Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Identification of Differentially Expressed Genes (DEGs)
2.2. Identification of Differentially Expressed SIRGs
2.3. Construction of the Prognostic Model
2.4. Efficacy Verification of the Prognostic Model
2.5. The Clinical Significance of IIRGs
2.6. TFs Regulatory Network
3. Discussion
4. Materials and Methods
4.1. Gene Expression Data and Clinical Data Collection
4.2. Analysis of DEGs
4.3. Screening of Differentially Expressed SIRGs
4.4. Construction of the Prognostic Model
4.5. Construction of the Regulatory Network of SIRGs and Their TFs
4.6. Validaion of the Risk Score Model
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, J.; Rutherford, S.; Chu, C. Review of the Cervical Cancer Burden and Population-Based Cervical Cancer Screening in China. Asian Pac. J. Cancer Prev. 2015, 16, 7401–7407. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.; Kweon, S.; Kim, D.W.; Lee, H. Different expression of GSK3beta and pS9GSK3beta depending on phenotype of cervical cancer: Possible association of GSK3beta with squamous cell carcinoma and pS9GSK3beta with adenocarcinoma. Obs. Gynecol. Sci. 2019, 62, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Hass, P.; Eggemann, H.; Costa, S.D.; Ignatov, A. Adjuvant hysterectomy after radiochemotherapy for locally advanced cervical cancer. Strahlenther. Onkol. 2017, 193, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- van Meir, H.; Kenter, G.G.; Burggraaf, J.; Kroep, J.R.; Welters, M.J.; Melief, C.J.; Van Der Burg, S.H.; IE Van Poelgeest, M. The need for improvement of the treatment of advanced and metastatic cervical cancer, the rationale for combined chemo-immunotherapy. Anticancer Agents Med. Chem. 2014, 14, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liang, T.; Wang, D.; Li, L.; Cheng, Y.; Guo, Q.; Zhang, G. IFNalpha-Expressing Amniotic Fluid-Derived Mesenchymal Stem Cells Migrate to and Suppress HeLa Cell-Derived Tumors in a Mouse Model. Stem. Cells Int. 2018, 2018, 1241323. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Che, Y.; Zhao, Y.; Wang, X. Prevention and treatment of cervical cancer by a single administration of human papillomavirus peptide vaccine with CpG oligodeoxynucleotides as an adjuvant in vivo. Int. Immunopharmacol. 2019, 69, 279–288. [Google Scholar] [CrossRef] [PubMed]
- McCormack, S.E.; Cruz, C.R.Y.; Wright, K.E.; Powell, A.B.; Lang, H.; Trimble, C.; Keller, M.D.; Fuchs, E.; Bollard, C.M. Human papilloma virus-specific T cells can be generated from naive T cells for use as an immunotherapeutic strategy for immunocompromised patients. Cytotherapy 2018, 20, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Nishio, H.; Iwata, T.; Aoki, D. Current status of cancer immunotherapy for gynecologic malignancies. Jpn. J. Clin. Oncol. 2020, 51, 167–172. [Google Scholar] [CrossRef]
- Li, B.; Cui, Y.; Diehn, M.; Li, R. Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer. JAMA Oncol. 2017, 3, 1529–1537. [Google Scholar] [CrossRef]
- Lin, P.; Guo, Y.N.; Shi, L.; Li, X.J.; Yang, H.; He, Y.; Li, Q.; Dang, Y.; Weei, K.; Chen, G. Development of a prognostic index based on an immunogenomic landscape analysis of papillary thyroid cancer. Aging 2019, 11, 480–500. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Andorf, S.; Gomes, L.; Dunn, P.; Schaefer, H.; Pontius, J.; Berger, P.; Desborough, V.; Smith, T.; Campbell, J.; et al. ImmPort: Disseminating data to the public for the future of immunology. Immunol. Res. 2014, 58, 234–239. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Heagerty, P.J.; Lumley, T.; Pepe, M.S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000, 56, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.J. The advent of human papillomavirus detection for cervical screening. Curr. Opin. Obs. Gynecol. 2019, 31, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Long, H.J., 3rd; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Lisa, M.L.; Ana, O.; Thomas, J.R.; Mario, M.L.; et al. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Kidd, E.A.; Siegel, B.A.; Dehdashti, F.; Grigsby, P.W. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer 2007, 110, 1738–1744. [Google Scholar] [CrossRef]
- Luo, W.; Wang, M.; Liu, J.; Cui, X.; Wang, H. Identification of a six lncRNAs signature as novel diagnostic biomarkers for cervical cancer. J. Cell Physiol. 2019, 235, 993–1000. [Google Scholar] [CrossRef]
- Li, X.; Tian, R.; Gao, H.; Yang, Y.; Williams, B.R.G.; Gantier, M.P.; McMillan, N.A.J.; Xu, D.; Hu, Y.; Gao, Y. Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients. Sci. Rep. 2017, 7, 16495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigo, A.; Gottardi, M.; Zamo, A.; Mauri, P.; Bonifacio, M.; Krampera, M.; Damiani, E.; Pizzolo, G.; Vinante, F. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol. Cancer 2010, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wei, Y.; Zhang, J. Combined Knockdown of D-dopachrome Tautomerase and Migration Inhibitory Factor Inhibits the Proliferation, Migration, and Invasion in Human Cervical Cancer. Int. J. Gynecol. Cancer 2017, 27, 634–642. [Google Scholar] [CrossRef]
- Heusinkveld, M.; de Vos van Steenwijk, P.J.; Goedemans, R.; Ramwadhdoebe, T.H.; Gorter, A.; Welters, M.J.; Hall, T.V.; Berg, S.H. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol. 2011, 187, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.L.; Martins-Cardoso, K.; Guimarães, I.S.; de Melo, A.C.; Lopes, A.H.; Monteiro, R.Q.; Almeida, V.H. Interplay Between EGFR and the Platelet-Activating Factor/PAF Receptor Signaling Axis Mediates Aggressive Behavior of Cervical Cancer. Front. Oncol. 2020, 17, 557280. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, R.; Yang, H.; Zhang, D.; Liu, J.; Li, J.; Guo, B. GDF15 knockdown suppresses cervical cancer cell migration in vitro through the TGF-β/Smad2/3/Snail1 pathway. FEBS Open Bio. 2020, 10, 2750–2760. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, S.; Griffin, N.; Rowe, C.W.; Jobling, P.; Lombard, J.M.; Oliveira, S.M.; Walker, M.M.; Hondermarck, H. Nerve growth factor and its receptor tyrosine kinase TrkA are overexpressed in cervical squamous cell carcinoma. FASEB Bioadv. 2020, 2, 398–408. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, H.; Xia, J.; Yang, Y.; Jin, Z.; Xu, H.; Shi, J.; De Domenico, I.; Tricot, G.; Zhan, F. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res. 2015, 75, 2211–2221. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Lee, J.K.; Lee, N.W.; Jung, H.H.; Kim, S.H.; Lee, K.W. Microarray analysis of normal cervix, carcinoma in situ, and invasive cervical cancer: Identification of candidate genes in pathogenesis of invasion in cervical. Int. J. Gynecol. Cancer 2008, 18, 1051–1059. [Google Scholar] [CrossRef]
- Castro, F.A.; Haimila, K.; Sareneva, I.; Schmitt, M.; Lorenzo, J.; Kunkel, N.; Kumar, R.; Försti, A.; Kjellberg, L.; Hallmans, G.; et al. Association of HLA-DRB1, interleukin-6 and cyclin D1 polymorphisms with cervical cancer in the Swedish population--a candidate gene approach. Int. J. Cancer 2009, 125, 1851–1858. [Google Scholar] [CrossRef]
- Bodelon, C.; Madeleine, M.M.; Johnson, L.G.; Du, Q.; Galloway, D.A.; Malkki, M.; Petersdorf, E.W.; Schwartz, S.M. Genetic variation in the TLR and NF-kappaB pathways and cervical and vulvar cancer risk: A population-based case-control study. Int. J. Cancer 2014, 134, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugo de Almeida, V.; Guimaraes, I.D.S.; Almendra, L.R.; Rondon, A.M.R.; Tilli, T.M.; de Melo, A.C.; Sternberg, C.; Monteiro, R.Q. Positive crosstalk between EGFR and the TF-PAR2 pathway mediates resistance to cisplatin and poor survival in cervical cancer. Oncotarget 2018, 9, 30594–30609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanshan, H.; Lan, X.; Xia, L.; Huang, W.; Meifang, Z.; Ling, Y. Inhibition of protease-activated receptor-2 induces apoptosis in cervical cancer by inhibiting signal transducer and activator of transcription-3 signaling. J. Int. Med. Res. 2019, 47, 1330–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leo, C.; Horn, L.C.; Einenkel, J.; Hentschel, B.; Hockel, M. Tumor hypoxia and expression of c-met in cervical cancer. Gynecol. Oncol. 2007, 104, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, P.; Zhang, L.; Gong, W.; Huang, G.; Zheng, Y.; He, F. HDAC1/DNMT3A-containing complex is associated with suppression of Oct4 in cervical cancer cells. Biochemistry 2012, 77, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, X.; Tu, K.; Guan, Y.; Fung, K.P.; Liu, F. Verticillin A suppresses HGF-induced migration and invasion via repression of the c-Met/FAK/Src pathway in human gastric and cervical cancer cells. Onco. Targets Ther. 2019, 12, 5823–5833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.Y.; Chao, T.K.; Su, P.H.; Lee, H.Y.; Shih, Y.L.; Su, H.Y.; Chu, T.-Y.; Yu, M.-H.; Lin, Y.-W.; Lai, H.-C. Characterization of LMX-1A as a metastasis suppressor in cervical cancer. J. Pathol. 2009, 219, 222–231. [Google Scholar] [CrossRef]
- Ye, F.; Yu, Y.; Hu, Y.; Lu, W.; Xie, X. Alterations of dendritic cell subsets in the peripheral circulation of patients with cervical carcinoma. J. Exp. Clin. Cancer Res. 2010, 29, 78. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, A.; Buzzonetti, A.; Martinelli, E.; Fanelli, M.; Petrillo, M.; Ferrandina, G.; Scambia, G.; Fattorossi, A. Selective changes in the immune profile of tumor-draining lymph nodes after different neoadjuvant chemoradiation regimens for locally advanced cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1546–1553. [Google Scholar] [CrossRef]
- Zhu, X.; Lv, J.; Yu, L.; Zhu, X.; Wu, J.; Zou, S.; Jiang, S. Proteomic identification of differentially-expressed proteins in squamous cervical cancer. Gynecol. Oncol. 2009, 112, 248–256. [Google Scholar] [CrossRef]
- Tao, X.H.; Shen, J.G.; Pan, W.L.; Dong, Y.E.; Meng, Q.; Honn, K.V.; Jin, R. Significance of SHP-1 and SHP-2 expression in human papillomavirus infected Condyloma acuminatum and cervical cancer. Pathol. Oncol. Res. 2008, 14, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, S. The expression of Foxp3 and TLR4 in cervical cancer: Association with immune escape and clinical pathology. Arch. Gynecol. Obstet. 2017, 295, 705–712. [Google Scholar] [CrossRef]
- Tang, J.; Yang, Z.; Wang, Z.; Li, Z.; Li, H.; Yin, J.; Deng, M.; Zhu, W.; Zeng, C. Foxp3 is correlated with VEGF-C expression and lymphangiogenesis in cervical cancer. World J. Surg. Oncol. 2017, 15, 173. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Zhang, S.; Wei, H.; Pang, X.; Zhang, H. Roles of Foxp3 in the occurrence and development of cervical cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 8717–8730. [Google Scholar] [PubMed]
- Li, R.; Yan, Q.; Tian, P.; Wang, Y.; Wang, J.; Tao, N.; Li, N.; Lin, X.; Ding, L.; Liu, J.W.; et al. CBX7 Inhibits Cell Growth and Motility and Induces Apoptosis in Cervical Cancer Cells. Mol. Ther. Oncolytics. 2019, 15, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, N.C.; Chi, X.M.; Li, T.Y.; Song, H.X.; Li, H.J.; Jin, X.; Ian, N.C.; Su, L.S.; Niu, J.Q.; Tu, Z.K. Hepatitis C virus core protein triggers expansion and activation of CD4(+)CD25(+) regulatory T cells in chronic hepatitis C patients. Cell Mol. Immunol. 2015, 12, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, Y.; Wang, J. Overexpression of MicroRNA-34a-5p Inhibits Proliferation and Promotes Apoptosis of Human Cervical Cancer Cells by Downregulation of Bcl-2. Oncol. Res. 2018, 26, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Sobti, R.C.; Singh, N.; Hussain, S.; Suri, V.; Bharti, A.C.; Das, B.C. Overexpression of STAT3 in HPV-mediated cervical cancer in a north Indian population. Mol. Cell Biochem. 2009, 330, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, S.; Ushijima, K.; Kawano, K.; Yamaguchi, T.; Terada, A.; Fujiyoshi, N.; Nishio, S.; Tsuda, N.; Ijichi, M.; Kakuma, T.; et al. Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br. J. Cancer 2009, 101, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobti, R.C.; Singh, N.; Hussain, S.; Suri, V.; Bharadwaj, M.; Das, B.C. Deregulation of STAT-5 isoforms in the development of HPV-mediated cervical carcinogenesis. J. Recept. Signal Transduct. Res. 2010, 30, 178–188. [Google Scholar] [CrossRef]
- Wu, H.Y.; Li, Q.Q.; Liang, L.; Qiu, L.L.; Wei, H.W.; Huang, B.Y.; Chen, G.; He, R.Q.; Huang, Z.G.; Hou, W.; et al. Prognostic alternative splicing signature in cervical squamous cell carcinoma. IET Syst. Biol. 2020, 14, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Eun, J.K.; Mi, H.H.; Jeon, Y.J.; Yun, H.K. Identification and Complete Validation of Prognostic Gene Signatures for Human Papillomavirus-Associated Cancers: Integrated Approach Covering Different Anatomical Locations. J. Virol. 2020, JVI.02354-20. [Google Scholar]
- Cai, L.Y.; Hu, C.; Yu, S.S.; Liu, L.X.; Yu, X.B.; Chen, J.H.; Liu, X.; Lin, F.; Zhang, C.; Li, X.Y. Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer. BMC Cancer 2020, 20, 1133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yu, M.X. Identification of MMP1 as a Potential Prognostic Biomarker and Correlating with Immune Infiltrates in Cervical Squamous Cell Carcinoma. DNA Cell Biol. 2020, 39, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, L.; Huang, D.; Chen, K.; Qiu, X.; Qiu, B. Six-lncRNA Immune Prognostic Signature for Cervical Cancer. Front. Genet. 2020, 11, 533628. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Deng, Q.; Wang, W.; Tao, H.; Gao, Y. Identification of an autophagy-related gene signature for survival prediction in patients with cervical cancer. J. Ovaian Res. 2020, 13, 131. [Google Scholar] [CrossRef] [PubMed]
ID | Description | p-Adjust | Count |
---|---|---|---|
GO:0050673 | epithelial cell proliferation | 1.78 × 10−18 | 36 |
GO:0050678 | regulation of epithelial cell proliferation | 1.78 × 10−18 | 34 |
GO:0050679 | positive regulation of epithelial cell proliferation | 2.34 × 10−16 | 25 |
GO:0018108 | peptidyl-tyrosine phosphorylation | 1.52 × 10−15 | 30 |
GO:0018212 | peptidyl-tyrosine modification | 1.55 × 10−15 | 30 |
GO:0032103 | positive regulation of response to external stimulus | 7.98 × 10−14 | 27 |
GO:0001667 | ameboidal-type cell migration | 1.22 × 10−13 | 31 |
GO:0010631 | epithelial cell migration | 1.26 × 10−13 | 28 |
GO:0090132 | epithelium migration | 1.39 × 10−13 | 28 |
GO:0090130 | tissue migration | 1.93 × 10−13 | 28 |
GO:0060326 | cell chemotaxis | 2.54 × 10−12 | 23 |
GO:0010632 | regulation of epithelial cell migration | 6.51 × 10−12 | 24 |
GO:0043410 | positive regulation of MAPK cascade | 9.99 × 10−12 | 30 |
GO:0050900 | leukocyte migration | 1.07 × 10−11 | 29 |
GO:0043235 | receptor complex | 1.08 × 10−11 | 23 |
GO:0009897 | external side of plasma membrane | 3.19 × 10−7 | 15 |
GO:0060205 | cytoplasmic vesicle lumen | 1.02 × 10−6 | 18 |
GO:0031983 | vesicle lumen | 1.02 × 10−6 | 18 |
GO:0034774 | secretory granule lumen | 2.17 × 10−6 | 17 |
GO:0031012 | extracellular matrix | 3.89 × 10−6 | 20 |
GO:0062023 | collagen-containing extracellular matrix | 6.87 × 10−6 | 18 |
GO:0098552 | side of membrane | 3.49 × 10−5 | 16 |
GO:0022624 | proteasome accessory complex | 9.42 × 10−5 | 5 |
GO:0005912 | adherens junction | 0.00042719 | 17 |
GO:0045121 | membrane raft | 0.000466985 | 13 |
GO:0098857 | membrane microdomain | 0.000466985 | 13 |
GO:0098589 | membrane region | 0.000619958 | 13 |
GO:0031093 | platelet alpha granule lumen | 0.001187147 | 6 |
GO:0005925 | focal adhesion | 0.001187147 | 14 |
GO:0019838 | growth factor binding | 4.90 × 10−18 | 22 |
GO:0048018 | receptor ligand activity | 3.61 × 10−17 | 33 |
GO:0030545 | receptor regulator activity | 1.93 × 10−16 | 33 |
GO:0019199 | transmembrane receptor protein kinase activity | 1.44 × 10−15 | 16 |
GO:0008083 | growth factor activity | 2.21 × 10−14 | 20 |
GO:0005126 | cytokine receptor binding | 1.90 × 10−11 | 20 |
GO:0019955 | cytokine binding | 2.16 × 10−11 | 15 |
GO:0005178 | integrin binding | 1.19 × 10−10 | 15 |
GO:0004713 | protein tyrosine kinase activity | 2.39 × 10−10 | 15 |
GO:0042562 | hormone binding | 2.39 × 10−10 | 13 |
GO:0050431 | transforming growth factor beta binding | 1.42 × 10−9 | 8 |
GO:0005539 | glycosaminoglycan binding | 3.49 × 10−9 | 17 |
GO:0004714 | transmembrane receptor protein tyrosine kinase activity | 4.41 × 10−9 | 10 |
GO:0005125 | cytokine activity | 6.15 × 10−9 | 15 |
GO:0003707 | steroid hormone receptor activity | 1.06 × 10−8 | 10 |
ID | Description | p Adjust | Count |
---|---|---|---|
GO:0018108 | peptidyl-tyrosine phosphorylation | 9.23 × 10−5 | 7 |
GO:0018212 | peptidyl-tyrosine modification | 9.23 × 10−5 | 7 |
GO:0050679 | positive regulation of epithelial cell proliferation | 0.001681 | 5 |
GO:0050673 | epithelial cell proliferation | 0.002676 | 6 |
GO:0050730 | regulation of peptidyl-tyrosine phosphorylation | 0.002676 | 5 |
GO:0050769 | positive regulation of neurogenesis | 0.002676 | 6 |
GO:0042063 | gliogenesis | 0.002676 | 5 |
GO:0002833 | positive regulation of response to biotic stimulus | 0.002676 | 3 |
GO:0046850 | regulation of bone remodeling | 0.002676 | 3 |
GO:0001818 | negative regulation of cytokine production | 0.002676 | 5 |
GO:0030665 | clathrin-coated vesicle membrane | 0.01508 | 3 |
GO:0043235 | receptor complex | 0.01508 | 4 |
GO:0030662 | coated vesicle membrane | 0.0269 | 3 |
GO:0030136 | clathrin-coated vesicle | 0.0269 | 3 |
GO:0016323 | basolateral plasma membrane | 0.028616 | 3 |
GO:0008083 | growth factor activity | 7.32 × 10−5 | 5 |
GO:0048018 | receptor ligand activity | 0.000263 | 6 |
GO:0030545 | receptor regulator activity | 0.000263 | 6 |
GO:0004713 | protein tyrosine kinase activity | 0.010353 | 3 |
GO:0005154 | epidermal growth factor receptor binding | 0.012091 | 2 |
GO:0004715 | non-membrane spanning protein tyrosine kinase activity | 0.016435 | 2 |
Gene | Coef 1 | HR 2 | HR.95L | HR.95H | p-Value |
---|---|---|---|---|---|
APOD | −0.06584 | 0.936277 | 0.847164 | 1.034765 | 0.196953 |
TFRC | 0.004018 | 1.004026 | 0.999878 | 1.008191 | 0.057172 |
GRN | 0.00648 | 1.006501 | 1.003542 | 1.009469 | 1.61E−05 |
CSK | −0.04999 | 0.951235 | 0.91998 | 0.983551 | 0.003357 |
HDAC1 | −0.01997 | 0.980231 | 0.963732 | 0.997013 | 0.021143 |
NFATC4 | 0.129489 | 1.138247 | 1.011662 | 1.280671 | 0.03134 |
BMP6 | 0.055054 | 1.056598 | 0.992466 | 1.124874 | 0.084843 |
IL17RD | 0.124096 | 1.132124 | 0.971935 | 1.318714 | 0.110877 |
IL3RA | −0.22745 | 0.79656 | 0.688675 | 0.921347 | 0.00219 |
LEPR | 0.520483 | 1.68284 | 1.112013 | 2.546688 | 0.013808 |
Clinicopathological | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
Characteristics | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Age > 45 years | 1.048 | 0.608–1.807 | 0.865 | – | – | – |
Grade 3–4 | 1.043 | 0.597–1.822 | 0.883 | – | – | – |
FIGO stage | 0.001 * | 0.016 * | ||||
I | – | – | – | – | – | – |
II–III | 0.884 | 0.473–1.654 | 0.701 | 0.742 | 0.395–1.394 | 0.353 |
IVA | 5.121 | 1.956–13.408 | 0.001 * | 2.778 | 1.019–7.575 | 0.046 * |
IVB | 3.139 | 1.095–9.000 | 0.033 * | 2.891 | 1.006–8.306 | 0.049 * |
Histological type (squamous carcinoma vs. adenocarcinoma) | 1.513 | 0.545–4.204 | 0.427 | – | – | – |
High risk | 3.369 | 1.846–6.147 | 0.001 * | 3.170 | 1.701–5.910 | 0.001 * |
Serial Number | Age | pathological Pattern | Survival Time | Survival State | Grade | TNM | FIGO |
---|---|---|---|---|---|---|---|
TCGA-HM-A3JJ | 45 | Squamous cancer | 659 days | dead | G3 | T1b1N1M0 | IB1 |
TCGA-FU-A3EO | 55 | Adenocarcinoma | 490 days | alive | G2 | T2b1N0M0 | IIB |
TCGA-MY-A5BF | 68 | Squamous cancer | 634 days | alive | - | T2a2N0M0 | IIA2 |
Characteristics | Number of Cases (%) |
---|---|
Histological type | |
Adenocarcinoma | 22 (10.4) |
Squamous cancer | 190 (89.6) |
Age (year) | |
≤45 | 100 (47.2) |
>45 | 112 (52.8) |
Grade | |
1–2 | 122 (57.5) |
3–4 | 90 (42.5) |
T stage | |
I | 116 (54.7) |
II-III | 82 (38.7) |
IVa | 5(2.4) |
IVb | 9(4.2) |
Survival status | |
Alive | 159 (75.0%) |
dead | 53 (25.0%) |
Duration of disease (year) | |
≤5 | 176 (83.0) |
>5 | 36 (17.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Vattai, A.; Vilsmaier, T.; Kaltofen, T.; Steger, A.; Mayr, D.; Mahner, S.; Jeschke, U.; Heidegger, H.H. Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients. Int. J. Mol. Sci. 2021, 22, 2442. https://doi.org/10.3390/ijms22052442
Wang Q, Vattai A, Vilsmaier T, Kaltofen T, Steger A, Mayr D, Mahner S, Jeschke U, Heidegger HH. Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients. International Journal of Molecular Sciences. 2021; 22(5):2442. https://doi.org/10.3390/ijms22052442
Chicago/Turabian StyleWang, Qun, Aurelia Vattai, Theresa Vilsmaier, Till Kaltofen, Alexander Steger, Doris Mayr, Sven Mahner, Udo Jeschke, and Helene Hildegard Heidegger. 2021. "Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients" International Journal of Molecular Sciences 22, no. 5: 2442. https://doi.org/10.3390/ijms22052442
APA StyleWang, Q., Vattai, A., Vilsmaier, T., Kaltofen, T., Steger, A., Mayr, D., Mahner, S., Jeschke, U., & Heidegger, H. H. (2021). Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients. International Journal of Molecular Sciences, 22(5), 2442. https://doi.org/10.3390/ijms22052442