Molecular Regulation of Canalicular ABC Transporters
Abstract
:1. Introduction
2. Folding and Glycosylation of Canalicular ABC Transporters
3. From the Endoplasmic Reticulum to the Plasma Membrane
4. Membrane Stability of Canalicular ABC Transporters
5. Endocytosis and Membrane Recycling of Canalicular ABC Transporters
6. Regulation of the Transport Activity of Canalicular ABC Transporters
7. Ubiquitination and Degradation of Canalicular ABC Transporters
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-PB | 4-phenylbutyrate |
ABC | ATP-binding cassette |
AP2 | Adaptor protein complex 2 |
BA | Bile acids |
Cav-1 | Caveolin-1 |
CNX | Calnexin |
E217G | Estradiol-17β-d-glucuronide |
E3 Ubl | E3 ubiquitin ligase |
ER | Endoplasmic reticulum |
ERM | Ezrin–radixin–moesin |
ERAD | ER-associated degradation |
MARCKS | Myristoylated alanine-rich C-kinase substrate |
MLC2 | Myosin regulatory light chain 2 |
PC | Phosphatidylcholine |
PDZ | Postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1) and zonula occludens-1 protein (ZO-1) |
PFIC | Progressive familial intrahepatic cholestasis |
PI3K | Phosphoinositide 3-kinase |
PKA/C | Protein kinase A/C |
RAB | Ras-related in brain |
RACK1 | Receptor for activated C-kinase 1 |
SAC | Subapical compartment |
WT | Wild type |
References
- Boyer, J.L. Bile formation and secretion. Compr. Physiol. 2013, 3, 1035–1078. [Google Scholar]
- Small, D.M. Role of ABC transporters in secretion of cholesterol from liver into bile. Proc. Natl. Acad. Sci. USA 2003, 100, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Kroll, T.; Prescher, M.; Smits, S.H.J.; Schmitt, L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem. Rev. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, S.B.; Hollo, Z.; Kern, A.; Bakos, E.; Fischer, P.A.; Borst, P.; Evers, R. Role of the N-terminal transmembrane region of the multidrug resistance protein MRP2 in routing to the apical membrane in MDCKII cells. J. Biol. Chem. 2002, 277, 31048–31055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gething, M.J.; Sambrook, J. Protein folding in the cell. Nature 1992, 355, 33–45. [Google Scholar] [CrossRef]
- Shao, S.; Hegde, R.S. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 2011, 27, 25–56. [Google Scholar] [CrossRef] [Green Version]
- Gemmer, M.; Förster, F. A clearer picture of the ER translocon complex. J. Cell Sci. 2020, 133, 3. [Google Scholar] [CrossRef]
- Przybylla, S.; Stindt, J.; Kleinschrodt, D.; Schulte Am Esch, J.; Häussinger, D.; Keitel, V.; Smits, S.H.; Schmitt, L. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches. PLoS ONE 2016, 11, e0159778. [Google Scholar] [CrossRef] [PubMed]
- Czuba, L.C.; Hillgren, K.M.; Swaan, P.W. Post-translational modifications of transporters. Pharmacol. Ther. 2018, 192, 88–99. [Google Scholar] [CrossRef]
- Jayaprakash, N.G.; Surolia, A. Role of glycosylation in nucleating protein folding and stability. Biochem. J. 2017, 474, 2333–2347. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; van der Vies, S.M. Molecular chaperones. Annu. Rev. Biochem. 1991, 60, 321–347. [Google Scholar] [CrossRef]
- Okiyoneda, T.; Kono, T.; Niibori, A.; Harada, K.; Kusuhara, H.; Takada, T.; Shuto, T.; Suico, M.A.; Sugiyama, Y.; Kai, H. Calreticulin facilitates the cell surface expression of ABCG5/G8. Biochem. Biophys. Res. Commun. 2006, 347, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Loo, T.W.; Clarke, D.M. Prolonged association of temperature-sensitive mutants of human P-glycoprotein with calnexin during biogenesis. J. Biol. Chem. 1994, 269, 28683–28689. [Google Scholar] [CrossRef]
- Loo, T.W.; Clarke, D.M. P-glycoprotein. Associations between domains and between domains and molecular chaperones. J. Biol. Chem. 1995, 270, 21839–21844. [Google Scholar] [CrossRef] [Green Version]
- Adams, B.M.; Oster, M.E.; Hebert, D.N. Protein Quality Control in the Endoplasmic Reticulum. Protein J. 2019, 38, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Gautherot, J.; Durand-Schneider, A.M.; Delautier, D.; Delaunay, J.L.; Rada, A.; Gabillet, J.; Housset, C.; Maurice, M.; Aït-Slimane, T. Effects of cellular, chemical, and pharmacological chaperones on the rescue of a trafficking-defective mutant of the ATP-binding cassette transporter proteins ABCB1/ABCB4. J. Biol. Chem. 2012, 287, 5070–5078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales, E.; Grosse, B.; Schuller, B.; Davit-Spraul, A.; Conti, F.; Guettier, C.; Cassio, D.; Jacquemin, E. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: Evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology 2015, 62, 558–566. [Google Scholar] [CrossRef]
- Vauthier, V.; Ben Saad, A.; Elie, J.; Oumata, N.; Durand-Schneider, A.M.; Bruneau, A.; Delaunay, J.L.; Housset, C.; Aït-Slimane, T.; Meijer, L.; et al. Structural analogues of roscovitine rescue the intracellular traffic and the function of ER-retained ABCB4 variants in cell models. Sci. Rep. 2019, 9, 6653. [Google Scholar] [CrossRef] [PubMed]
- Wakana, Y.; Takai, S.; Nakajima, K.; Tani, K.; Yamamoto, A.; Watson, P.; Stephens, D.J.; Hauri, H.P.; Tagaya, M. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation. Mol. Biol. Cell 2008, 19, 1825–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladasky, J.J.; Boyle, S.; Seth, M.; Li, H.; Pentcheva, T.; Abe, F.; Steinberg, S.J.; Edidin, M. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules. J. Immunol. 2006, 177, 6172–6181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.S.; Bickel, U.; Srivenugopal, K.S.; Rao, U.S. Bap29varP, a variant of Bap29, influences the cell surface expression of the human P-glycoprotein. Int. J. Oncol. 2008, 32, 135–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Kamp, J.M.; Errami, A.; Howidi, M.; Anselm, I.; Winter, S.; Phalin-Roque, J.; Osaka, H.; van Dooren, S.J.; Mancini, G.M.; Steinberg, S.J.; et al. Genotype-phenotype correlation of contiguous gene deletions of SLC6A8, BCAP31 and ABCD1. Clin. Genet. 2015, 87, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Matteson, J.; An, Y.; Moyer, B.; Yoo, J.S.; Bannykh, S.; Wilson, I.A.; Riordan, J.R.; Balch, W.E. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J. Cell Biol. 2004, 167, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.R.; Kano, F.; Ueda, K.; Murata, M. The ABCA1 Q597R mutant undergoes trafficking from the ER upon ER stress. Biochem. Biophys. Res. Commun. 2008, 369, 1174–1178. [Google Scholar] [CrossRef]
- Draheim, V.; Reichel, A.; Weitschies, W.; Moenning, U. N-glycosylation of ABC transporters is associated with functional activity in sandwich-cultured rat hepatocytes. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2010, 41, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Stanley, P. Golgi glycosylation. Cold Spring Harb. Perspect. Biol. 2011, 3, a005199. [Google Scholar] [CrossRef]
- Slimane, T.A.; Trugnan, G.; Van, I.S.C.; Hoekstra, D. Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: Role of distinct lipid microdomains. Mol. Biol. Cell 2003, 14, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Kipp, H.; Arias, I.M. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J. Biol. Chem. 2000, 275, 15917–15925. [Google Scholar] [CrossRef] [Green Version]
- Kipp, H.; Arias, I.M. Intracellular trafficking and regulation of canalicular ATP-binding cassette transporters. Semin. Liver Dis. 2000, 20, 339–351. [Google Scholar] [CrossRef]
- Li, M.; Soroka, C.J.; Harry, K.; Boyer, J.L. CFTR-associated ligand is a negative regulator of Mrp2 expression. Am. J. Physiol. Cell Physiol. 2017, 312, C40–C46. [Google Scholar] [CrossRef] [PubMed]
- Ferrándiz-Huertas, C.; Fernández-Carvajal, A.; Ferrer-Montiel, A. Rab4 interacts with the human P-glycoprotein and modulates its surface expression in multidrug resistant K562 cells. Int. J. Cancer 2011, 128, 192–205. [Google Scholar] [CrossRef]
- Fu, D.; van Dam, E.M.; Brymora, A.; Duggin, I.G.; Robinson, P.J.; Roufogalis, B.D. The small GTPases Rab5 and RalA regulate intracellular traffic of P-glycoprotein. Biochim. Biophys. Acta 2007, 1773, 1062–1072. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.; Calderon, G.; Swift, A.L.; Moseley, J.; Li, S.; Hosoya, H.; Arias, I.M.; Ortiz, D.F. Myosin II regulatory light chain is required for trafficking of bile salt export protein to the apical membrane in Madin-Darby canine kidney cells. J. Biol. Chem. 2005, 280, 23741–23747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonhoff, C.M.; Park, S.W.; Webster, C.R.; Anwer, M.S. MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G999–G1005. [Google Scholar] [CrossRef] [Green Version]
- Kubitz, R.; Sütfels, G.; Kühlkamp, T.; Kölling, R.; Häussinger, D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 2004, 126, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Wojtal, K.A.; de Vries, E.; Hoekstra, D.; van Ijzendoorn, S.C. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol. Biol. Cell 2006, 17, 3638–3650. [Google Scholar] [CrossRef] [Green Version]
- Anwer, M.S. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology 2014, 60, 1090–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Burcu, M.; Linn, D.E.; Qiu, Y.; Baer, M.R. Pim-1 kinase protects P-glycoprotein from degradation and enables its glycosylation and cell surface expression. Mol. Pharmacol. 2010, 78, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.; Ujházy, P.; Gatmaitan, Z.; Varticovski, L.; Arias, I.M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem. 1998, 273, 26638–26644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.; Ujhazy, P.; Varticovski, L.; Arias, I.M. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc. Natl. Acad. Sci. USA 1999, 96, 5814–5819. [Google Scholar] [CrossRef] [Green Version]
- Homolya, L.; Fu, D.; Sengupta, P.; Jarnik, M.; Gillet, J.P.; Vitale-Cross, L.; Gutkind, J.S.; Lippincott-Schwartz, J.; Arias, I.M. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes. PLoS ONE 2014, 9, e91921. [Google Scholar] [CrossRef] [Green Version]
- Woods, A.; Heslegrave, A.J.; Muckett, P.J.; Levene, A.P.; Clements, M.; Mobberley, M.; Ryder, T.A.; Abu-Hayyeh, S.; Williamson, C.; Goldin, R.D.; et al. LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochem. J. 2011, 434, 49–60. [Google Scholar] [CrossRef]
- Dumont, M.; Jacquemin, E.; Erlinger, S. Effect of Ursodeoxycholic Acid on the Expression of the Hepatocellular Bile Acid Transporters (Ntcp and bsep) in Rats with Estrogen-Induced Cholestasis. J. Pediatric Gastroenterol. Nutr. 2002, 35, 185–191. [Google Scholar]
- Glasova, H.; Berghaus, T.M.; Kullak-Ublick, G.A.; Paumgartner, G.; Beuers, U. Tauroursodeoxycholic acid mobilizes alpha-PKC after uptake in human HepG2 hepatoma cells. Eur. J. Clin. Investig. 2002, 32, 437–442. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016, 27, 424–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruskamo, S.; Nieminen, T.; Kristiansen, C.K.; Vatne, G.H.; Baumann, A.; Hallin, E.I.; Raasakka, A.; Joensuu, P.; Bergmann, U.; Vattulainen, I.; et al. Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci. Rep. 2017, 7, 6510. [Google Scholar] [CrossRef]
- Delaunay, J.L.; Durand-Schneider, A.M.; Dossier, C.; Falguières, T.; Gautherot, J.; Davit-Spraul, A.; Aït-Slimane, T.; Housset, C.; Jacquemin, E.; Maurice, M. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology 2016, 63, 1620–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.R.; Ron, D.; Kiely, P.A. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun. Signal. 2011, 9, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikebuchi, Y.; Takada, T.; Ito, K.; Yoshikado, T.; Anzai, N.; Kanai, Y.; Suzuki, H. Receptor for activated C-kinase 1 regulates the cellular localization and function of ABCB4. Hepatol. Res.: Off. J. Jpn. Soc. Hepatol. 2009, 39, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Bezprozvanny, I.; Maximov, A. PDZ domains: More than just a glue. Proc. Natl. Acad. Sci. USA 2001, 98, 787–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Wang, W.; Soroka, C.J.; Mennone, A.; Harry, K.; Weinman, E.J.; Boyer, J.L. NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J. Biol. Chem. 2010, 285, 19299–19307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venot, Q.; Delaunay, J.L.; Fouassier, L.; Delautier, D.; Falguières, T.; Housset, C.; Maurice, M.; Aït-Slimane, T. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression. PLoS ONE 2016, 11, e0146962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emi, Y.; Nomura, S.; Yokota, H.; Sakaguchi, M. ATP-binding cassette transporter isoform C2 localizes to the apical plasma membrane via interactions with scaffolding protein. J. Biochem. 2011, 149, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Kocher, O.; Comella, N.; Gilchrist, A.; Pal, R.; Tognazzi, K.; Brown, L.F.; Knoll, J.H. PDZK1, a novel PDZ domain-containing protein up-regulated in carcinomas and mapped to chromosome 1q21, interacts with cMOAT (MRP2), the multidrug resistance-associated protein. Lab. Investig. A J. Tech. Methods Pathol. 1999, 79, 1161–1170. [Google Scholar]
- Bretscher, A.; Reczek, D.; Berryman, M. Ezrin: A protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J. Cell Sci. 1997, 110 Pt 24, 3011–3018. [Google Scholar]
- Kikuchi, S.; Hata, M.; Fukumoto, K.; Yamane, Y.; Matsui, T.; Tamura, A.; Yonemura, S.; Yamagishi, H.; Keppler, D.; Tsukita, S.; et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat. Genet. 2002, 31, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, L.A.; Kumar, R.; Hales, C.M.; Navarre, J.; Bhartur, S.G.; Burnette, J.O.; Provance, D.W., Jr.; Mercer, J.A.; Bähler, M.; Goldenring, J.R. Myosin vb is associated with plasma membrane recycling systems. Mol. Biol. Cell 2001, 12, 1843–1857. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, Y.; Lippincott-Schwartz, J.; Arias, I.M. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: Constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol. Biol. Cell 2004, 15, 3485–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, Y.; Dutt, P.; Lippincott-Schwartz, J.; Arias, I.M. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc. Natl. Acad. Sci. USA 2005, 102, 15087–15092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overeem, A.W.; Li, Q.; Qiu, Y.L.; Cartón-García, F.; Leng, C.; Klappe, K.; Dronkers, J.; Hsiao, N.H.; Wang, J.S.; Arango, D.; et al. A Molecular Mechanism Underlying Genotype-Specific Intrahepatic Cholestasis Resulting From MYO5B Mutations. Hepatology 2020, 72, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, E.; Taylor, S.A.; Davit-Spraul, A.; Thébaut, A.; Thomassin, N.; Guettier, C.; Whitington, P.F.; Jacquemin, E. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology 2017, 65, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Cai, S.Y.; Liu, X.; Lian, W.; Chen, S.; Zhang, L.; Feng, X.; Cheng, Y.; He, X.; He, Y.; et al. Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in human obstructive cholestasis. J. Hepatol. 2015, 63, 1440–1448. [Google Scholar] [CrossRef] [Green Version]
- Kubitz, R.; Huth, C.; Schmitt, M.; Horbach, A.; Kullak-Ublick, G.; Häussinger, D. Protein kinase C-dependent distribution of the multidrug resistance protein 2 from the canalicular to the basolateral membrane in human HepG2 cells. Hepatology 2001, 34, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Kurz, A.K.; Graf, D.; Schmitt, M.; Vom Dahl, S.; Häussinger, D. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 2001, 121, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Cantore, M.; Reinehr, R.; Sommerfeld, A.; Becker, M.; Häussinger, D. The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J. Biol. Chem. 2011, 286, 45014–45029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonhoff, C.M.; Webster, C.R.; Anwer, M.S. Taurolithocholate-induced MRP2 retrieval involves MARCKS phosphorylation by protein kinase Cϵ in HUH-NTCP Cells. Hepatology 2013, 58, 284–292. [Google Scholar] [CrossRef] [Green Version]
- El Amri, M.; Fitzgerald, U.; Schlosser, G. MARCKS and MARCKS-like proteins in development and regeneration. J. Biomed. Sci. 2018, 25, 43. [Google Scholar] [CrossRef]
- Wenzel, T.; Büch, T.; Urban, N.; Weirauch, U.; Schierle, K.; Aigner, A.; Schaefer, M.; Kalwa, H. Restoration of MARCKS enhances chemosensitivity in cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 843–858. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, D.F.; Moseley, J.; Calderon, G.; Swift, A.L.; Li, S.; Arias, I.M. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J. Biol. Chem. 2004, 279, 32761–32770. [Google Scholar] [CrossRef] [Green Version]
- Lam, P.; Xu, S.; Soroka, C.J.; Boyer, J.L. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis. Hepatology 2012, 55, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, H.; Inamura, K.; Aida, K.; Naoi, S.; Horikawa, R.; Nagasaka, H.; Takatani, T.; Fukushima, T.; Hattori, A.; Yabuki, T.; et al. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function. Hepatology 2012, 55, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Aida, K.; Hayashi, H.; Inamura, K.; Mizuno, T.; Sugiyama, Y. Differential roles of ubiquitination in the degradation mechanism of cell surface-resident bile salt export pump and multidrug resistance-associated protein 2. Mol. Pharmacol. 2014, 85, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Crocenzi, F.A.; Mottino, A.D.; Cao, J.; Veggi, L.M.; Pozzi, E.J.; Vore, M.; Coleman, R.; Roma, M.G. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G449–G459. [Google Scholar] [CrossRef] [PubMed]
- Crocenzi, F.A.; Sánchez Pozzi, E.J.; Ruiz, M.L.; Zucchetti, A.E.; Roma, M.G.; Mottino, A.D.; Vore, M. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat. Hepatology 2008, 48, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
- Zucchetti, A.E.; Barosso, I.R.; Boaglio, A.; Pellegrino, J.M.; Ochoa, E.J.; Roma, M.G.; Crocenzi, F.A.; Sánchez Pozzi, E.J. Prevention of estradiol 17beta-D-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes. Mol. Biol. Cell 2011, 22, 3902–3915. [Google Scholar] [CrossRef]
- Miszczuk, G.S.; Barosso, I.R.; Larocca, M.C.; Marrone, J.; Marinelli, R.A.; Boaglio, A.C.; Sánchez Pozzi, E.J.; Roma, M.G.; Crocenzi, F.A. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver. Biochim. Biophys. Acta. Mol. Basis Dis. 2018, 1864, 1072–1085. [Google Scholar] [CrossRef]
- Elferink, M.G.; Olinga, P.; Draaisma, A.L.; Merema, M.T.; Faber, K.N.; Slooff, M.J.; Meijer, D.K.; Groothuis, G.M. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G1008–G1016. [Google Scholar] [CrossRef]
- Nyasae, L.K.; Hubbard, A.L.; Tuma, P.L. Transcytotic efflux from early endosomes is dependent on cholesterol and glycosphingolipids in polarized hepatic cells. Mol. Biol. Cell 2003, 14, 2689–2705. [Google Scholar] [CrossRef] [Green Version]
- Ismair, M.G.; Hausler, S.; Stuermer, C.A.; Guyot, C.; Meier, P.J.; Roth, J.; Stieger, B. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 2009, 49, 1673–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyot, C.; Stieger, B. Interaction of bile salts with rat canalicular membrane vesicles: Evidence for bile salt resistant microdomains. J. Hepatol. 2011, 55, 1368–1376. [Google Scholar] [CrossRef] [Green Version]
- Luker, G.D.; Pica, C.M.; Kumar, A.S.; Covey, D.F.; Piwnica-Worms, D. Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains. Biochemistry 2000, 39, 7651–7661. [Google Scholar] [CrossRef] [PubMed]
- Troost, J.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol. Pharmacol. 2004, 66, 1332–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghetie, M.A.; Marches, R.; Kufert, S.; Vitetta, E.S. An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (MDR) lymphoma cell line. Blood 2004, 104, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Marrone, J.; Soria, L.R.; Danielli, M.; Lehmann, G.L.; Larocca, M.C.; Marinelli, R.A. Hepatic gene transfer of human aquaporin-1 improves bile salt secretory failure in rats with estrogen-induced cholestasis. Hepatology 2016, 64, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Urbatsch, I.L.; Senior, A.E. Effects of lipids on ATPase activity of purified Chinese hamster P-glycoprotein. Arch. Biochem. Biophys. 1995, 316, 135–140. [Google Scholar] [CrossRef]
- Rothnie, A.; Theron, D.; Soceneantu, L.; Martin, C.; Traikia, M.; Berridge, G.; Higgins, C.F.; Devaux, P.F.; Callaghan, R. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur. Biophys. J. 2001, 30, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Gayet, L.; Dayan, G.; Barakat, S.; Labialle, S.; Michaud, M.; Cogne, S.; Mazane, A.; Coleman, A.W.; Rigal, D.; Baggetto, L.G. Control of P-glycoprotein activity by membrane cholesterol amounts and their relation to multidrug resistance in human CEM leukemia cells. Biochemistry 2005, 44, 4499–4509. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Kioka, N.; Kato, H.; Matsuo, M.; Ueda, K. Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol. Biochem. J. 2007, 401, 597–605. [Google Scholar] [CrossRef]
- Ito, K.; Hoekstra, D.; van Ijzendoorn, S.C. Cholesterol but not association with detergent resistant membranes is necessary for the transport function of MRP2/ABCC2. Febs Lett. 2008, 582, 4153–4157. [Google Scholar] [CrossRef] [Green Version]
- Kis, E.; Ioja, E.; Nagy, T.; Szente, L.; Heredi-Szabo, K.; Krajcsi, P. Effect of membrane cholesterol on BSEP/Bsep activity: Species specificity studies for substrates and inhibitors. Drug Metab. Dispos. 2009, 37, 1878–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulusma, C.C.; de Waart, D.R.; Kunne, C.; Mok, K.S.; Elferink, R.P. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J. Biol. Chem. 2009, 284, 9947–9954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyot, C.; Hofstetter, L.; Stieger, B. Differential effects of membrane cholesterol content on the transport activity of multidrug resistance-associated protein 2 (ABCC2) and of the bile salt export pump (ABCB11). Mol. Pharmacol. 2014, 85, 909–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doige, C.A.; Yu, X.; Sharom, F.J. The effects of lipids and detergents on ATPase-active P-glycoprotein. Biochim. Biophys. Acta 1993, 1146, 65–72. [Google Scholar] [CrossRef]
- Sharom, F.J. The P-glycoprotein multidrug transporter: Interactions with membrane lipids, and their modulation of activity. Biochem. Soc. Trans. 1997, 25, 1088–1096. [Google Scholar] [CrossRef]
- Misra, S.; Varticovski, L.; Arias, I.M. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G316–G324. [Google Scholar] [CrossRef] [Green Version]
- Clay, A.T.; Lu, P.; Sharom, F.J. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols. Biochemistry 2015, 54, 6586–6597. [Google Scholar] [CrossRef]
- Domicevica, L.; Koldso, H.; Biggin, P.C. Multiscale molecular dynamics simulations of lipid interactions with P-glycoprotein in a complex membrane. J. Mol. Graph. Model. 2018, 80, 147–156. [Google Scholar] [CrossRef]
- Cai, C.; Zhu, H.; Chen, J. Overexpression of caveolin-1 increases plasma membrane fluidity and reduces P-glycoprotein function in Hs578T/Dox. Biochem. Biophys. Res. Commun. 2004, 320, 868–874. [Google Scholar] [CrossRef]
- Moreno, M.; Molina, H.; Amigo, L.; Zanlungo, S.; Arrese, M.; Rigotti, A.; Miquel, J.F. Hepatic overexpression of caveolins increases bile salt secretion in mice. Hepatology 2003, 38, 1477–1488. [Google Scholar] [CrossRef]
- Smart, E.J.; Ying, Y.; Donzell, W.C.; Anderson, R.G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 1996, 271, 29427–29435. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Luetterforst, R.; Harding, A.; Apolloni, A.; Etheridge, M.; Stang, E.; Rolls, B.; Hancock, J.F.; Parton, R.G. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol. 1999, 1, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jodoin, J.; Demeule, M.; Fenart, L.; Cecchelli, R.; Farmer, S.; Linton, K.J.; Higgins, C.F.; Beliveau, R. P-glycoprotein in blood-brain barrier endothelial cells: Interaction and oligomerization with caveolins. J. Neurochem. 2003, 87, 1010–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronaldson, P.T.; Bendayan, M.; Gingras, D.; Piquette-Miller, M.; Bendayan, R. Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J. Neurochem. 2004, 89, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Barakat, S.; Demeule, M.; Pilorget, A.; Regina, A.; Gingras, D.; Baggetto, L.G.; Beliveau, R. Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J. Neurochem. 2007, 101, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Labrecque, L.; Nyalendo, C.; Langlois, S.; Durocher, Y.; Roghi, C.; Murphy, G.; Gingras, D.; Beliveau, R. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J. Biol. Chem. 2004, 279, 52132–52140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Si, W.; Ji, W.; Wang, Z.; Gao, Z.; Tian, R.; Song, W.; Zhang, H.; Niu, R.; Zhang, F. Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis. 2019, 10, 394. [Google Scholar] [CrossRef]
- Chambers, T.C.; Pohl, J.; Raynor, R.L.; Kuo, J.F. Identification of specific sites in human P-glycoprotein phosphorylated by protein kinase C. J. Biol. Chem. 1993, 268, 4592–4595. [Google Scholar] [CrossRef]
- Chambers, T.C.; Pohl, J.; Glass, D.B.; Kuo, J.F. Phosphorylation by protein kinase C and cyclic AMP-dependent protein kinase of synthetic peptides derived from the linker region of human P-glycoprotein. Biochem. J. 1994, 299, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Chambers, T.C. Identification of phosphorylation sites in human MDR1 P-glycoprotein. Methods Enzym. 1998, 292, 328–342. [Google Scholar]
- Orr, G.A.; Han, E.K.; Browne, P.C.; Nieves, E.; O’Connor, B.M.; Yang, C.P.; Horwitz, S.B. Identification of the major phosphorylation domain of murine mdr1b P-glycoprotein. Analysis of the protein kinase A and protein kinase C phosphorylation sites. J. Biol. Chem. 1993, 268, 25054–25062. [Google Scholar] [CrossRef]
- Sachs, C.W.; Chambers, T.C.; Fine, R.L. Differential phosphorylation of sites in the linker region of P-glycoprotein by protein kinase C isozymes alpha, betaI, betaII, gamma, delta, epsilon, eta, and zeta. Biochem. Pharm. 1999, 58, 1587–1592. [Google Scholar] [CrossRef]
- Ito, K.; Wakabayashi, T.; Horie, T. Mrp2/Abcc2 transport activity is stimulated by protein kinase Calpha in a baculo virus co-expression system. Life Sci. 2005, 77, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Gautherot, J.; Delautier, D.; Maubert, M.A.; Ait-Slimane, T.; Bolbach, G.; Delaunay, J.L.; Durand-Schneider, A.M.; Firrincieli, D.; Barbu, V.; Chignard, N.; et al. Phosphorylation of ABCB4 impacts its function: Insights from disease-causing mutations. Hepatology 2014, 60, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Noe, J.; Hagenbuch, B.; Meier, P.J.; St-Pierre, M.V. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 2001, 33, 1223–1231. [Google Scholar] [CrossRef]
- Idriss, H.; Urquidi, V.; Basavappa, S. Selective modulation of P-glycoprotein’s ATPase and anion efflux regulation activities with PKC alpha and PKC epsilon in Sf9 cells. Cancer Chemother. Pharm. 2000, 46, 287–292. [Google Scholar] [CrossRef]
- Ahmad, S.; Safa, A.R.; Glazer, R.I. Modulation of P-glycoprotein by protein kinase C alpha in a baculovirus expression system. Biochemistry 1994, 33, 10313–10318. [Google Scholar] [CrossRef]
- Sachs, C.W.; Ballas, L.M.; Mascarella, S.W.; Safa, A.R.; Lewin, A.H.; Loomis, C.; Carroll, F.I.; Bell, R.M.; Fine, R.L. Effects of sphingosine stereoisomers on P-glycoprotein phosphorylation and vinblastine accumulation in multidrug-resistant MCF-7 cells. Biochem. Pharm. 1996, 52, 603–612. [Google Scholar] [CrossRef]
- Goodfellow, H.R.; Sardini, A.; Ruetz, S.; Callaghan, R.; Gros, P.; McNaughton, P.A.; Higgins, C.F. Protein kinase C-mediated phosphorylation does not regulate drug transport by the human multidrug resistance P-glycoprotein. J. Biol. Chem. 1996, 271, 13668–13674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germann, U.A.; Chambers, T.C.; Ambudkar, S.V.; Licht, T.; Cardarelli, C.O.; Pastan, I.; Gottesman, M.M. Characterization of phosphorylation-defective mutants of human P-glycoprotein expressed in mammalian cells. J. Biol. Chem. 1996, 271, 1708–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickart, C.M. Ubiquitin enters the new millennium. Mol. Cell 2001, 8, 499–504. [Google Scholar] [CrossRef]
- Clague, M.J.; Urbe, S. Ubiquitin: Same molecule, different degradation pathways. Cell 2010, 143, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Kapoor, K.; Ohnuma, S.; Patel, A.; Swaim, W.; Ambudkar, I.S.; Ambudkar, S.V. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway. Biochim. Biophys. Acta 2015, 1853, 2361–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, H.; Mizuno, T.; Horikawa, R.; Nagasaka, H.; Yabuki, T.; Takikawa, H.; Sugiyama, Y. 4-Phenylbutyrate modulates ubiquitination of hepatocanalicular MRP2 and reduces serum total bilirubin concentration. J. Hepatol. 2012, 56, 1136–1144. [Google Scholar] [CrossRef]
- Kagawa, T.; Watanabe, N.; Mochizuki, K.; Numari, A.; Ikeno, Y.; Itoh, J.; Tanaka, H.; Arias, I.M.; Mine, T. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G58–G67. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dong, H.; Soroka, C.J.; Wei, N.; Boyer, J.L.; Hochstrasser, M. Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 2008, 48, 1558–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, H.; Takada, T.; Suzuki, H.; Akita, H.; Sugiyama, Y. Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology 2005, 41, 916–924. [Google Scholar] [CrossRef]
- Rao, P.S.; Mallya, K.B.; Srivenugopal, K.S.; Balaji, K.C.; Rao, U.S. RNF2 interacts with the linker region of the human P-glycoprotein. Int. J. Oncol 2006, 29, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, A.K.; Kaur, S.; Wernyj, R.P.; Kumaran, M.N.; Miletti-Gonzalez, K.E.; Chan, R.; Lim, E.; Madura, K.; Rodriguez-Rodriguez, L. CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination. Oncotarget 2015, 6, 26308–26321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, K.; Noguchi, K.; Sugimoto, Y. FBXO15 regulates P-glycoprotein/ABCB1 expression through the ubiquitin--proteasome pathway in cancer cells. Cancer Sci. 2013, 104, 694–702. [Google Scholar] [CrossRef]
- Katayama, K.; Yoshioka, S.; Tsukahara, S.; Mitsuhashi, J.; Sugimoto, Y. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol. Cancer 2007, 6, 2092–2102. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Fujiwara, C.; Noguchi, K.; Sugimoto, Y. RSK1 protects P-glycoprotein/ABCB1 against ubiquitin-proteasomal degradation by downregulating the ubiquitin-conjugating enzyme E2 R1. Sci. Rep. 2016, 6, 36134. [Google Scholar] [CrossRef] [Green Version]
- Romeo, Y.; Zhang, X.; Roux, P.P. Regulation and function of the RSK family of protein kinases. Biochem. J. 2012, 441, 553–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.H.; Ploegh, H.L.; Weissman, J.S. Road to ruin: Targeting proteins for degradation in the endoplasmic reticulum. Science 2011, 334, 1086–1090. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.Y.; Tang, X.D.; Chen, J.; Wu, H.B.; Chen, W.S.; Chen, L. Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells. Acta Pharm. Sin. 2020, 41, 56–64. [Google Scholar] [CrossRef]
- Minami, S.; Ito, K.; Honma, M.; Ikebuchi, Y.; Anzai, N.; Kanai, Y.; Nishida, T.; Tsukita, S.; Sekine, S.; Horie, T.; et al. Posttranslational regulation of Abcc2 expression by SUMOylation system. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G406–G413. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N.; Harada, K.; Kato, M.; Hirose, S. Ubiquitin-specific protease 19 regulates the stability of the E3 ubiquitin ligase MARCH6. Exp. Cell Res. 2014, 328, 207–216. [Google Scholar] [CrossRef]
- Hayashi, H.; Sugiyama, Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol. Pharmacol. 2009, 75, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, H.; Sugiyama, Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 2007, 45, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, R.C.; Zeitlin, P.L. Sodium 4-phenylbutyrate downregulates Hsc70: Implications for intracellular trafficking of DeltaF508-CFTR. Am. J. Physiol. Cell Physiol. 2000, 278, C259–C267. [Google Scholar] [CrossRef] [PubMed]
Proteins 1 | Interacting ABC Transporters | Subcellular Localization | Functions | References |
---|---|---|---|---|
AP2 | ABCB11 | Plasma membrane | Clathrin-dependent endocytosis | [71,72,73,77] |
BACs | ABCB11 | ER | Conjugation of bile acids | [8] |
BAP29 | ABCB1 | ER | Controls protein sorting from the ER | [21] |
BAP31 | ABCB11 | ER | Controls protein sorting from the ER | [8] |
CAL | ABCC2 | Golgi | Golgi sorting | [30] |
Calnexin | ABCG5/G8 ABCB1 | ER | Assists glycoprotein folding | [12,13,16] |
Calreticulin | ABCG5/G8 | ER | Assists glycoprotein folding | [12] |
Cav-1 | ABCB1 ABCB4 ABCB11 ABCC2 ABCG5/G8 | Plasma membrane | Scaffold protein | [99,100,103,104,105,107] |
CD44 | ABCB1 | Plasma membrane | Inhibitor of FBX021 | [129] |
EBP50 | ABCB4 ABCC2 | Plasma membrane | Scaffold protein | [52,53] |
Ezrin | ABCC2 | Plasma membrane Associated with the cytoskeleton | Endocytosis | [63] |
FBXO21 | ABCB1 | Cytosol | E3 ubiquitin ligase | [129] |
Fyn | ABCC2 ABCB11 | Plasma membrane | Endocytosis | [66] |
GP78 | ABCC2 | ER | SUMO-related proteins | [63,135] |
HAX-1 | ABCB1 ABCB4 ABCB11 | Cytosol Associated with cortical actin | Clathrin-dependent endocytosis | [70] |
Hsc70 | ABCB1 | ER | Chaperone Assists protein folding | [14,16] |
IER3IP1 | ABCB11 | ER | Implicated in apoptosis and protein transport from the ER to the Golgi | [8] |
LKB1 | ABCB11 | Cytoplasm | Intracellular traffic | [41,42] |
MARCKS | ABCC2 ABCB1 | Cytosol Plasma membrane | Endocytosis | [67] |
Myosin Vb | ABCB11 | Cytosol Recycling endosomes Plasma membrane | Recycling to the plasma membrane | [60] |
MLC2 | ABCB1 ABCB4 ABCB11 | Cytosol | Motor protein | [33] |
PDZK1 | ABCC2 | Cytosol | Promotes membrane stability | [54,55] |
Pim-1 | ABCB1 | Cytosol | Promotes membrane stability | [38] |
PI3K | ABCB4 ABCB11 ABCC2 | Plasma membrane Cytosol | Protein kinase | [39] |
PKA and PKC | ABCB1 ABCB11 ABCC2 | Plasma membrane | Protein kinase | [113,114,115,116,117,118] |
RAB4 | ABCB1 | Endosomes Plasma membrane Cytosol | Vesicular trafficking | [31] |
RAB5 | ABCB1 | Endosomes Plasma membrane Cytosol | Vesicular trafficking | [32] |
RAB8 | ABCC2 | Endosomes Plasma membrane Cytosol | Vesicular trafficking | [61] |
RAB11 | ABCB11 | Endosomes Plasma membrane Cytosol | Vesicular trafficking | [60] |
RACK1 | ABCB1 ABCB4 | Plasma membrane | Scaffold protein | [107] |
Radixin | ABCC2 | Cytosol Plasma membrane | Promotes membrane stability | [57] |
REEP | ABCB11 | ER | ER shaping and remodeling | [8] |
Rma1, TEB4 and HRD1 | ABCB11 | ER | E3 ubiquitin ligases | [126] |
RNF2 | ABCB1 | Cytosol | E3 ubiquitin ligase | [128] |
RSK1 | ABCB1 | Cytosol | Kinase | [131,133] |
SCFFbx15 | ABCB1 | Cytosol | E3 ubiquitin ligase | [130] |
Src kinase | ABCB1 | Plasma membrane | Protein kinase | [105,106,107] |
TMEM14A | ABCB11 | ER | Implicated in apoptosis | [8] |
TMEM205 | ABCB11 | ER | Drug resistance | [8] |
TRAM/TRAP | ABCB11 | ER | Accessory protein in the Sec61 translocon complex | [8] |
UBC9 | ABCC2 | Cytosol | SUMO-related protein | [136] |
UBE2R1 | ABCB1 | Cytosol | E2 ubiquitin-conjugating enzyme | [130,132] |
USP19 | ABCB11 | ER | Deubiquitinating enzyme | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Saad, A.; Bruneau, A.; Mareux, E.; Lapalus, M.; Delaunay, J.-L.; Gonzales, E.; Jacquemin, E.; Aït-Slimane, T.; Falguières, T. Molecular Regulation of Canalicular ABC Transporters. Int. J. Mol. Sci. 2021, 22, 2113. https://doi.org/10.3390/ijms22042113
Ben Saad A, Bruneau A, Mareux E, Lapalus M, Delaunay J-L, Gonzales E, Jacquemin E, Aït-Slimane T, Falguières T. Molecular Regulation of Canalicular ABC Transporters. International Journal of Molecular Sciences. 2021; 22(4):2113. https://doi.org/10.3390/ijms22042113
Chicago/Turabian StyleBen Saad, Amel, Alix Bruneau, Elodie Mareux, Martine Lapalus, Jean-Louis Delaunay, Emmanuel Gonzales, Emmanuel Jacquemin, Tounsia Aït-Slimane, and Thomas Falguières. 2021. "Molecular Regulation of Canalicular ABC Transporters" International Journal of Molecular Sciences 22, no. 4: 2113. https://doi.org/10.3390/ijms22042113
APA StyleBen Saad, A., Bruneau, A., Mareux, E., Lapalus, M., Delaunay, J. -L., Gonzales, E., Jacquemin, E., Aït-Slimane, T., & Falguières, T. (2021). Molecular Regulation of Canalicular ABC Transporters. International Journal of Molecular Sciences, 22(4), 2113. https://doi.org/10.3390/ijms22042113