Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling
Abstract
:1. Introduction
2. Results and Discussions
2.1. Effect of Contact Time on the Adsorption Capacity of Naphthalene (C10H8)
2.2. Adsorption Isotherms
2.3. Adsorption Kinetics Study
2.4. Physical Characterizations of the Adsorbent (DSP and CDSP)
2.4.1. Surface Area Analysis
2.4.2. Ultimate Analysis of DSP and CDSP
2.4.3. Surface Morphological Analysis (DSP and CDSP)
2.4.4. Thermogravimetric (TGA/DTG) Analysis
2.4.5. Energy-Dispersive X-ray (EDX) Analysis
2.4.6. Surface Functional Group Analysis
3. Materials and Methods
3.1. Materials
3.2. Adsorption Experiments
3.3. PAHs (C10H8) Analysis
3.4. Characterization of Date Seed (DSP) and Date Seed-Based Activated Carbon (CDSP)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruce, E.D.; Abusalih, A.A.; McDonald, T.J.; Autenrieth, R.L. Comparing deterministic and probabilistic risk assessments for sites contaminated by polycyclic aromatic hydrocarbons (PAHs). J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control 2007, 42, 697–706. [Google Scholar] [CrossRef]
- Liu, G.; Niu, Z.; Van Niekerk, D.; Xue, J.; Zheng, L. Polycyclic Aromatic Hydrocarbons (PAHs) from Coal Combustion: Emissions, Analysis, and Toxicology. Rev. Environ. Contam. Toxicol. 2008, 192, 1–28. [Google Scholar] [PubMed]
- Ania, C.O.; Cabal, B.; Parra, J.B.; Arenillis, A.; Arias, B.; Pis, J.J. Naphthalene Adsorption on Activated Carbons using Solvents of Different Polarity. Adsorption 2008, 14, 343–355. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, First Addendum to Third Edition, Volume 1, Recommendations; World Health Organization: Geneva, Switzerland, 2006; ISBN 92-4-154696-4. [Google Scholar]
- Okedeyi, O.O.; Nindi, M.M.; Dube, S.; Awofolu, O.R. Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa. Environ. Monit. Assess. 2013, 185, 2073–2082. [Google Scholar] [CrossRef]
- Awofolu, N.; Ma, J.; Yu, Y.; Yang, Z.; Li, Y. New observations on PAH pollution in old heavy industry cities in northeastern China. Environ. Pollut. 2015, 205, 415–423. [Google Scholar]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Li, X.; Qi, S.; Liu, G.; Peng, X. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci. Total Environ. 2006, 355, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, G.; Zhang, J. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs. Sci. Total Environ. 2015, 538, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Abd Hamid, S.B.; Chowdhury, Z.Z.; Zain, S.M. Base Catalytic Approach: A Promising Technique for Activation of Bio Char for Equilibrium Sorption Studies of Copper, Cu (II) ions in Single Solute System. Materials 2015, 7, 2815–2832. [Google Scholar] [CrossRef]
- Ania, C.O.; Cabal, B.; Pervida, C.; Arenillis, A.; Parra, J.B.; Rubiera, F.; Pis, J.J. Removal of Naphthalene from Aqueous Solution on Chemically Modified Activated Carbon. Water Resour. 2007, 41, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Bouchelta, C.; Medjram, M.S.; Bertrand, O.; Bellat, J.-P. Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 2008, 82, 70–77. [Google Scholar] [CrossRef]
- Yang, K.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Xia, H.; Duan, X. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 2010, 101, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.-C.; Tseng, R.-L.; Hu, C.-C. Comparisons of pore properties and adsorption performance of KOH-activated and steam activated carbons. Microporous Mesoporous Mater. 2005, 80, 95–106. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, P.; Zhu, Y.; Xu, B.; Peng, C.; Wang, T.; Li, C.; Zeng, G. Source Apportionment Coupled with Gas/Particle Partitioning Theory and Risk Assessment of Polycyclic Aromatic Hydrocarbons Associated with Size-Segregated Airborne Particulate Matter. Water Air Soil Pollut. 2016, 227, 44. [Google Scholar] [CrossRef]
- Yu, M.; Han, Y.; Li, J.; Wang, L. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 2017, 317, 493–502. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chang, C.Y.; Lee, S.L. A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresour. Technol. 1997, 64, 211–217. [Google Scholar] [CrossRef]
- Gergova, K.; Eser, S. Effects of activation method on the pore structure of activated carbons from apricot stones. Carbon 1996, 34, 879–888. [Google Scholar] [CrossRef]
- Savova, D.; Apak, E.; Ekinci, E.; Yardım, F.; Petrov, N.; Budinova, T.; Razvigorova, M.; Minkova, V. Biomass conversion to carbon adsorbents and gas. Biomass Bioenergy 2001, 21, 133–142. [Google Scholar] [CrossRef]
- Girgis, B.S.; El-Hendawy, A.A. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater. 2002, 52, 105–117. [Google Scholar] [CrossRef]
- Heschel, W.; Klose, E. On the suitability of agricultural by-products for the manufacture of granular activated carbon. Fuel 1995, 74, 1786–1791. [Google Scholar] [CrossRef]
- Fan, M.; Marshall, W.; Daugaard, D.; Brown, R.C. Steam activation of chars produced from oat hulls and corn stover. Bioresour. Technol. 2004, 93, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Mozammel, H.M.; Masahiro, O.; Bahattacharya, S.C. Activated charcoal from coconut shell using ZnCl2 activation. Biomass Bioenergy 2002, 22, 397–400. [Google Scholar] [CrossRef]
- Hu, Z.; Srinivasan, M.P.; Yaming, N. Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon 2001, 39, 877–886. [Google Scholar] [CrossRef]
- Gergova, K.; Petrov, N.; Eser, S. Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon 1994, 32, 693–702. [Google Scholar] [CrossRef]
- Yalcın, N.; Sevinc, V. Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon 2000, 38, 1943–1945. [Google Scholar] [CrossRef]
- Gray, M.R.; Corcoran, W.H.; Gavalas, G.R. Pyrolysis of a wood derived material: Effects of moisture and ash content. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 646–651. [Google Scholar] [CrossRef]
- Encinar, J.M.; Beltra, F.J.; Ramiro, A.; González, J.F. Catalyzed pyrolysis of grape and olive bagasse: Influence of catalyst type and chemical treatment. Ind. Eng. Chem. Res. 1997, 36, 4176–4183. [Google Scholar] [CrossRef]
- Ismadji, S.; Bhatia, S.K. Characterization of activated carbons using liquid phase adsorption. Carbon 2001, 39, 1237–1250. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Abd Hamid, S.B.; Das, R.; Hasan, M.R.; Zain, S.M.; Khalid, K.; Uddin, M.N. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. Bioresources 2013, 8, 6523–6555. [Google Scholar] [CrossRef]
- Akinpelu, A.A.; Ali, M.E.; Rafie, M.J.; Saidur, R.; Chowdhury, Z.Z.; Mushir, A.S.; Tawfik, A.S. Effect of the oxidation process on the molecular interaction of Polyaromatic Hydrocarbons (PAHs) with carbon nanotubes: Adsorption kinetic and Isotherm study. J. Mol. Liq. 2019, 289, 1–9. [Google Scholar] [CrossRef]
- Adewole, J.K.; Sultan, A.S. A Study on Processing and Chemical Composition of Date Pit Powder for Application in Enhanced Oil Recovery. Defect Diffus. Forum 2014, 353, 79–83. [Google Scholar] [CrossRef]
- Adebesi, G.A.; Chowdhury, Z.Z.; Adeniye, A.P. Equilibrium, Kinetic, and Thermodynamic Studies of Lead Ion and Zinc Ion Adsorption from Aqueous Solution onto Activated Carbon Prepared from Palm Oil Mill Effluent. J. Clean. Prod. 2017, 148, 958–968. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Abd Hamid, S.B.; Rahman, M.M.; Rafique, R.F. Catalytic Activation and Application of Micro-Spherical Carbon Derived from Hydrothermal Carbonization of Lignocellulosic Biomass: Statistical Analysis Using Box–Behnken Design. RSC Adv. 2016, 6, 102680–102694. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Rakibul, M.D.H.; Abd Hamid, S.B.; Samsudin, E.M.; Zain, S.M.; Khalid, K. Catalytic Pretreatment of Biochar residues derived from Lignocellulosic Feedstock for Equilibrium Studies of Manganese, Mn (II) cations from aqueous solution. RSC Adv. 2015, 5, 6345–6356. [Google Scholar] [CrossRef]
- Zareie, C.; Eshkalak, S.K.; Darzi, G.N.; Baei, M.S.; Younesi, H.; Ramakrishna, S. Uptake of Pb(II) Ions from Simulated Aqueous Solution via Nanochitosan. Coating 2019, 9, 862–877. [Google Scholar] [CrossRef] [Green Version]
- Jamil, F.; Al-Muhtaseb, A.H.; Naushad, M.; Baawain, M.; Al-Mamun, A.; Saxena, S.K.; Viswanadham, N. Evaluation of synthesized green carbon catalyst from waste date pits for tertiary butylation of phenol. Arab. J. Chem. 2020, 13, 298–307. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Ibrahim, M.N.M. The use of date palm as a potential adsorbent for wastewater treatment: A review. Environ. Sci. Pollut. Res. 2012, 19, 1464–1484. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, Z.Z.; Wageeh, A.Y.; Julkapli, N.M.; Al Saadi, M.A.; Ali Atieh, M. Application of Graphitic Bio-Carbon Using Two-Level Factorial Design for Microwave-Assisted Carbonization. BioResources 2016, 11, 3637–3659. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, Z.Z.; Pal, K.; Johan MR Wageeh Abdulhadi Yehya Dabdawb, W.A.D.; Md Eaqub Ali, M.E.; Rafique, R.F. Comparative Evaluation of Physiochemical Properties of a Solid Fuel Derived from Adansonia digitata Trunk using Torrefaction. Bioresources 2017, 12, 3816–3833. [Google Scholar] [CrossRef] [Green Version]
- Adebesi, G.A.; Chowdhury, Z.Z.; Abd Hamid, S.B.; Ali, M.A. Hydrothermally Treated Banana Empty Fruit Bunch Fiber Activated Carbon for Pb(II) and Zn(II) Removal. Bioresources 2016, 11, 9686–9709. [Google Scholar] [CrossRef] [Green Version]
- Sevilla, M.; Fuertes, A.B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419428. [Google Scholar] [CrossRef] [PubMed]
- Rouquerol, F.; Rouquerol, I.; Sing, K. Adsorption by Powders and Porous Solids; Academic Press: London, UK, 1999. [Google Scholar]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrol. 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Liu, F.; Guo, M. Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J. Mater. Sci. 2015, 50, 1624–1631. [Google Scholar] [CrossRef]
- Ge, X.; Tian, F.; Wu, Z.; Yan, Y.; Cravotto, G.; Wu, Z. Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: Microwave power effects. Chem. Eng. Process. Process Intensif. 2015, 91, 67–77. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Characterization of Activated Carbon from Apricot Stones. Master’s Thesis, The Middile East Technical University, Ankara, Turkey, 2004. [Google Scholar]
- Liu, W.; Zhao, G. Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood. BioResources 2012, 7, 5552–5567. [Google Scholar] [CrossRef]
- Yang, T.; Lua, A.C. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J. Colloid Interface Sci. 2003, 267, 408–417. [Google Scholar] [CrossRef]
- El-Hendawy, A.N.A. Surface and adsorptive properties of carbons prepared from biomass. Appl. Surf. Sci. 2005, 252, 287–295. [Google Scholar] [CrossRef]
- Oh, G.H.; Yun, C.H.; Park, C.R. Role of KOH in the one-stage KOH activation of cellulosic biomass. Carbon Sci. 2003, 4, 180–184. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. A 1906, 57, 385–471. [Google Scholar]
- Temkin, M.J.; Pyzhev, V. Recent modification to Langmuir isotherms. Acta Physicochem. URSS 1940, 12, 217–225. [Google Scholar]
Sample | Langmuir | Freundlich | Temkin | |||||
---|---|---|---|---|---|---|---|---|
KL (L/μg) | R2 | KF (μg/g) (L/μg) | n | R2 | KT (L/μg) | B | R2 | |
DSP | 142.86 | 0.930 | 0.65 | 405.45 | 0.751 | 0.10 | 241.25 | 79.13 |
CDSP | 10000 | 0.991 | 0.86 | 52.46 | 0.873 | 0.05 | 51.32 | 77.76 |
Pseudo-First Order Kinetics Model | Pseudo-Second Order Kinetic Model | Intraparticle Diffusion Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial Conc. (ppb) | Exp. qe () | Cal. qe () | K1 (Min−1) | R2 | Cal. qe () | K2 (Min−1) | R2 | Kdif (μg/g.h0.5) | Ci | R2 |
12.5 | 48.35 | 2.06 | 0.19 | 0.951 | 50.51 | 0.010 | 0.999 | 2.42 | 32.98 | 0.697 |
25 | 109.55 | 1.10 | 1.12 | 0.715 | 109.89 | 0.069 | 1.000 | 0.39 | 107.02 | 0.747 |
37.5 | 180.78 | 1.45 | 0.13 | 0.812 | 181.82 | 0.044 | 1.000 | 0.60 | 176.80 | 0.783 |
50 | 238.20 | 1.48 | 0.12 | 0.961 | 238.10 | 0.044 | 1.000 | 0.58 | 234.30 | 0.850 |
62.5 | 309.89 | 2.15 | 2.01 | 0.971 | 312.50 | 0.026 | 1.000 | 1.35 | 301.31 | 0.695 |
75 | 369.06 | 2.21 | 0.20 | 0.9996 | 384.62 | 0.008 | 1.000 | 4.10 | 363.42 | 0.572 |
Pseudo-First Order Kinetics Model | Pseudo-Second Order Kinetic Model | Intraparticle Diffusion Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial Conc. (ppb) | Exp. qe () | Cal. qe () | K1 (Min−1) | R2 | Cal. qe () | K2 (Min−1) | R2 | Kdif (μg/g.h0.5) | Ci | R2 |
12.5 | 58.90 | 2.14 | 0.16 | 0.8372 | 63.69 | 0.003 | 0.995 | 4.56 | 29.90 | 0.691 |
25 | 123.7 | 1.07 | 0.06 | 0.231 | 123.46 | 0.047 | 1.00 | 0.63 | 119.65 | 0.726 |
37.5 | 190 | 1.63 | 0.06 | 0.559 | 192.31 | 0.021 | 1.00 | 1.16 | 182.40 | 0.805 |
50 | 247.89 | 1.41 | 0.07 | 0.468 | 250.00 | 0.023 | 1.00 | 1.61 | 237.73 | 0.475 |
62.5 | 304.90 | 1.78 | 0.12 | 0.431 | 312.50 | 0.005 | 0.999 | 1.69 | 262.090 | 0.767 |
75 | 379.64 | 1.51 | 0.08 | 0.406 | 384.62 | 0.012 | 1.000 | 1.69 | 368.07 | 0.767 |
DSP | CDSP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial Conc. (ppb) | Exp. qe () | Cal. qe () | 1/b Ln(ab) | 1/b | R2 | Exp. qe () | Cal. qe () | 1/b Ln(ab) | 1/b | R2 |
12.5 | 48.35 | 51.54 | 51.152 | 5.946 | 0.918 | 58.90 | 62.75 | 64.125 | 1.296 | 0.92 |
25 | 109.55 | 104.81 | 109.89 | 6.966 | 0.933 | 123.7 | 128.7 | 124.35 | 1.538 | 0.87 |
37.5 | 180.78 | 183.82 | 181.28 | 1.456 | 0.979 | 190 | 193.2 | 190.84 | 2.764 | 0.93 |
50 | 238.20 | 239.70 | 238.59 | 1.564 | 0.981 | 247.89 | 250.3 | 250.06 | 4.201 | 0.95 |
62.5 | 309.89 | 314.60 | 311.47 | 3.363 | 0.921 | 304.90 | 313.4 | 314.97 | 17.92 | 0.88 |
75 | 369.06 | 389.32 | 394.42 | 10.24 | 0.899 | 379.64 | 367.9 | 380.38 | 10.81 | 0.91 |
Sample | BET Surf. Area (m2/g) | t-Plot Micropore Area (m2/g) | t-Plot Ext. Surf Area (m2/g) | Mesopore Volume (cm3/g) | Micropore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|---|---|---|
DSP | 7.3023 | 3.5021 | 4.8022 | 0.1141 | 0.0114 | 1.02 |
CDSP | 725.8319 | 466.451 | 258.2031 | 0.4503 | 0.5823 | 3.96 |
Sample | Ultimate Analysis (wt%) | ||||||
---|---|---|---|---|---|---|---|
C% | H% | N% | O% | Others | H/C | O/C | |
DSP | 41.93 | 6.01 | 0.86 | 49.98 | 1.22 | 0.143 | 1.19 |
CDSP | 85.76 | 3.12 | 0.34 | 10.09 | 0.69 | 0.036 | 0.18 |
Element | DSP (%) | CDSP (%) |
---|---|---|
Moisture | 6.55 | 1.22 |
Volatile Matter | 41.77 | 5.03 |
Fixed Carbon | 39.78 | 83.08 |
Ash Residues | 11.90 | 10.67 |
DTGmax | 310.44 °C | 322.21 °C |
Element | DSP (%) | CDSP (%) |
---|---|---|
C | 43.11 | 86.76 |
O | 21.66 | 7.55 |
H | 9.221 | 1.22 |
Mg | 0.99 | 0.53 |
P | 2.34 | 1.56 |
K | 2.23 | 1.98 |
Cl | 0.56 | 0.18 |
Ca | 19.92 | - |
Zn | - | 0.21 |
Frequency Level for Peaks | |||
---|---|---|---|
No. | Raw DSP | CDSP | Peak Assignment |
1 | 624.78 | - | Bending Vibration of –C-O-H |
2 | 856.78 | - | -C-H Band for Out-of-Plane Bending vibration reflecting the presence of aromatic/benzene derivatives |
3 | 1099.57 | 1100.78 | -C-O-C Band Stretching showing ester linkages |
4 | 1345.67 | - | -CH3 Band |
5 | 1578.87 | 1581.23 | -COOH Functional Group |
6 | 1634.77 | - | -COOH Functional Group |
7 | 1788.55 | - | C∞O Band for Stretching Vibration |
8 | 2367.66 | - | C-H Bending Vibration |
9 | 2989.33 | - | -O-H Band for Stretching Vibration |
10 | 3477.67 | 3388.90 | -O-H Band for Stretching Vibration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinpelu, A.A.; Chowdhury, Z.Z.; Shibly, S.M.; Faisal, A.N.M.; Badruddin, I.A.; Rahman, M.M.; Amin, M.A.; Sagadevan, S.; Akbarzadeh, O.; Khan, T.M.Y.; et al. Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling. Int. J. Mol. Sci. 2021, 22, 2090. https://doi.org/10.3390/ijms22042090
Akinpelu AA, Chowdhury ZZ, Shibly SM, Faisal ANM, Badruddin IA, Rahman MM, Amin MA, Sagadevan S, Akbarzadeh O, Khan TMY, et al. Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling. International Journal of Molecular Sciences. 2021; 22(4):2090. https://doi.org/10.3390/ijms22042090
Chicago/Turabian StyleAkinpelu, Adeola A., Zaira Zaman Chowdhury, Shahjalal Mohd. Shibly, Abu Nasser Mohd Faisal, Irfan Anjum Badruddin, Md. Mahfujur Rahman, Md. Al Amin, Suresh Sagadevan, Omid Akbarzadeh, T. M. Yunus Khan, and et al. 2021. "Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling" International Journal of Molecular Sciences 22, no. 4: 2090. https://doi.org/10.3390/ijms22042090
APA StyleAkinpelu, A. A., Chowdhury, Z. Z., Shibly, S. M., Faisal, A. N. M., Badruddin, I. A., Rahman, M. M., Amin, M. A., Sagadevan, S., Akbarzadeh, O., Khan, T. M. Y., Kamangar, S., Khalid, K., Saidur, R., & Johan, M. R. (2021). Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling. International Journal of Molecular Sciences, 22(4), 2090. https://doi.org/10.3390/ijms22042090