils, B.; Binnie, M.; Bouillot, A.; Denis, A.A.; Hann, M.M.; Haslam, C.P.; Holmes, D.S.; Hutchinson, J.P.; Kranz, M.; et al. The Discovery of Potent and Selective Kynurenine 3-Monooxygenase Inhibitors for the Treatment of Acute Pancreatitis. Bioorg. Med. Chem. Lett. 2017, 27, 2023–2028. [Google Scholar] [CrossRef]
- Walker, A.L.; Ancellin, N.; Beaufils, B.; Bergeal, M.; Binnie, M.; Bouillot, A.; Clapham, D.; Denis, A.; Haslam, C.P.; Holmes, D.S.; et al. Development of a Series of Kynurenine 3-Monooxygenase Inhibitors Leading to a Clinical Candidate for the Treatment of Acute Pancreatitis. J. Med. Chem. 2017, 60, 3383–3404. [Google Scholar] [CrossRef] [Green Version]
- Nahomi, R.B.; Nam, M.-H.; Rankenberg, J.; Rakete, S.; Houck, J.A.; Johnson, G.C.; Stankowska, D.L.; Pantcheva, M.B.; MacLean, P.S.; Nagaraj, R.H. Kynurenic Acid Protects Against Ischemia/Reperfusion-Induced Retinal Ganglion Cell Death in Mice. Int. J. Mol. Sci. 2020, 21, 1795. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, S.; Li, J.; Li, H.; Jiang, H.; Xiao, P.; Pan, Y.; Zheng, J.; Yu, L.; Jiang, J. Protective Role of N-Acetyl-l-Tryptophan against Hepatic Ischemia-Reperfusion Injury via the RIP2/Caspase-1/IL-1β Signaling Pathway. Pharm. Biol. 2019, 57, 385–391. [Google Scholar]
- Li, H.; Pan, Y.; Wu, H.; Yu, S.; Wang, J.; Zheng, J.; Wang, C.; Li, J.; Jiang, J. Inhibition of Excessive Mitophagy by N-Acetyl-L-Tryptophan Confers Hepatoprotection against Ischemia-Reperfusion Injury in Rats. Peer J. 2020, 8, e8665. [Google Scholar] [CrossRef]
- Chou, H.-C.; Chan, H.-L. 5-Methoxytryptophan-Dependent Protection of Cardiomyocytes from Heart Ischemia Reperfusion Injury. Arch. Biochem. Biophys. 2014, 543, 15–22. [Google Scholar] [CrossRef]
- Mándi, Y.; Vécsei, L. The Kynurenine System and Immunoregulation. J. Neural. Transm. 2012, 119, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Baban, B.; Hansen, A.M.; Chandler, P.R.; Manlapat, A.; Bingaman, A.; Kahler, D.J.; Munn, D.H.; Mellor, A.L. A Minor Population of Splenic Dendritic Cells Expressing CD19 Mediates IDO-Dependent T Cell Suppression via Type I IFN Signaling Following B7 Ligation. Int. Immunol. 2005, 17, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Carbotti, G.; Barisione, G.; Airoldi, I.; Mezzanzanica, D.; Bagnoli, M.; Ferrero, S.; Petretto, A.; Fabbi, M.; Ferrini, S. IL-27 Induces the Expression of IDO and PD-L1 in Human Cancer Cells. Oncotarget 2015, 6, 43267–43280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagawa, Y.; Iwabuchi, K.; Onoé, K. Co-Operative Action of Int.erleukin-10 and Int.erferon-Gamma to Regulate Dendritic Cell Functions. Immunology 2009, 127, 345–353. [Google Scholar] [CrossRef]
- Munn, D.H.; Sharma, M.D.; Mellor, A.L. Ligation of B7-1/B7-2 by Human CD4+ T Cells Triggers Indoleamine 2,3-Dioxygenase Activity in Dendritic Cells. J. Immunol. 2004, 172, 4100–4110. [Google Scholar]
- Grohmann, U.; Orabona, C.; Fallarino, F.; Vacca, C.; Calcinaro, F.; Falorni, A.; Candeloro, P.; Belladonna, M.L.; Bianchi, R.; Fioretti, M.C.; et al. CTLA-4-Ig Regulates Tryptophan Catabolism in Vivo. Nat. Immunol. 2002, 3, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.S.K.; Sansom, D.M. The Emerging Role of CTLA4 as a Cell-Extrinsic Regulator of T Cell Responses. Nat. Rev. Immunol. 2011, 11, 852–863. [Google Scholar]
- Sucher, R.; Fischler, K.; Oberhuber, R.; Kronberger, I.; Margreiter, C.; Ollinger, R.; Schneeberger, S.; Fuchs, D.; Werner, E.R.; Watschinger, K.; et al. IDO and Regulatory T Cell Support Are Critical for Cytotoxic T Lymphocyte-Associated Ag-4 Ig-Mediated Long-Term Solid Organ Allograft Survival. J. Immunol. 2012, 188, 37–46. [Google Scholar] [CrossRef]
- Furuzawa-Carballeda, J.; Lima, G.; Uribe-Uribe, N.; Avila-Casado, C.; Mancilla, E.; Morales-Buenrostro, L.E.; Pérez-Garrido, J.; Pérez, M.; Cárdenas, G.; Llorente, L.; et al. High Levels of IDO-Expressing CD16+ Peripheral Cells, and Tregs in Graft Biopsies from Kidney Transplant Recipients under Belatacept Treatment. Transpl. Proc. 2010, 42, 3489–3496. [Google Scholar] [CrossRef]
- Bigenzahn, S.; Juergens, B.; Mahr, B.; Pratschke, J.; Koenigsrainer, A.; Becker, T.; Fuchs, D.; Brandacher, G.; Kainz, A.; Muehlbacher, F.; et al. No Augmentation of Indoleamine 2,3-Dioxygenase (IDO) Activity through Belatacept Treatment in Liver Transplant Recipients. Clin. Exp. Immunol. 2018, 192, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Laing, A.G.; Fanelli, G.; Ramirez-Valdez, A.; Lechler, R.I.; Lombardi, G.; Sharpe, P.T. Mesenchymal Stem Cells Inhibit T-Cell Function through Conserved Induction of Cellular Stress. PLoS ONE 2019, 14, e0213170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poormasjedi-Meibod, M.-S.; Jalili, R.B.; Hosseini-Tabatabaei, A.; Hartwell, R.; Ghahary, A. Immuno-Regulatory Function of Indoleamine 2,3 Dioxygenase through Modulation of Innate Immune Responses. PLoS ONE 2013, 8, e71044. [Google Scholar] [CrossRef] [Green Version]
- Metz, R.; Rust, S.; Duhadaway, J.B.; Mautino, M.R.; Munn, D.H.; Vahanian, N.N.; Link, C.J.; Prendergast, G.C. IDO Inhibits a Tryptophan Sufficiency Signal That Stimulates MTOR: A Novel IDO Effector Pathway Targeted by D-1-Methyl-Tryptophan. Oncoimmunology 2012, 1, 1460–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawy, A.A.-B.; Namboodiri, A.M.A.; Moffett, J.R. The End of the Road for the Tryptophan Depletion Concept in Pregnancy and Infection. Clin. Sci. 2016, 130, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T.; Nakahama, T.; Le, D.H.; Van Son, L.; Chu, H.H.; Kishimoto, T. Aryl Hydrocarbon Receptor and Kynurenine: Recent Advances in Autoimmune Disease Research. Front. Immunol. 2014, 5, 551. [Google Scholar] [CrossRef] [Green Version]
- Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An Int.eraction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells. J. Immunol. 2010, 185, 3190–3198. [Google Scholar]
- Eleftheriadis, T.; Pissas, G.; Antoniadi, G.; Liakopoulos, V.; Tsogka, K.; Sounidaki, M.; Stefanidis, I. Differential Effects of the Two Amino Acid Sensing Systems, the GCN2 Kinase and the MTOR Complex 1, on Primary Human Alloreactive CD4+ T-Cells. Int. J. Mol. Med. 2016, 37, 1412–1420. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.T.; Cao, J.S.; Zhao, J.; Yu, Y.; Qi, F.; Dai, X.C. IDO Expressing Dendritic Cells Suppress Allograft Rejection of Small Bowel Transplantation in Mice by Expansion of Foxp3+ Regulatory T Cells. Transpl. Immunol. 2015, 33, 69–77. [Google Scholar] [CrossRef]
- Dai, X.; Zhu, B.T. Suppression of T-Cell Response and Prolongation of Allograft Survival in a Rat Model by Tryptophan Catabolites. Eur. J. Pharm. 2009, 606, 225–232. [Google Scholar] [CrossRef]
- Iken, K.; Liu, K.; Liu, H.; Bizargity, P.; Wang, L.; Hancock, W.W.; Visner, G.A. Indoleamine 2,3-Dioxygenase and Metabolites Protect Murine Lung Allografts and Impair the Calcium Mobilization of T Cells. Am. J. Respir. Cell Mol. Biol. 2012, 47, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Mo, J.-H.; Gong, X.; Rossetto, C.; Jang, A.; Beck, L.; Elliott, G.I.; Kufareva, I.; Abagyan, R.; Broide, D.H.; et al. 3-Hydroxyanthranilic Acid Inhibits PDK1 Activation and Suppresses Experimental Asthma by Inducing T Cell Apoptosis. Proc. Natl. Acad. Sci. USA 2007, 104, 18619–18624. [Google Scholar]
- Fallarino, F.; Grohmann, U.; Vacca, C.; Bianchi, R.; Orabona, C.; Spreca, A.; Fioretti, M.C.; Puccetti, P. T Cell Apoptosis by Tryptophan Catabolism. Cell Death Differ. 2002, 9, 1069–1077. [Google Scholar] [CrossRef]
- Lowe, M.M.; Mold, J.E.; Kanwar, B.; Huang, Y.; Louie, A.; Pollastri, M.P.; Wang, C.; Patel, G.; Franks, D.G.; Schlezinger, J.; et al. Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production. PLoS ONE 2014, 9, e87877. [Google Scholar]
- Gargaro, M.; Vacca, C.; Massari, S.; Scalisi, G.; Manni, G.; Mondanelli, G.; Mazza, E.M.C.; Bicciato, S.; Pallotta, M.T.; Orabona, C.; et al. Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Front. Immunol. 2019, 10, 1973. [Google Scholar] [CrossRef] [Green Version]
- Loupy, A.; Lefaucheur, C. Antibody-Mediated Rejection of Solid-Organ Allografts. N. Engl. J. Med. 2018, 379, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Shinde, R.; Shimoda, M.; Chaudhary, K.; Liu, H.; Mohamed, E.; Bradley, J.; Kandala, S.; Li, X.; Liu, K.; McGaha, T.L. B Cell-Intrinsic IDO1 Regulates Humoral Immunity to T Cell-Independent Antigens. J. Immunol. 2015, 195, 2374–2382. [Google Scholar] [PubMed]
- Merlo, L.M.F.; DuHadaway, J.B.; Grabler, S.; Prendergast, G.C.; Muller, A.J.; Mandik-Nayak, L. IDO2 Modulates T Cell-Dependent Autoimmune Responses through a B Cell-Int.rinsic Mechanism. J. Immunol. 2016, 196, 4487–4497. [Google Scholar] [CrossRef] [Green Version]
- Sounidaki, M.; Pissas, G.; Eleftheriadis, T.; Antoniadi, G.; Golfinopoulos, S.; Liakopoulos, V.; Stefanidis, I. Indoleamine 2,3-Dioxygenase Suppresses Humoral Alloimmunity via Pathways That Different to Those Associated with Its Effects on T Cells. Biomed. Rep. 2019, 1, 1–5. [Google Scholar] [CrossRef]
- Suzuki, S.; Toné, S.; Takikawa, O.; Kubo, T.; Kohno, I.; Minatogawa, Y. Expression of Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase in Early Concepti. Biochem. J. 2001, 355, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K.; Higuchi, T.; Fujiwara, H.; Nakayama, T.; Egawa, H.; Itoh, K.; Fujii, S.; Fujita, J. Induction of Tryptophan 2,3-Dioxygenase in the Mouse Endometrium during Implantation. Biochem. Biophys. Res. Commun. 2000, 274, 166–170. [Google Scholar] [CrossRef]
- Schmidt, S.K.; Müller, A.; Heseler, K.; Woite, C.; Spekker, K.; MacKenzie, C.R.; Däubener, W. Antimicrobial and Immunoregulatory Properties of Human Tryptophan 2,3-Dioxygenase. Eur. J. Immunol. 2009, 39, 2755–2764. [Google Scholar] [CrossRef] [PubMed]
- Pilotte, L.; Larrieu, P.; Stroobant, V.; Colau, D.; Dolusic, E.; Frédérick, R.; De Plaen, E.; Uyttenhove, C.; Wouters, J.; Masereel, B.; et al. Reversal of Tumoral Immune Resistance by Inhibition of Tryptophan 2,3-Dioxygenase. Proc. Natl. Acad. Sci. USA 2012, 109, 2497–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Meinhardt, A.; Roehrich, M.-E.; Golshayan, D.; Dudler, J.; Pagnotta, M.; Trucco, M.; Vassalli, G. Indoleamine 2,3-Dioxygenase Gene Transfer Prolongs Cardiac Allograft Survival. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3415–H3423. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Dai, H.; Chen, J.; Duan, L.; Gong, M.; Liu, L.; Xiong, P.; Wang, C.-Y.; Fang, M.; Gong, F. Gene Delivery of Indoleamine 2,3-Dioxygenase Prolongs Cardiac Allograft Survival by Shaping the Types of T-Cell Responses. J. Gene Med. 2008, 10, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, T.; Zhao, N.; Zhu, L.; Wang, P.; Dai, X. Dendritic Cells Transfected with Indoleamine 2,3-Dioxygenase Gene Suppressed Acute Rejection of Cardiac Allograft. Int. Immunopharmacol. 2016, 36, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Pang, X.; Jia, P.-Y.; Jia, D.-L. Combined Therapy of Infusion of DC from Rats with Higher Expression of IDO and CD40L on Rejection Post Heart Transplantation. Eur. Rev. Med. Pharm. Sci. 2018, 22, 7977–7984. [Google Scholar]
- Li, C.; Sun, Z.; Yuan, F.; Zhao, Z.; Zhang, J.; Zhang, B.; Li, H.; Liu, T.; Dai, X. Mechanism of Indoleamine 2, 3-Dioxygenase Inhibiting Cardiac Allograft Rejection in Mice. J. Cell. Mol. Med. 2020, 24, 3438–3448. [Google Scholar] [CrossRef]
- He, J.-G.; Li, B.-B.; Zhou, L.; Yan, D.; Xie, Q.-L.; Zhao, W. Indoleamine 2,3-Dioxgenase-Transfected Mesenchymal Stem Cells Suppress Heart Allograft Rejection by Increasing the Production and Activity of Dendritic Cells and Regulatory T Cells. J. Investig. Med. 2020, 68, 728–737. [Google Scholar] [CrossRef]
- He, J.-G.; Xie, Q.-L.; Li, B.-B.; Zhou, L.; Yan, D. Exosomes Derived from IDO1-Overexpressing Rat Bone Marrow Mesenchymal Stem Cells Promote Immunotolerance of Cardiac Allografts. Cell Transpl. 2018, 27, 1657–1683. [Google Scholar] [CrossRef] [PubMed]
- Chambers, D.C.; Cherikh, W.S.; Goldfarb, S.B.; Hayes, D.; Kucheryavaya, A.Y.; Toll, A.E.; Khush, K.K.; Levvey, B.J.; Meiser, B.; Rossano, J.W.; et al. International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-Fifth Adult Lung and Heart-Lung Transplant Report-2018; Focus Theme: Multiorgan Transplantation. J. Heart Lung Transpl. 2018, 37, 1169–1183. [Google Scholar]
- Hayashi, T.; Beck, L.; Rossetto, C.; Gong, X.; Takikawa, O.; Takabayashi, K.; Broide, D.H.; Carson, D.A.; Raz, E. Inhibition of Experimental Asthma by Indoleamine 2,3-Dioxygenase. J. Clin. Investig. 2004, 114, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desvignes, L.; Ernst, J.D. Interferon-Gamma-Responsive Nonhematopoietic Cells Regulate the Immune Response to Mycobacterium Tuberculosis. Immunity 2009, 31, 974–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.; Park, H.Y.; Suh, Y.S.; Yoon, E.H.; Kim, J.; Jang, W.H.; Lee, W.S.; Park, S.G.; Choi, I.W.; Choi, I.; et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc. Natl. Acad. Sci. USA 2017, 114, E5881–E5890. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.A.; Zheng, Y.; Heidler, K.M.; Mizobuchi, T.; Wilkes, D.S. CDllc+ Cells Modulate Pulmonary Immune Responses by Production of Indoleamine 2,3-Dioxygenase. Am. J. Respir Cell Mol. Biol. 2004, 30, 311–318. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Fletcher, B.S.; Visner, G.A. Novel Action of Indoleamine 2,3-Dioxygenase Attenuating Acute Lung Allograft Injury. Am. J. Respir Crit Care Med. 2006, 173, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, L.; Fletcher, B.S.; Visner, G.A. Sleeping Beauty-Based Gene Therapy with Indoleamine 2,3-Dioxygenase Inhibits Lung Allograft Fibrosis. Faseb. J. 2006, 20, 2384–2386. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Liu, K.; Bizargity, P.; Hancock, W.W.; Visner, G.A. Reduced Cytotoxic Function of Effector CD8+ T Cells Is Responsible for Indoleamine 2,3-Dioxygenase-Dependent Immune Suppression. J. Immunol. 2009, 183, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Kardar, G.A.; Teimoori-Toolabi, L.; Toolabi, L.; Ghanbari, H.; Sadroddiny, E. Inducible Expression of Indoleamine 2,3-Dioxygenase Attenuates Acute Rejection of Tissue-Engineered Lung Allografts in Rats. Gene 2016, 576, 412–420. [Google Scholar] [CrossRef]
- Miki, T.; Sun, H.; Lee, Y.; Tandin, A.; Kovscek, A.M.; Subbotin, V.; Fung, J.J.; Valdivia, L.A. Blockade of Tryptophan Catabolism Prevents Spontaneous Tolerogenicity of Liver Allografts. Transpl. Proc. 2001, 33, 129–130. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-L.; Nakano, T.; Goto, S.; Kao, Y.-H.; Hsu, L.-W.; Lai, C.-Y.; Jawan, B.; Cheng, Y.-F.; Tateno, C.; et al. Immunological Role of Indoleamine 2,3-Dioxygenase in Rat Liver Allograft Rejection and Tolerance. J. Gastroenterol. Hepatol. 2008, 23, e243–e250. [Google Scholar] [CrossRef]
- Lin, Y.C.; Goto, S.; Tateno, C.; Nakano, T.; Cheng, Y.F.; Jawan, B.; Kao, Y.H.; Hsu, L.W.; Lai, C.Y.; Yoshizato, K.; et al. Induction of Indoleamine 2,3-Dioxygenase in Livers Following Hepatectomy Prolongs Survival of Allogeneic Hepatocytes after Transplantation. Transpl. Proc. 2008, 40, 2706–2708. [Google Scholar] [CrossRef]
- Benseler, V.; McCaughan, G.W.; Schlitt, H.J.; Bishop, G.A.; Bowen, D.G.; Bertolino, P. The Liver: A Special Case in Transplantation Tolerance. In Seminars in Liver Disease; Thieme Medical Publishers, Inc.: New York, NY, USA, 2007; Volume 27, pp. 194–213. [Google Scholar]
- Sun, X.; Gong, Z.; Wang, Z.; Li, T.; Zhang, J.; Sun, H.; Liu, S.; Huang, L.; Huang, C.; Peng, Z. IDO-Competent-DCs Induced by IFN-γ Attenuate Acute Rejection in Rat Liver Transplantation. J. Clin. Immunol. 2012, 32, 837–847. [Google Scholar] [CrossRef]
- Laurence, J.M.; Wang, C.; Park, E.T.; Buchanan, A.; Clouston, A.; Allen, R.D.M.; Mccaughan, G.W.; Bishop, G.A.; Sharland, A.F. Blocking Indoleamine Dioxygenase Activity Early after Rat Liver Transplantation Prevents Long-Term Survival but Does Not Cause Acute Rejection. Transplantation 2008, 85, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Laurence, J.M.; Wang, C.; Zheng, M.; Cunningham, S.; Earl, J.; Tay, S.S.; Allen, R.D.M.; McCaughan, G.W.; Alexander, I.E.; Bishop, G.A.; et al. Overexpression of Indoleamine Dioxygenase in Rat Liver Allografts Using a High-Efficiency Adeno-Associated Virus Vector Does Not Prevent Acute Rejection. Liver Transplant. 2009, 15, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.-F.; Ding, J.-G.; Sheng, J.-F.; Zhu, M.-H.; Li, J.-J.; Sheng, Z.-K.; Tang, X.-F. Novel Action of 3,4-DAA Ameliorating Acute Liver Allograft Injury. Cell Biochem. Funct. 2011, 29, 673–678. [Google Scholar] [CrossRef]
- Cook, C.H.; Bickerstaff, A.A.; Wang, J.-J.; Nadasdy, T.; Della Pelle, P.; Colvin, R.B.; Orosz, C.G. Spontaneous Renal Allograft Acceptance Associated with “Regulatory” Dendritic Cells and IDO. J. Immunol. 2008, 180, 3103–3112. [Google Scholar] [CrossRef]
- Na, N.; Luo, Y.; Zhao, D.; Yang, S.; Hong, L.; Li, H.; Miao, B.; Qiu, J. Prolongation of Kidney Allograft Survival Regulated by Indoleamine 2, 3-Dioxygenase in Immature Dendritic Cells Generated from Recipient Type Bone Marrow Progenitors. Mol. Immunol. 2016, 79, 22–31. [Google Scholar] [CrossRef]
- Demmers, M.W.H.J.; Korevaar, S.S.; Roemeling-van Rhijn, M.; van den Bosch, T.P.P.; Hoogduijn, M.J.; Betjes, M.G.H.; Weimar, W.; Baan, C.C.; Rowshani, A.T. Human Renal Tubular Epithelial Cells Suppress Alloreactive T Cell Proliferation. Clin. Exp. Immunol. 2015, 179, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Jiang, J.; Arp, J.; Liu, W.; Garcia, B.; Wang, H. Regulatory T-Cell Generation and Kidney Allograft Tolerance Induced by Mesenchymal Stem Cells Associated with Indoleamine 2,3-Dioxygenase Expression. Transplantation 2010, 90, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, F.; Noris, M.; Remuzzi, G. Immunomodulatory Effects of Mesenchymal Stromal Cells in Solid Organ Transplantation. Curr. Opin. Organ. Transpl. 2010, 15, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wu, W.; Xu, X.; Liao, L.; Zheng, F.; Messinger, S.; Sun, X.; Chen, J.; Yang, S.; Cai, J.; et al. Induction Therapy with Autologous Mesenchymal Stem Cells in Living-Related Kidney Transplants: A Randomized Controlled Trial. JAMA 2012, 307, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhou, S.; Liu, H.; Shen, B.; Zhao, H.; Peng, K.; Wu, X. Indoleamine 2, 3-Dioxgenase Transfected Mesenchymal Stem Cells Induce Kidney Allograft Tolerance by Increasing the Production and Function of Regulatory T Cells. Transplantation 2015, 99, 1829–1838. [Google Scholar] [CrossRef]
- Vavrincova-Yaghi, D.; Deelman, L.E.; Goor, H.; Seelen, M.; Kema, I.P.; Smit-van Oosten, A.; Zeeuw, D.; Henning, R.H.; Sandovici, M. Gene Therapy with Adenovirus-Delivered Indoleamine 2,3-Dioxygenase Improves Renal Function and Morphology Following Allogeneic Kidney Transplantation in Rat. J. Gene Med. 2011, 13, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Vavrincova-Yaghi, D.; Deelman, L.E.; van Goor, H.; Seelen, M.A.; Vavrinec, P.; Kema, I.P.; Gomolcak, P.; Benigni, A.; Henning, R.H.; Sandovici, M. Local Gene Therapy with Indoleamine 2,3-Dioxygenase Protects against Development of Transplant Vasculopathy in Chronic Kidney Transplant Dysfunction. Gene 2016, 23, 797–806. [Google Scholar]
- Hofmann, F. Ido Brings down the Pressure in Systemic Inflammation. Nat. Med. 2010, 16, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Merchen, T.D.; Fang, X.; Lassiter, R.; Ho, C.-S.; Jajosky, R.; Kleven, D.; Thompson, T.; Mohamed, E.; Yu, M.; et al. Regulation of Indoleamine 2,3 Dioxygenase and Its Role in a Porcine Model of Acute Kidney Allograft Rejection. J. Investig. Med. 2018, 66, 1109–1117. [Google Scholar] [CrossRef]
- Alexander, A.M.; Crawford, M.; Bertera, S.; Rudert, W.A.; Takikawa, O.; Robbins, P.D.; Trucco, M. Indoleamine 2,3-Dioxygenase Expression in Transplanted NOD Islets Prolongs Graft Survival after Adoptive Transfer of Diabetogenic Splenocytes. Diabetes 2002, 51, 356–365. [Google Scholar]
- Jalili, R.B.; Forouzandeh, F.; Moeenrezakhanlou, A.; Rayat, G.R.; Rajotte, R.V.; Uludag, H.; Ghahary, A. Mouse Pancreatic Islets Are Resistant to Indoleamine 2,3 Dioxygenase-Induced General Control Nonderepressible-2 Kinase Stress Pathway and MaInt.ain Normal Viability and Function. Am. J. Pathol. 2009, 174, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Jalili, R.B.; Rayat, G.R.; Rajotte, R.V.; Ghahary, A. Suppression of Islet Allogeneic Immune Response by Indoleamine 2,3 Dioxygenase-Expressing Fibroblasts. J. Cell. Physiol. 2007, 213, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Jalili, R.B.; Forouzandeh, F.; Rezakhanlou, A.M.; Hartwell, R.; Medina, A.; Warnock, G.L.; Larijani, B.; Ghahary, A. Local Expression of Indoleamine 2,3 Dioxygenase in Syngeneic Fibroblasts Significantly Prolongs Survival of an Engineered Three-Dimensional Islet Allograft. Diabetes 2010, 59, 2219–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini-Tabatabaei, A.; Jalili, R.B.; Khosravi-Maharlooei, M.; Hartwell, R.; Kilani, R.T.; Zhang, Y.; Ghahary, A. Immunoprotection and Functional Improvement of Allogeneic Islets in Diabetic Mice, Using a Stable Indoleamine 2,3-Dioxygenase Producing Scaffold. Transplantation 2015, 99, 1341–1348. [Google Scholar] [CrossRef]
- Khosravi-Maharlooei, M.; Pakyari, M.; Jalili, R.B.; Kilani, R.T.; Ghahary, A. Int.raperitoneal Injection of IDO-Expressing Dermal Fibroblasts Improves the Allograft Survival. Clin. Immunol. 2017, 174, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ingelsten, M.; Gustafsson, K.; Oltean, M.; Karlsson-Parra, A.; Olausson, M.; Haraldsson, B.; Nyström, J. Is Indoleamine 2,3-Dioxygenase Important for Graft Acceptance in Highly Sensitized Patients after Combined Auxiliary Liver-Kidney Transplantation? Transplantation 2009, 88, 911–919. [Google Scholar] [CrossRef]
- Kaden, J.; May, G.; Völp, A.; Wesslau, C. Factors Impacting Short and Long-Term Kidney Graft Survival: Modification by Single Int.ra-Operative -High-Dose Induction with ATG-Fresenius. Ann. Transpl. 2011, 16, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Lahdou, I.; Sadeghi, M.; Daniel, V.; Schenk, M.; Renner, F.; Weimer, R.; Löb, S.; Schmidt, J.; Mehrabi, A.; Schnitzler, P.; et al. Increased Pretransplantation Plasma Kynurenine Levels Do Not Protect from but Predict Acute Kidney Allograft Rejection. Hum. Immunol. 2010, 71, 1067–1072. [Google Scholar] [CrossRef]
- Brandacher, G.; Cakar, F.; Winkler, C.; Schneeberger, S.; Obrist, P.; Bösmüller, C.; Werner-Felmayer, G.; Werner, E.R.; Bonatti, H.; Margreiter, R.; et al. Non-Invasive Monitoring of Kidney Allograft Rejection through IDO Metabolism Evaluation. Kidney Int. 2007, 71, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Al Khasawneh, E.; Gupta, S.; Tuli, S.Y.; Shahlaee, A.H.; Garrett, T.J.; Schechtman, K.B.; Dharnidharka, V.R. Stable Pediatric Kidney Transplant Recipients Run Higher Urine Indoleamine 2, 3 Dioxygenase (IDO) Levels than Healthy Children. Pediatric Transpl. 2014, 18, 254–257. [Google Scholar] [CrossRef] [Green Version]
- Holmes, E.W.; Russell, P.M.; Kinzler, G.J.; Reckard, C.R.; Flanigan, R.C.; Thompson, K.D.; Bermes, E.W. Oxid.ative Tryptophan Metabolism in Renal Allograft Recipients: Increased Kynurenine Synthesis Is Associated with Inflammation and OKT3 Therapy. Cytokine 1992, 4, 205–213. [Google Scholar]
- Kaden, J.; Abendroth, D.; Völp, A.; Marzinzig, M. Dynamics and Diagnostic Relevance of Kynurenine Serum Level after Kidney Transplantation. Ann. Transpl. 2015, 20, 327–337. [Google Scholar]
- Vavrincova-Yaghi, D.; Seelen, M.A.; Kema, I.P.; Deelman, L.E.; van der Heuvel, M.C.; Breukelman, H.; Van den Eynde, B.J.; Henning, R.H.; van Goor, H.; Sandovici, M. Early Posttransplant Tryptophan Metabolism Predicts Long-Term Outcome of Human Kidney Transplantation. Transplantation 2015, 99, e97–e104. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Kim, B.K.; Gwon, M.-R.; Seong, S.J.; Ohk, B.; Kang, W.Y.; Lee, H.W.; Jung, H.-Y.; Cho, J.-H.; Chung, B.H.; et al. Urinary Metabolomic Profiling for Noninvasive Diagnosis of Acute T Cell-Mediated Rejection after Kidney Transplantation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1118–1119, 157–163. [Google Scholar]
- Blydt-Hansen, T.D.; Sharma, A.; Gibson, I.W.; Mandal, R.; Wishart, D.S. Urinary Metabolomics for Noninvasive Detection of Borderline and Acute T Cell-Mediated Rejection in Children after Kidney Transplantation. Am. J. Transpl. 2014, 14, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Dharnidharka, V.R.; Al Khasawneh, E.; Gupta, S.; Shuster, J.J.; Theriaque, D.W.; Shahlaee, A.H.; Garrett, T.J. Verification of Association of Elevated Serum IDO Enzyme Activity with Acute Rejection and Low CD4-ATP Levels with Infection. Transplantation 2013, 96, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chen, J.; Ye, L.; Xu, G. Serum Metabolomics Study of the Acute Graft Rejection in Human Renal Transplantation Based on Liquid Chromatography-Mass Spectrometry. J. Proteome Res. 2014, 13, 2659–2667. [Google Scholar] [CrossRef]
- Sadeghi, M.; Lahdou, I.; Daniel, V.; Schnitzler, P.; Fusch, G.; Schefold, J.C.; Zeier, M.; Iancu, M.; Opelz, G.; Terness, P. Strong Association of Phenylalanine and Tryptophan Metabolites with Activated Cytomegalovirus Infection in Kidney Transplant Recipients. Hum. Immunol. 2012, 73, 186–192. [Google Scholar] [CrossRef]
- Yilmaz, N.; Ustundag, Y.; Kivrak, S.; Kahvecioglu, S.; Celik, H.; Kivrak, I.; Huysal, K. Serum Indoleamine 2,3 Dioxygenase and Tryptophan and Kynurenine Ratio Using the UPLC-MS/MS Method, in Patients Undergoing Peritoneal Dialysis, Hemodialysis, and Kidney Transplantation. Ren. Fail. 2016, 38, 1300–1309. [Google Scholar]
- Zhang, F.; Wang, Q.; Xia, T.; Fu, S.; Tao, X.; Wen, Y.; Chan, S.; Gao, S.; Xiong, X.; Chen, W. Diagnostic Value of Plasma Tryptophan and Symmetric Dimethylarginine Levels for Acute Kidney Injury among Tacrolimus-Treated Kidney Transplant Patients by Targeted Metabolomics Analysis. Sci. Rep. 2018, 8, 14688. [Google Scholar] [CrossRef] [Green Version]
- de Vries, L.V.; Minović, I.; Franssen, C.F.M.; van Faassen, M.; Sanders, J.-S.F.; Berger, S.P.; Navis, G.; Kema, I.P.; Bakker, S.J.L. The Tryptophan/Kynurenine Pathway, Systemic Inflammation, and Long-Term Outcome after Kidney Transplantation. Am. J. Physiol. Ren. Physiol. 2017, 313, F475–F486. [Google Scholar] [CrossRef]
- Meloni, F.; Giuliano, S.; Solari, N.; Draghi, P.; Miserere, S.; Bardoni, A.M.; Salvini, R.; Bini, F.; Fietta, A.M. Indoleamine 2,3-Dioxygenase in Lung Allograft Tolerance. J. Heart Lung Transpl. 2009, 28, 1185–1192. [Google Scholar] [CrossRef]
- Oweira, H.; Lahdou, I.; Opelz, G.; Daniel, V.; Terness, P.; Schmidt, J.; Mehrabi, A.; Fusch, G.; Schefold, J.; Zidan, A.; et al. Association of Pre- and Early Post-Transplant Serum Amino Acids and Metabolites of Amino Acids and Liver Transplant Outcome. Transpl. Immunol. 2018, 46, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.T.P.R.; Higdon, R.; Richards, D.A.; Silva, M.A.; Murphy, N.; Kolker, E.; Mirza, D.F. Biomarker Differences between Cadaveric Grafts Used in Human Orthotopic Liver Transplantation as Identified by Coulometric Electrochemical Array Detection (CEAD) Metabolomics. OMICS 2014, 18, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Beier, U.H.; Hartung, E.A.; Concors, S.; Hernandez, P.T.; Wang, Z.; Perry, C.; Baur, J.A.; Denburg, M.R.; Hancock, W.W.; Gade, T.P.; et al. Tissue Metabolic Profiling Shows That Saccharopine Accumulates during Renal Ischemic-Reperfusion Injury, While Kynurenine and Itaconate Accumulate in Renal Allograft Rejection. Metabolomics 2020, 16, 65. [Google Scholar] [CrossRef] [PubMed]
- Sadok, I.; Gamian, A.; Staniszewska, M.M. Chromatographic analysis of tryptophan metabolites. J. Sep. Sci. 2017, 40, 3020–3045. [Google Scholar] [PubMed]
- de Jong, W.H.A.; Smit, R.; Bakker, S.J.L.; de Vries, E.G.E.; Kema, I.P. Plasma tryptophan, kynurenine and 3-hydroxykynurenine measurement using automated online solid-phase extraction HPLC-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Tombari, R.J.; Saunders, C.M.; Wu, C.Y.; Dunlap, L.E.; Tantillo, D.J.; Olson, D.E. Ex Vivo Analysis of Tryptophan Metabolism Using 19F NMR. Acs. Chem. Biol. 2019, 14, 1866–1873. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulpaite, R.; Miknevicius, P.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int. J. Mol. Sci. 2021, 22, 1921. https://doi.org/10.3390/ijms22041921
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. International Journal of Molecular Sciences. 2021; 22(4):1921. https://doi.org/10.3390/ijms22041921
Chicago/Turabian StyleZulpaite, Ruta, Povilas Miknevicius, Bettina Leber, Kestutis Strupas, Philipp Stiegler, and Peter Schemmer. 2021. "Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation" International Journal of Molecular Sciences 22, no. 4: 1921. https://doi.org/10.3390/ijms22041921
APA StyleZulpaite, R., Miknevicius, P., Leber, B., Strupas, K., Stiegler, P., & Schemmer, P. (2021). Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. International Journal of Molecular Sciences, 22(4), 1921. https://doi.org/10.3390/ijms22041921