Therapeutic Rationale for Endotoxin Removal with Polymyxin B Immobilized Fiber Column (PMX) for Septic Shock
Abstract
:1. Introduction
2. Historical Overview of the Anti-Endotoxin Strategy for the Treatment of Septic Shock
3. Could Bacterial Endotoxin Be a Therapeutic Target for Treating Gram-Negative Sepsis with Antibodies?
4. Designing of Polymyxin B Immobilized Fiber Column (PMX)
5. Revisiting the Endotoxin Adsorption Capacity In Vitro and In Vivo Settings
5.1. In Vitro Endotoxin Removal Experiments with PMX
5.2. Animal Experiments
6. Clinical Outcome with PMX Indication
6.1. Multicenter Randomized Controlled Study
6.2. Systematic Review with Meta-Analysis for PMX-HP
6.3. Cohort Study Using a Large Clinical Database
6.4. Registry Study after EUPHAS Trial in Italy
7. Host Response to PMX-HP Application
7.1. The Changes of Blood Endotoxin Level
7.2. Immunostimulatory Effects
7.3. Cellular Elements Alteration with PMX-HP
7.3.1. Neutrophil
7.3.2. T-LYMPHOCYTE
7.3.3. Apoptotic Cell
7.4. Future Direction of PMX-HP, Endotoxin Removal with Cellular Alteration of Immune Cells
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Shoji, H.; Tani, T.; Hanasawa, K.; Kodama, M. Extracorporeal endotoxin removal by polymyxin B immobilized fiber cartridge: Designing and antiendotoxin efficacy in the clinical application. Ther. Apher. 1998, 2, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Justo, J.A.; Bosso, J.A. Adverse Reactions Associated with Systemic Polymyxin Therapy. Pharmacotherapy 2015, 35, 28–33. [Google Scholar] [CrossRef]
- Velkov, T.; Dai, C.; Ciccotosto, G.D.; Cappai, R.; Hoyer, D.; Li, J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol. Ther. 2018, 181, 85–90. [Google Scholar] [CrossRef]
- Vincent, J.L.; Laterre, P.F.; Cohen, J.; Burchardi, H.; Bruining, H.; Lerma, F.A.; Wittebole, X.; Backer, D.D.; Brett, S.; Marzo, D.; et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock 2005, 23, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Opal, S.M.; Yu,R. L.J. Antiendotoxin strategies for the prevention and treatment of septic shock. Drugs 1998, 55, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Rietschel, E.T.; Westphal, O. Endotoxin: Historical Perspectives. In Endotoxin in Heath and Disease. Brade, H., Opal, S., Vogel, S., Morrison, D.C., Eds.; Marcel and Dekker Publishers: USA, 1999; pp. 1–31. [Google Scholar]
- Opal, S.M.; Cross, A.S. Clinical trials for severe sepsis. Infect. Dis. Clin. N. Am. 1999, 13, 285–297. [Google Scholar] [CrossRef]
- Fisher, C.J., Jr.; Slotman, G.J.; Opal, S.M.; Pribble, J.P.; Bone, R.C.; Emmanuel, G.; Ng, D.; Bloedow, D.C.; Catalano, M.A. Initial evaluation of IL-1RA antagonist in the treatment of sepsis syndrome. Crit. Care Med. 1994, 22, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; Cohen, J. Clinical gram-positive sepsis: Does it fundamentally differ from gram-negative sepsis? Crit. Care Med. 1995, 2, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019. Crit. Care Med. 2020, 48, e440–e469. [Google Scholar] [CrossRef] [PubMed]
- Romaschin, A.D.; Obiezu-Forster, C.D.; Shoji, H.; Klein, D.C. Novel insights into the direct removal of endotoxin by polymyxin B hemoperfusion. Blood Purif. 2017, 44, 193–197. [Google Scholar] [CrossRef]
- Yamashita, C.; Moriyama, K.; Hasegawa, D.; Kato, Y.; Sakai, T.; Kawaji, T.; Shimomura, Y.; Kunimoto, Y.; Nagata, M.; Nishida, O. In vitro study of endotoxin adsorption by a Polymyxin B-Immobilized Fiber Column. Blood Purif. 2018, 46, 269–273. [Google Scholar] [CrossRef]
- Iba, T.; Okamoto, K.; Kawasaki, S.; Nakarai, E.; Miyasho, T. Effect of hemoperfusion using polymyxin B-immobilized fibers on non-shock rat sepsis model. J. Surg. Res. 2011, 171, 755–761. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Yu, L.C.-H.; Wu, C.-Y.; Cheng, Y.-J.; Lee, C.-T.; Sun, W.-Z.; Tsai, J.-C.; Lin, T.-Y.; on behalf of the NTUH Center of Microcirculation Medical Research (NCMMR). Effects of endotoxin absorber hemoperfusion on microcirculation in septic pigs. J. Surg. Res. 2017, 211, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Pallavicini, F.M.B.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock The EUPHAS randomized controlled trial. JAMA 2009, 301, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Payen, D.M.; Guilhot, J.; Launey, Y.; Lukaszewicz, A.C.; Kaaki, M.; Veber, B.; Pottecher, J.; Joannes-Boyau, O.; Martin-Lefevre, L.; Jabaudon, M.; et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: A multicenter randomized control trial. Intensiv. Care Med. 2015, 41, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.A.; Trzeciak, S.; et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients with Septic Shock and Elevated Endotoxin Level the EUPHRATES Randomized Clinical Trial. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.J.; Foster,D. ; Walker, P.M.; Bagshaw, S.M.; Mekonnen, H.; Antonelli, M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: A post hoc analysis of the EUPHRATES trial. Intensiv. Care Med. 2018, 44, 2205–2212. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.; Tu, Y.K.; Lee, C.T.; Chao, A.; Huang, C.H.; Wang, M.J.; Yeh, Y.C. Effects of Polymyxin B Hemoperfusion on Mortality in Patients With Severe Sepsis and Septic Shock: A Systemic Review, Meta-Analysis Update, and Disease Severity Subgroup Meta-Analysis. Crit. Care Med. 2017, 45, e858–e864. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, C.; Mao, Z.; Qi, S.; Song, R.; Zhou, F. Effectiveness of polymyxin B-immobilized hemoperfusion against sepsis and septic shock: A systematic review and meta-analysis. J. Crit. Care 2020. [Google Scholar] [CrossRef] [PubMed]
- Terayama, T.; Yamakawa, K.; Umemura, Y.; Aihara, M.; Fujimi, S. Polymyxin B Hemoperfusion for Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Surg. Infect. 2017, 18, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Ganeko, R.; Kataoka, Y.; Furukawa, T.A.; Featherstone, R.; Doi, K.; Vincent, J.-L.; Pasero, D.; Robert, R.; Ronco, C.; et al. Polymyxin B‑immobilized hemoperfusion and mortality in critically ill adult patients with sepsis/septic shock: A systematic review with meta‑analysis and trial sequential analysis. Intensiv. Care Med. 2017, 44, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Iwagami, M.; Yasunaga, H.; Noiri, E.; Horiguchi, H.; Fushimi,K. ; Matsubara, T.; Yahagi, N.; Nangaku, M.; Doi, K. Potential survival benefit of polymyxin B hemoperfusion in septic shock patients on continuous renal replacement therapy: A propensity-matched analysis. Blood Purif. 2016, 42, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Japan Septic Disseminated Intravascular Coagulation (JSEPTIC DIC) study group; Kitamura, T. ; Kiyomi, F.; Hayakawa, M.; Hoshino, K.; Kawano, Y.; Yamasaki, R.; Nishida, T.; Mizunuma, M.; et al. Potential survival benefit of polymyxin B hemoperfusion in patients with septic shock: A propensity-matched cohort study. Crit. Care 2017, 21, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cutuli, S.L.; Artigas, A.; Fumagalli, R.; Monti, G.; Ranieri, V.M.; Ronco, C.; Antonelli, M.; The EUPHAS 2 Collaborative Group. Polymyxin‑B hemoperfusion in septic patients: Analysis of a multicenter registry. Ann. Intensiv. Care 2016, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Mitaka, C.; Fujiwara, N.; Yamamoto, M.; Toyofuku, T.; Haraguchi, G.; Tomita, M. Polymyxin B-immobilized fiber column hemoperfusion removes endotoxin throughout a 24-hour treatment period. J. Crit. Care 2014, 29, 728–732. [Google Scholar] [CrossRef]
- Novelli, G.; Ferretti, G.; Ruberto, F.; Morabito, V.; Pugliese, F. Early management of endotoxemia using the endotoxin activity assay and polymyxin B-based hemoperfusion. In Endotoxemia and Endotoxin Shock, Disease, Diagnosis and Therapy, Contribution to Nephrology; Ronco, C., Piccini, P., Rosner, M.H., Eds.; S. Karger AG: Basel, Switzerland, 2010; Volume 167. [Google Scholar]
- Drewry, A.M.; Ablordeppey, E.A.; Murray, E.T.; Beiter, E.R.; Walton, A.H.; Hall, M.W.; Hotchkiss, R.S. Comparison of monocyte human leukocyte antigen-DR expression and stimulated tumor necrosis factor alpha production as outcome predictors in severe sepsis: A prospective observational study. Crit. Care 2016, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ono, S.; Tsujimoto, H.; Matsumoto, A.; IKuta, S.; Kinoshita, M.; Mochizuki, H. Modulation of human leuocyte antigen-DR on monocytes and CD16 on granulocytes in patients with septic shock using heoperfusion with polymyxin B-immobilized fiber. Am. J. Surg. 2004, 188, 150–156. [Google Scholar] [CrossRef]
- Srisawat, N.; Tungsanga, S.; Lumlertgul, N.; Komaenthammasophon, C.; Peerapornratana, S.; Thamrongsat, N.; Tiranathanagul, K.; Praditpornsilpa, K.; Eiam-Ong, S.; Tungsanga, K.; et al. The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients. Crit. Care 2018, 22, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai,T. ; Takeyama, N.; Yabuki,T.; Harada, M.; Miki, Y.; Kanou, H.; Inoue, S.; Nakagawa, T.; Noguchi, H. Apheresis of activated leukocytes with an immobilized polymyxin B filter in patients with septic shock. Shock 2010, 34, 461–466. [Google Scholar] [CrossRef]
- Nishibori, M.; Takahashi, H.K.; Katayama, H.; Mori, S.; Saito, S.; Iwagaki, H.; Tanaka, N.; Morita, K.; Ohtsuka, A. Specific Removal of Monocytes from Peripheral Blood of Septic Patients by Polymyxin B-immobilized Filter Column. Acta Med. Okayama 2009, 63, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Seo, Y.; Hayashi, H.; Matsuda, K.; Usuki, J.; Azuma, A.; Kudoh, S.; Gemma, A. Neutrophil adsorption by polymyxin B-immobilized fiber column for acute exacerbation in patients with interstitial pneumonia: A pilot study. Blood Purif. 2010, 29, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Kimura, A.; Hiraki, S.; Takahata, R.; Tsujimoto, H.; Kinoshita, M.; Miyazaki, H.; Yamamoto, J.; Hase, K.; Saitoh, D. Removal of increased circulating CD4+CD25+Foxp3+ regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery 2013, 153, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Cantaluppi, V.; Assenzio, B.; Pasero, D.; Romanazzi, G.M.; Pacitti, A.; Lanfranco, G.; Puntorieri, V.; Martin, L.M.; Mascia, L.; Monti, G.; et al. Polymyxin-B hemoperfusion inactivates circulating proapoptotic factors. Intensiv. Care Med. 2008, 34, 1638–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, M.; Kase, H.; Shimoyama, O.; Takahashi, T. Effects of polymyxin B-immobilized fiber using a rat cecal ligation and perforation Model. ASAIO J. 2009, 55, 246–250. [Google Scholar] [CrossRef]
- Mitaka, C.; Masuda, T.; Kido, K.; Uchida, T.; Abe, S.; Miyasho, T.; Tomita, M.; Inada, M. Polymyxin B hemoperfusion prevents acute kidney injury in sepsis model. J. Surg. Res. 2016, 201, 59–68. [Google Scholar] [CrossRef]
- Kojika, M.; Sato, N.; Yaegashi, Y.; Suzuki, Y.; Suzuki, K.; Nakae, H.; Endo, S. Endotoxin adsorption therapy for septic shock using polymyxin B-immobilized fibers (PMX): Evaluation by high-sensitivity endotoxin assay and measurement of the cytokine production capacity. Ther. Apher. Dial. 2006, 10, 12–18. [Google Scholar] [CrossRef]
- Marshall, J.C.; Foster, D.; Vincent, J.L.; Cook, D.J.; Cohen, J.; Dellinger, P.; Opal, S.; Abraham, E.; Brett, S.J.; Smith, T.; et al. Diagnostic and prognostic implications of endotoxemia in critical illness: Results of the MEDIC study. J. Infect. Dis. 2004, 190, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, T.; Ikeda, K.; Suda, S.; Ueno, T. Usefulness of the endotoxin activity assay as a biomarker to assess the severity of endotoxemia in critically ill patients. Innate Immun. 2013, 20, 881–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enomoto, N.; Mikamo, M.; Oyama, Y.; Kono, M.; Hashimoto, D.; Fujisawa, T.; Inui, N.; Nakamura, Y.; Yasuda, H.; Kato, A.; et al. Treatment of acute exacerbation of idiopathic pulmonary fibrosis with direct hemoperfusion using a polymyxin B-immobilized fiber column improves survival. BMC Pulm. Med. 2015, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Oishi, K.; Aoe, K.; Mimura, Y.; Murata, Y.; Sakamoto, K.; Koutoku, W.; Matsumoto, T.; Ueoka, H.; Yano, M. Survival from an Acute Exacerbation of Idiopathic Pulmonary Fibrosis with or without Direct Hemoperfusion with a Polymyxin B-immobilized Fiber Column: A Retrospective Analysis. Intern. Med. 2016, 55, 3551–3559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homma, S.; Bando, M.; Azuma, A.; Sakamoto, S.; Sugino, K.; Ishii, Y.; Izumi, S.; Inase, N.; Inoue, Y.; Ebina, M.; et al. Japanese guideline for the treatment of idiopathic pulmonary fibrosis. Respir. Investig. 2018, 56, 268–291. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Munakata, R.; Abe, S.; Mii, S.; Suzuki, M.; Kashiwada, T.; Azuma, A.; Yamamoto, T.; Gemma, A.; Tanaka, K. Hypercytokinemia with 2009 pandemic H1N1 (pH1N1) influenza successfully treated with polymyxin B-immobilized fiber column hemoperfusion. Intensiv. Care Med. 2010, 36, 906–907. [Google Scholar] [CrossRef]
- Yatera, K.; Yamasaki, K.; Kawanami, T.; Tokuyama, S.; Ogoshi, T.; Kouzaki, M.; Nagata, S.; Nishida, C.; Yoshii. C.; Mukae, H. A Case of Successful Treatment with Polymyxin B-immobilized Fiber Column Direct Hemoperfusion in Acute Respiratory Distress Syndrome after Influenza A Infection. Intern. Med. 2011, 50, 601–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusaba, Y.; Izumi, S.; Takasaki, J.; Suzuki, M.; Katagiri, D.; Katsuno, T.; Matsumoto, S.; Sakamoto, K.; Hashimoto, M.; Ohmagari, N.; et al. Successful recovery from COVID-19-associated acute respiratory failure with polymyxin B-immobilized fiber column-direct hemoperfusion. Intern. Med. 2020, 59, 5413–5420. [Google Scholar] [CrossRef]
- Nihei, Y.; Nagasawa, H.; Fukao, Y.; Kihara, M.; Ueda, S.; Gohda, T.; Suzuki, Y. Continuous extracorporeal treatments in a dialysis patient with COVID‑19. CEN Case Rep. 2020, Oct 4, 1–6. [Google Scholar] [CrossRef]
- Ishiwari, M.; Togashi, Y.; Takoi, H.; Kikuchi, R.; Kono, Y.; Abe, S. Polymyxin B haemoperfusion treatment for respiratory failure and hyperferritinaemia due to COVID-19. Respirol. Case Rep. 2020, 8, e00679. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, D.; Ishikane, M.; Asai, Y.; Izumi, S.; Takasaki, J.; Katsuoka, H.; Kondo, I.; Ide, S.; Nakamura, K.; Nakamoto, T.; et al. Direct hemoperfusion using a polymyxin B-immobilized polystyrene column for COVID-19. J. Clin. Apher. 2020, 1–9. [Google Scholar] [CrossRef]
- Sirivongrangson, P.; Kulvichit, W.; Payungporn, S.; Pisitkun, T.; Chindamporn, A.; Peerapornratana, S.; Pisitkun, P.; Chitcharoen, S.; Sawaswong, V.; Worasilchai, N.; et al. Endotoxemia and circulating bacteriome in severe COVID-19 patients. Intensiv. Care Med. Exp. 2020, 82, 72–86. [Google Scholar] [CrossRef]
Event | Year(s) | Major Findings |
---|---|---|
Discovery of microorganisms | 1676 | Robert Hooke and Antoni van Leeuwenhoek independently discover living microorganisms by careful microscopy using lenses to identify microbes. |
Proving the germ theory of disease | 1860s | Louis Pasteur (1822–1864) and Robert Koch (1843–1910) demonstrate that microorganisms in infected tissues directly cause tissue injury. Organisms can be transmitted between animals and humans. |
Ignas Semmelweis | 1850s | Semmelweis (1818–1865) proves in 1847 that microbial pathogens can be transmitted by the hands of doctors and cause potentially lethal puerperal fever; hand hygiene prevents this from happening. |
Discovery of Endotoxin | 1892 | Robert Koch and his colleague Richard Pfeiffer first prove that about 70% of the cell wall of Gram-negative bacteria is protease resistant and lipid sensitive material. They demonstrate that purified endotoxin injected intravenously is lethal to laboratory animals, forming Koch’s Postulates. |
Gram’s stain aids to detect and define bacteria | 1884 | Hans Christian Gram (1853–1938) first develops a method to rapidly classify and identify bacteria as either Gram-positive or Gram-negative by differential staining and microscopy. |
Polymyxin B bound hemofilters remove endotoxin | 1994 | Tohru Tani and Hisataka Shoji, et al. develop the cationic filters which will bind to circulating endotoxin and remove endotoxin from the circulation and can rescue patients from endotoxemia. |
The 3-dimensional structure of endotoxin is solved | 2000s | Beutler and colleagues define the structure of TLR 4 as the molecular receptor for endotoxin and how Lipid A, core glyco-lipid and MD2 interact to signal the presence of endotoxin. |
Clinical trials of endotoxin filters, mono-clonal antibodies | 2013–2020 | Clinical trials are underway to determine if these strategies can improve outcome. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoji, H.; Opal, S.M. Therapeutic Rationale for Endotoxin Removal with Polymyxin B Immobilized Fiber Column (PMX) for Septic Shock. Int. J. Mol. Sci. 2021, 22, 2228. https://doi.org/10.3390/ijms22042228
Shoji H, Opal SM. Therapeutic Rationale for Endotoxin Removal with Polymyxin B Immobilized Fiber Column (PMX) for Septic Shock. International Journal of Molecular Sciences. 2021; 22(4):2228. https://doi.org/10.3390/ijms22042228
Chicago/Turabian StyleShoji, Hisataka, and Steven M. Opal. 2021. "Therapeutic Rationale for Endotoxin Removal with Polymyxin B Immobilized Fiber Column (PMX) for Septic Shock" International Journal of Molecular Sciences 22, no. 4: 2228. https://doi.org/10.3390/ijms22042228
APA StyleShoji, H., & Opal, S. M. (2021). Therapeutic Rationale for Endotoxin Removal with Polymyxin B Immobilized Fiber Column (PMX) for Septic Shock. International Journal of Molecular Sciences, 22(4), 2228. https://doi.org/10.3390/ijms22042228