Role of Shear Stress and tPA Concentration in the Fibrinolytic Potential of Thrombi
Abstract
:1. Introduction
2. Results
2.1. Fibrin Formation and Fibrinolysis Occur Simultaneously during Thrombus Formation
2.2. Incorporated tPA Protects Thrombi against Inhibition by PAI-1
2.3. Fibrinolytic Activity Is Primarily Concentrated in the “Head” of Thrombus
2.4. Shear Rate Influences the Fibrinolytic Protein Content of Thrombi and Impedes Fibrinolysis at High Shear
3. Discussion
4. Methods
4.1. Subjects and Blood Collection
4.2. Chandler Model Thrombi
4.3. Badimon Chamber Thrombus Formation
4.4. Enzyme-Linked Immunosorbant Assays
4.5. SDS-PAGE Zymography
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robbins, K.C.; Summaria, L.; Hsieh, B.; Shah, R.J. The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J. Biol. Chem. 1967, 242, 2333–2342. [Google Scholar] [CrossRef]
- Robbins, K.C.; Bernabe, P.; Arzadon, L.; Summaria, L. NH2-terminal sequences of mammalian plasminogens and plasmin S-carboxymethyl heavy (A) and light (B) chain derivatives. A re-evaluation of the mechanism of activation of plasminogen. J. Biol. Chem. 1973, 248, 7242–7246. [Google Scholar] [CrossRef]
- Oliver, J.J.; Webb, D.J.; Newby, D.E. Stimulated Tissue Plasminogen Activator Release as a Marker of Endothelial Function in Humans. Arter. Thromb. Vasc. Biol. 2005, 25, 2470–2479. [Google Scholar] [CrossRef]
- Newby, D.E.; McLeod, A.L.; Uren, N.G.; Flint, L.; Ludlam, C.A.; Webb, D.J.; Fox, K.A.; Boon, N.A. Impaired coronary tissue plasminogen activator release is associated with coronary atherosclerosis and cigarette smoking: Direct link between endothelial dysfunction and atherothrombosis. Circulation 2001, 103, 1936–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witherow, F.N.; Helmy, A.; Webb, D.J.; Fox, K.A.; Newby, D.E. Bradykinin contributes to the vasodilator effects of chronic angiotensin-converting enzyme inhibition in patients with heart failure. Circulation 2001, 104, 2177–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, S.L.; Eskin, S.G.; McIntire, L.V. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 1989, 243, 1483–1485. [Google Scholar] [CrossRef]
- Lucking, A.J.; Gibson, K.R.; Paterson, E.E.; Faratian, D.; Ludlam, C.A.; Boon, N.A.; Fox, K.A.; Newby, D.E. Endogenous Tissue Plasminogen Activator Enhances Fibrinolysis and Limits Thrombus Formation in a Clinical Model of Thrombosis. Arter. Thromb. Vasc. Biol. 2013, 33, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Brogren, H.; Karlsson, L.; Andersson, M.; Wang, L.; Erlinge, D.; Jern, S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004, 104, 3943–3948. [Google Scholar] [CrossRef] [PubMed]
- Booth, N.A.; Simpson, A.J.; Croll, A.; Bennett, B.; MacGregor, I.R. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br. J. Haematol. 1988, 70, 327–333. [Google Scholar] [CrossRef]
- Morrow, G.B.; Whyte, C.S.; Mutch, N.J. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. Haematololgy 2019, 105, 2824–2833. [Google Scholar] [CrossRef] [Green Version]
- Van Mourik, J.A.; Lawrence, D.A.; Loskutoff, D.J. Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. J. Biol. Chem. 1984, 259, 14914–14921. [Google Scholar] [CrossRef]
- Morange, P.E.; Alessi, M.C.; Verdier, M.; Casanova, D.; Magalon, G.; Juhan-Vague, I. PAI-1 Produced Ex Vivo by Human Adipose Tissue Is Relevant to PAI-1 Blood Level. Arter. Thromb. Vasc. Biol. 1999, 19, 1361–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity: Studies of PAI-1. Arterioscler Thromb. Vasc. Biol. 1998, 18, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crandall, D.L.; Quinet, E.M.; Morgan, G.A.; Busler, D.E.; McHendry-Rinde, B.; Kral, J.G. Synthesis and secretion of plasminogen activator inhibitor-1 by human preadipocytes. J. Clin. Endocrinol. Metab. 1999, 84, 3222–3227. [Google Scholar] [CrossRef] [PubMed]
- Cwikel, B.J.; Barouski-Miller, A.P.; Coleman, P.L.; Gelehrter, T.D. Dexamethasone induction of an inhibitor of plasminogen activator in HTC hepatoma cells. J. Biol. Chem. 1984, 259, 6847–6851. [Google Scholar] [CrossRef]
- Chun, T.-Y.; Pratt, J.H. Aldosterone increases plasminogen activator inhibitor-1 synthesis in rat cardiomyocytes. Mol. Cell. Endocrinol. 2005, 239, 55–61. [Google Scholar] [CrossRef]
- Kruithof, E.K.O. Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb. Haemost. 2008, 100, 969–975. [Google Scholar] [CrossRef]
- Kruithof, O.E.K.; Mestries, J.C.; Gascon, M.-P.; Ythier, A. The Coagulation and Fibrinolytic Responses of Baboons after In Vivo Thrombin Generation – Effect of Interleukin 6. Thromb. Haemost. 1997, 77, 0905–0910. [Google Scholar] [CrossRef]
- Van der Poll, T.; Levi, M.; Buller, H.R. Fibrinolytic response to tumor necrosis factor in healthy subjects. J. Exp. Med. 1991, 174, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Quax, P.H.; Hoogen, van den Hoogen, M.C.; Verheijen, J.H.; Padro, T.; Zeheb, R.; Gelehrter, T.D.; Van Berkel, T.J.; Kuiper, J.; Emeis, J.J. Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo. J. Biol. Chem. 1990, 265, 15560–15563. [Google Scholar] [CrossRef]
- Sawdey, M.S.; Loskutoff, D.J. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J. Clin. Investig. 1991, 88, 1346–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestries, J.C.; Kruithof, E.K.; Gascon, M.P.; Herodin, F.; Agay, D.; Ythier, A. In vivo modulation of coagulation and fibrinolysis by recombinant glycosylated human interleukin-6 in baboons. Eur. Cytokine Netw. 1994, 5, 275–281. [Google Scholar] [PubMed]
- Robbie, A.L.; Young, S.P.; Bennett, B.; Booth, A.N. Thrombi formed in a Chandler loop mimic human arterial thrombi in structure and PAI-1 content and distribution. Thromb. Haemost. 1997, 77, 510–515. [Google Scholar] [CrossRef]
- Falati, S.; Gross, P.; Merrill-Skoloff, G.; Furie, B.C.; Furie, B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 2002, 8, 1175–1180. [Google Scholar] [CrossRef]
- Weisel, J.; Litvinov, R. The Biochemical and Physical Process of Fibrinolysis and Effects of Clot Structure and Stability on the Lysis Rate. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.E.X.; Litvinov, R.I.; Discher, D.E.; Purohit, P.K.; Weisel, J.W. Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water. Science 2009, 325, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Varjú, I.; Sótonyi, P.; Machovich, R.; Szabo, L.; Tenekedjiev, K.; Silva, M.M.C.G.; Longstaff, C.; Kolev, K. Hindered dissolution of fibrin formed under mechanical stress. J. Thromb. Haemost. 2011, 9, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.P.; Park, D.; Lesty, C.; Soria, J.; Soria, C.; Montalescot, G.; Weisel, J.W. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: Dynamic and structural approaches by confocal microscopy. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.; Allali, Y.; Lesty, C.; Tanguy, M.; Silvain, J.; Ankri, A.; Blanchet, B.; Dumaine, R.; Gianetti, J.; Payot, L.; et al. Altered Fibrin Architecture Is Associated With Hypofibrinolysis and Premature Coronary Atherothrombosis. Arter. Thromb. Vasc. Biol. 2006, 26, 2567–2573. [Google Scholar] [CrossRef] [Green Version]
- Jang, I.K.; Gold, H.K.; Ziskind, A.; Fallon, J.T.; E Holt, R.; Leinbach, R.C.; May, J.W.; Collen, D. Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. A possible explanation for resistance to coronary thrombolysis. Circulation 1989, 79, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, A.J.; Schleicher, N.; Murtha, L.; Kaps, M.; Levi, C.R.; Nedelmann, M.; Spratt, N.J. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. Exp. Transl. Stroke Med. 2015, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutch, N.J.; Moore, N.R.; Wang, E.; Booth, N.A. Thrombus lysis by uPA, scuPA and tPA is regulated by plasma TAFI. J. Thromb. Haemost. 2003, 1, 2000–2007. [Google Scholar] [CrossRef]
- Emeis, J.J. Regulation of the Acute Release of Tissue-type Plasminogen Activator from the Endothelium by Coagulation Activation Products. Ann. NY Acad. Sci. 1992, 667, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Mutch, N.J.; Thomas, L.; Moore, N.R.; Lisiak, K.M.; Booth, N.A. TAFIa, PAI-1 and α2-antiplasmin: Complementary roles in regulating lysis of thrombi and plasma clots. J. Thromb. Haemost. 2007, 5, 812–817. [Google Scholar] [CrossRef]
- Mutch, N.J.; Koikkalainen, J.S.; Fraser, S.R.; Duthie, K.M.; Griffin, M.; Mitchell, J.; Watson, H.G.; Booth, N.A. Model thrombi formed under flow reveal the role of factor XIII-mediated cross-linking in resistance to fibrinolysis. J. Thromb. Haemost. 2010, 8, 2017–2024. [Google Scholar] [CrossRef] [Green Version]
- Fraser, S.R.; Booth, N.A.; Mutch, N.J. The antifibrinolytic function of factor XIII is exclusively expressed through alpha-antiplasmin cross-linking. Blood 2011, 117, 6371–6374. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.L.; Lionikiene, A.S.; Fraser, S.R.; Whyte, C.S.; Booth, N.A.; Mutch, N.J. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood 2014, 124, 3982–3990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, C.S.; Swieringa, F.; Mastenbroek, T.G.; Lionikiene, A.S.; Lancé, M.D.; Van Der Meijden, P.E.J.; Heemskerk, J.W.M.; Mutch, N.J. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood 2015, 125, 2568–2578. [Google Scholar] [CrossRef] [Green Version]
- Robbie, L.; Berry, S.; Bennett, B.; Mutch, N.; Moir, E.; Booth, N. Localization and Identification of Thrombin and Plasminogen Activator Activities in Model Human Thrombi by in situ Zymography. Thromb. Haemost. 2002, 88, 996–1002. [Google Scholar] [CrossRef]
- Moir, E.; Booth, N.A.; Bennett, B.; Robbie, L.A. Polymorphonuclear leucocytes mediate endogenous thrombus lysis via a u-PA-dependent mechanism. Br. J. Haematol. 2001, 113, 72–80. [Google Scholar] [CrossRef]
- Chernysh, I.N.; Nagaswami, C.; Kosolapova, S.; Peshkova, A.D.; Cuker, A.; Cines, D.B.; Cambor, C.L.; Litvinov, R.I.; Weisel, J.W. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, C.S.; Morrow, G.B.; Baik, N.; Booth, N.A.; Jalal, M.M.; Parmer, R.J.; Miles, L.A.; Mutch, N.J. Exposure of plasminogen and a novel plasminogen receptor, Plg-RKT, on activated human and murine platelets. Blood 2021, 137, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Carmeliet, P.; Fay, W.P. Plasminogen Activator Inhibitor-1 Is a Major Determinant of Arterial Thrombolysis Resistance. Circulation 1999, 99, 3050–3055. [Google Scholar] [CrossRef] [Green Version]
- A Robbie, L.; Bennett, B.; Croll, A.M.; Brown, P.A.J.; A Booth, N. Proteins of the Fibrinolytic System in Human Thrombi. Thromb. Haemost. 1996, 75, 127–133. [Google Scholar] [CrossRef]
- Booth, N.A.; Robbie, L.A.; Croll, A.M.; Bennett, B. Lysis of Platelet-rich Thrombi: The Role of PAI?1. Ann. NY. Acad. Sci. 1992, 667, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Lucking, A.J.; Chelliah, R.; Trotman, A.D.; Connolly, T.M.; Feuerstein, G.Z.; Fox, K.A.; Boon, N.A.; Badimon, J.J.; Newby, D.E. Characterisation and reproducibility of a human ex vivo model of thrombosis. Thromb. Res. 2010, 126, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Gersh, K.C.; Edmondson, K.E.; Weisel, J.W. Flow rate and fibrin fiber alignment. J. Thromb. Haemost. 2010, 8, 2826–2828. [Google Scholar] [CrossRef]
- Campbell, R.A.; Aleman, M.M.; Gray, L.D.; Falvo, M.R.; Wolberg, A.S. Flow profoundly influences fibrin network structure: Implications for fibrin formation and clot stability in haemostasis. Thromb. Haemost. 2010, 104, 1281–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neeves, K.; Illing, D.; Diamond, S. Thrombin Flux and Wall Shear Rate Regulate Fibrin Fiber Deposition State during Polymerization under Flow. Biophys. J. 2010, 98, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, P.; Przyklenk, K. Fibrin architecture in clots: A quantitative polarized light microscopy analysis. Blood Cells Mol. Dis. 2009, 42, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Loyau, S.; Ho-Tin-Noé, B.; Bourrienne, M.-C.; Boulaftali, Y.; Jandrot-Perrus, M. Microfluidic Modeling of Thrombolysis. Arter. Thromb. Vasc. Biol. 2018, 38, 2626–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stalker, T.J.; Traxler, E.A.; Wu, J.; Wannemacher, K.M.; Cermignano, S.L.; Voronov, R.; Diamond, S.L.; Brass, L.F. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013, 121, 1875–1885. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.D.; Stalker, T.J.; Voronov, R.; Muthard, R.W.; Tomaiuolo, M.; Diamond, S.L.; Brass, L.F. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 2014, 124, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Stalker, T.J.; Welsh, J.D.; Tomaiuolo, M.; Wu, J.; Colace, T.V.; Diamond, S.L.; Brass, L.F. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood 2014, 124, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Castellino, F.J.; Gong, Y. Critical role for conversion of glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces. Trends. Cardiovasc. Med. 2003, 13, 21–30. [Google Scholar] [CrossRef]
- Dejouvencel, T.; Doeuvre, L.; Lacroix, R.; Plawinski, L.; Dignat-George, F.; Lijnen, H.R.; Anglés-Cano, E. Fibrinolytic cross-talk: A new mechanism for plasmin formation. Blood 2010, 115, 2048–2056. [Google Scholar] [CrossRef] [Green Version]
- Samson, A.L.; Alwis, I.; MacLean, J.A.A.; Priyananda, P.; Hawkett, B.; Schoenwaelder, S.M.; Jackson, S.P. Endogenous fibrinolysis facilitates clot retraction in vivo. Blood 2017, 130, 2453–2462. [Google Scholar] [CrossRef]
- Brzoska, T.; Tanaka-Murakami, A.; Suzuki, Y.; Sano, H.; Kanayama, N.; Urano, T. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi. PLOS ONE 2015, 10, e0122196. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Elmongy, H.; Sims, C.; Diamond, S.L. Ex vivo recapitulation of trauma-induced coagulopathy and preliminary assessment of trauma patient platelet function under flow using microfluidic technology. J. Trauma Acute Care Surg. 2016, 80, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Stein, C.; Brown, N.; Vaughan, E.D.; Lang, C.C.; Wood, A.J. Regulation of local tissue-type plasminogen activator release by endothelium-dependent and endothelium-independent agonists in human vasculature. J. Am. Coll. Cardiol. 1998, 32, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Aspelin, T.; Eriksen, M.; Lindgaard, A.-K.; Lyberg, T.; Ilebekk, A. Cardiac fibrinolytic capacity is markedly increased after brief periods of local myocardial ischemia, but declines following successive periods in anesthetized pigs. J. Thromb. Haemost. 2005, 3, 1947–1954. [Google Scholar] [CrossRef]
- Witherow, F.N.; Dawson, P.; A Ludlam, C.; Fox, K.; Newby, D. Marked bradykinin-induced tissue plasminogen activator release in patients with heart failure maintained on long-term angiotensin-converting enzyme inhibitor therapy. J. Am. Coll. Cardiol. 2002, 40, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Hrafnkelsdottir, T.; Gudnason, T.; Wall, U.; Jern, C.; Jern, S. Regulation of local availability of active tissue-type plasminogen activator in vivo in man. J. Thromb. Haemost. 2004, 2, 1960–1968. [Google Scholar] [CrossRef] [PubMed]
- Macovei, L.; Presura, R.M.; Georgescu, C.A. Systemic or local thrombolysis in high-risk pulmonary embolism. Cardiol. J. 2015, 22, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Lucking, A.J.; Visvanathan, A.; Philippou, H.; Fraser, S.; Grant, P.J.; Connolly, T.M.; Gardell, S.J.; Feuerstein, G.Z.; Fox, K.A.A.; Booth, N.A.; et al. Effect of the small molecule plasminogen activator inhibitor-1 (PAI-1) inhibitor, PAI-749, in clinical models of fibrinolysis. J. Thromb. Haemost. 2010, 8, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Robbie, L.A.; Booth, N.A.; Brown, P.A.; Bennett, B. Inhibitors of Fibrinolysis Are Elevated in Atherosclerotic Plaque. Arter. Thromb. Vasc. Biol. 1996, 16, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Moir, E.; Robbie, L.A.; Bennett, B.; Booth, N.A. Polymorphonuclear Leucocytes Have Two Opposing Roles in Fibrinolysis. Thromb. Haemost. 2002, 87, 1006–1010. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whyte, C.S.; Mostefai, H.A.; Baeten, K.M.; Lucking, A.J.; Newby, D.E.; Booth, N.A.; Mutch, N.J. Role of Shear Stress and tPA Concentration in the Fibrinolytic Potential of Thrombi. Int. J. Mol. Sci. 2021, 22, 2115. https://doi.org/10.3390/ijms22042115
Whyte CS, Mostefai HA, Baeten KM, Lucking AJ, Newby DE, Booth NA, Mutch NJ. Role of Shear Stress and tPA Concentration in the Fibrinolytic Potential of Thrombi. International Journal of Molecular Sciences. 2021; 22(4):2115. https://doi.org/10.3390/ijms22042115
Chicago/Turabian StyleWhyte, Claire S., Hadj Ahmed. Mostefai, Kim M. Baeten, Andrew J. Lucking, David E. Newby, Nuala A. Booth, and Nicola J. Mutch. 2021. "Role of Shear Stress and tPA Concentration in the Fibrinolytic Potential of Thrombi" International Journal of Molecular Sciences 22, no. 4: 2115. https://doi.org/10.3390/ijms22042115
APA StyleWhyte, C. S., Mostefai, H. A., Baeten, K. M., Lucking, A. J., Newby, D. E., Booth, N. A., & Mutch, N. J. (2021). Role of Shear Stress and tPA Concentration in the Fibrinolytic Potential of Thrombi. International Journal of Molecular Sciences, 22(4), 2115. https://doi.org/10.3390/ijms22042115