Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells
Abstract
:1. Introduction
2. Structure, Formation, and Modulation of Tight Junctions
3. Modulation of Tight Junctions by Pathogenic Microbial Agents
3.1. Action of Microbial Toxins on the IECs’ Cytoskeleton
3.2. Direct Interaction of the Microbial Agents with TJ Proteins
3.3. Microbial Modulation of Signaling Pathways Involved in TJ Organization
4. Indirect Modulation of the TJs Consequently to the Host Response Facing Infection
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordeiro, F.; da Silva, R.I.K.; Vargas-Stampe, T.L.Z.; Cerqueira, A.M.F.; Andrade, J.R.C. Cell Invasion and Survival of Shiga Toxin-Producing Escherichia Coli within Cultured Human Intestinal Epithelial Cells. Microbiology 2013, 159 Pt 8, 1683–1694. [Google Scholar] [CrossRef]
- Goyer, M.; Loiselet, A.; Bon, F.; L’Ollivier, C.; Laue, M.; Holland, G.; Bonnin, A.; Dalle, F. Intestinal Cell Tight Junctions Limit Invasion of Candida Albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier. PLoS ONE 2016, 11, e0149159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Li, Z.-R.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef]
- Miao, W.; Wu, X.; Wang, K.; Wang, W.; Wang, Y.; Li, Z.; Liu, J.; Li, L.; Peng, L. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2. Int. J. Mol. Sci. 2016, 17, 1696. [Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ajuwon, K.M. Butyrate Modifies Intestinal Barrier Function in IPEC-J2 Cells through a Selective Upregulation of Tight Junction Proteins and Activation of the Akt Signaling Pathway. PLoS ONE 2017, 12, e0179586. [Google Scholar] [CrossRef]
- Gill, P.A.; van Zelm, M.C.; Muir, J.G.; Gibson, P.R. Review Article: Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Aliment. Pharmacol. Ther. 2018, 48, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.L.Y.; Forsythe, S.J.; El-Nezami, H. Probiotics Interaction with Foodborne Pathogens: A Potential Alternative to Antibiotics and Future Challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 3320–3333. [Google Scholar] [CrossRef] [PubMed]
- Guttman, J.A.; Finlay, B.B. Tight Junctions as Targets of Infectious Agents. Biochim. Biophys. Acta BBA Biomembr. 2009, 1788, 832–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backert, S.; Boehm, M.; Wessler, S.; Tegtmeyer, N. Transmigration Route of Campylobacter Jejuni across Polarized Intestinal Epithelial Cells: Paracellular, Transcellular or Both? Cell Commun. Signal. 2013, 11, 72. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Yang, Q. Diversity of Tight Junctions (TJs) between Gastrointestinal Epithelial Cells and Their Function in Maintaining the Mucosal Barrier. Cell Biol. Int. 2009, 33, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight Junctions: From Simple Barriers to Multifunctional Molecular Gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Zahraoui, A. Les Jonctions Serrées. Med. Sci. 2004, 20, 580–585. [Google Scholar]
- Matter, K.; Aijaz, S.; Tsapara, A.; Balda, M.S. Mammalian Tight Junctions in the Regulation of Epithelial Differentiation and Proliferation. Curr. Opin. Cell Biol. 2005, 17, 453–458. [Google Scholar] [CrossRef]
- Severson, E.A.; Lee, W.Y.; Capaldo, C.T.; Nusrat, A.; Parkos, C.A. Junctional Adhesion Molecule A Interacts with Afadin and PDZ-GEF2 to Activate Rap1A, Regulate beta 1 Integrin Levels, and Enhance Cell Migration. Mol. Biol. Cell 2009, 20, 1916–1925. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.-Y.; Yang, W.-X.; Hu, Y.-J. The Role of Epithelial Tight Junctions Involved in Pathogen Infections. Mol. Biol. Rep. 2014, 41, 6591–6610. [Google Scholar] [CrossRef] [PubMed]
- Campbell, H.K.; Maiers, J.L.; DeMali, K.A. Interplay between Tight Junctions & Adherens Junctions. Exp. Cell Res. 2017, 358, 39–44. [Google Scholar] [CrossRef]
- Matter, K.; Balda, M.S. SnapShot: Epithelial Tight Junctions. Cell 2014, 157, 2. [Google Scholar] [CrossRef] [Green Version]
- Balda, M.S.; Gonzalez-Mariscal, L.; Contreras, R.G.; Macias-Silva, M.; Torres-Marquez, M.E.; Sainz, J.G.; Cereijido, M. Assembly and Sealing of Tight Junctions: Possible Participation of G-Proteins, Phospholipase C, Protein Kinase C and Calmodulin. J. Membr. Biol. 1991, 122, 193–202. [Google Scholar] [CrossRef]
- Zihni, C.; Munro, P.M.G.; Elbediwy, A.; Keep, N.H.; Terry, S.J.; Harris, J.; Balda, M.S.; Matter, K. Dbl3 Drives Cdc42 Signaling at the Apical Margin to Regulate Junction Position and Apical Differentiation. J. Cell Biol. 2014, 204, 111–127. [Google Scholar] [CrossRef] [Green Version]
- González-Mariscal, L.; Domínguez-Calderón, A.; Raya-Sandino, A.; Ortega-Olvera, J.M.; Vargas-Sierra, O.; Martínez-Revollar, G. Tight Junctions and the Regulation of Gene Expression. Semin. Cell Dev. Biol. 2014, 36, 213–223. [Google Scholar] [CrossRef]
- Quiros, M.; Nusrat, A. RhoGTPases, Actomyosin Signaling and Regulation of the Epithelial Apical Junctional Complex. Semin. Cell Dev. Biol. 2014, 36, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier, S.; Leclerc, J.; Grenier, A.; Foretz, M.; Tamburini, J.; Viollet, B. AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells. Int. J. Mol. Sci. 2019, 20, 5171. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.Y.; Nighot, P.; Al-Sadi, R. Tight Junctions and the Intestinal Barrier. In Physiology of the Gastrointestinal Tract; Academic Press: Cambridge, MA, USA, 2018; pp. 587–639. [Google Scholar] [CrossRef]
- Yu, D.; Turner, J.R. Stimulus-Induced Reorganization of Tight Junction Structure: The Role of Membrane Traffic. Biochim. Biophys. Acta BBA Biomembr. 2008, 1778, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Steed, E.; Balda, M.S.; Matter, K. Dynamics and Functions of Tight Junctions. Trends Cell Biol. 2010, 20, 142–149. [Google Scholar] [CrossRef]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 35. [Google Scholar] [CrossRef] [Green Version]
- Samak, G.; Gangwar, R.; Crosby, L.M.; Desai, L.P.; Wilhelm, K.; Waters, C.M.; Rao, R. Cyclic Stretch Disrupts Apical Junctional Complexes in Caco-2 Cell Monolayers by a JNK-2-, c-Src-, and MLCK-Dependent Mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G947–G958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beutheu, S.; Ouelaa, W.; Guérin, C.; Belmonte, L.; Aziz, M.; Tennoune, N.; Bôle-Feysot, C.; Galas, L.; Déchelotte, P.; Coëffier, M. Glutamine Supplementation, but Not Combined Glutamine and Arginine Supplementation, Improves Gut Barrier Function during Chemotherapy-Induced Intestinal Mucositis in Rats. Clin. Nutr. 2014, 33, 694–701. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Ji, Y.; Sun, K.; Dai, Z.; Wu, G. L-Glutamine Enhances Tight Junction Integrity by Activating CaMK Kinase 2–AMP-Activated Protein Kinase Signaling in Intestinal Porcine Epithelial Cells. J. Nutr. 2016, 146, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, S.; Suzuki, T.; Taylor, W.L.; Bhargava, A.; Rao, R.K. Contrasting Effects of ERK on Tight Junction Integrity in Differentiated and Under-Differentiated Caco-2 Cell Monolayers. Biochem. J. 2011, 433, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A.; Not, T.; Wang, W.; Uzzau, S.; Berti, I.; Tommasini, A.; Goldblum, S.E. Zonulin, a Newly Discovered Modulator of Intestinal Permeability, and Its Expression in Coeliac Disease. Lancet 2000, 355, 1518–1519. [Google Scholar] [CrossRef]
- Asmar, R.E.; Panigrahi, P.; Bamford, P.; Berti, I.; Not, T.; Coppa, G.V.; Catassi, C.; Fasano, A. Host-Dependent Zonulin Secretion Causes the Impairment of the Small Intestine Barrier Function after Bacterial Exposure. Gastroenterology 2002, 123, 1607–1615. [Google Scholar] [CrossRef]
- Fasano, A. Intestinal Permeability and Its Regulation by Zonulin: Diagnostic and Therapeutic Implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A. Zonulin, Regulation of Tight Junctions, and Autoimmune Diseases: Zonulin, Regulation of Tight Junctions. Ann. N. Y. Acad. Sci. 2012, 1258, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.R. Molecular Basis of Epithelial Barrier Regulation. Am. J. Pathol. 2006, 169, 1901–1909. [Google Scholar] [CrossRef] [Green Version]
- Nusrat, A.; von Eichel-Streiber, C.; Turner, J.R.; Verkade, P.; Madara, J.L.; Parkos, C.A. Clostridium Difficile Toxins Disrupt Epithelial Barrier Function by Altering Membrane Microdomain Localization of Tight Junction Proteins. Infect. Immun. 2001, 69, 1329–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, S.V.; Hopkins, A.M.; Chen, J.; Narumiya, S.; Parkos, C.A.; Nusrat, A. Rho Kinase Regulates Tight Junction Function and Is Necessary for Tight Junction Assembly in Polarized Intestinal Epithelia. Gastroenterology 2001, 121, 566–579. [Google Scholar] [CrossRef]
- Rao, R.; Samak, G. Role of Glutamine in Protection of Intestinal Epithelial Tight Junctions. J. Epithel. Biol. Pharmacol. 2012, 5, 47–54. [Google Scholar] [CrossRef]
- Citi, S.; Guerrera, D.; Spadaro, D.; Shah, J. Epithelial Junctions and Rho Family GTPases: The Zonular Signalosome. Small GTPases 2014, 5, e973760. [Google Scholar] [CrossRef] [Green Version]
- Mu, K.; Yu, S.; Kitts, D.D. The Role of Nitric Oxide in Regulating Intestinal Redox Status and Intestinal Epithelial Cell Functionality. Int. J. Mol. Sci. 2019, 20, 1755. [Google Scholar] [CrossRef] [Green Version]
- Langen, U.H.; Ayloo, S.; Gu, C. Development and Cell Biology of the Blood-Brain Barrier. Annu. Rev. Cell Dev. Biol. 2019, 35, 591–613. [Google Scholar] [CrossRef] [Green Version]
- Cong, X.; Kong, W. Endothelial Tight Junctions and Their Regulatory Signaling Pathways in Vascular Homeostasis and Disease. Cell. Signal. 2020, 66, 109485. [Google Scholar] [CrossRef]
- Cerutti, C.; Ridley, A.J. Endothelial Cell-Cell Adhesion and Signaling. Exp. Cell Res. 2017, 358, 31–38. [Google Scholar] [CrossRef]
- Cardoso-Silva, D.; Delbue, D.; Itzlinger, A.; Moerkens, R.; Withoff, S.; Branchi, F.; Schumann, M. Intestinal Barrier Function in Gluten-Related Disorders. Nutrients 2019, 11, 2325. [Google Scholar] [CrossRef] [Green Version]
- Torres-Flores, J.; Arias, C. Tight Junctions Go Viral! Viruses 2015, 7, 5145–5154. [Google Scholar] [CrossRef] [PubMed]
- Di Genova, B.M.; Tonelli, R.R. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Awad, W.; Hess, C.; Hess, M. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins 2017, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Dickman, K.G.; Hempson, S.J.; Anderson, J.; Lippe, S.; Zhao, L.; Burakoff, R.; Shaw, R.D. Rotavirus Alters Paracellular Permeability and Energy Metabolism in Caco-2 Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Obert, G.; Peiffer, I.; Servin, A.L. Rotavirus-Induced Structural and Functional Alterations in Tight Junctions of Polarized Intestinal Caco-2 Cell Monolayers. J. Virol. 2000, 74, 4645–4651. [Google Scholar] [CrossRef]
- Moser, L.A.; Carter, M.; Schultz-Cherry, S. Astrovirus Increases Epithelial Barrier Permeability Independently of Viral Replication. J. Virol. 2007, 81, 11937–11945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Nybom, P.; Magnusson, K.-E. Distinct Effects of Vibrio Cholerae Haemagglutinin/Protease on the Structure and Localization of the Tight Junction-Associated Proteins Occludin and ZO-1. Cell. Microbiol. 2000, 2, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Mel, S.F.; Fullner, K.J.; Wimer-Mackin, S.; Lencer, W.I.; Mekalanos, J.J. Association of Protease Activity in Vibrio Cholerae Vaccine Strains with Decreases in Transcellular Epithelial Resistance of Polarized T84 Intestinal Epithelial Cells. Infect. Immun. 2000, 68, 6. [Google Scholar] [CrossRef]
- Bücker, R.; Krug, S.M.; Rosenthal, R.; Günzel, D.; Fromm, A.; Zeitz, M.; Chakraborty, T.; Fromm, M.; Epple, H.-J.; Schulzke, J.-D. Aerolysin From Aeromonas Hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in Intestinal Epithelial HT-29/B6 Cells. J. Infect. Dis. 2011, 204, 1283–1292. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Nasher, F.; Jagatia, H.; Gundogdu, O.; Bajaj-Elliott, M.; Wren, B.; Dorrell, N. Campylobacter Jejuni Outer Membrane Vesicle-Associated Proteolytic Activity Promotes Bacterial Invasion by Mediating Cleavage of Intestinal Epithelial Cell E-Cadherin and Occludin: Campylobacter Jejuni OMV-Associated Proteolytic Activity. Cell. Microbiol. 2016, 18, 561–572. [Google Scholar] [CrossRef]
- Harrer, A.; Bücker, R.; Zarzecka, U.; Tegtmeyer, N.; Sticht, H.; Schulzke, J.D.; Backert, S. Campylobacter Jejuni Enters Gut Epithelial Cells and Impairs Intestinal Barrier Function through Cleavage of Occludin by Serine Protease HtrA. Gut Pathog. 2019, 11, 16. [Google Scholar] [CrossRef]
- Weight, C.M.; Jones, E.J.; Horn, N.; Wellner, N.; Carding, S.R. Elucidating Pathways of Toxoplasma Gondii Invasion in the Gastrointestinal Tract: Involvement of the Tight Junction Protein Occludin. Microbes Infect. 2015, 17, 698–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beau, I.; Cotte-Laffitte, J.; Amsellem, R.; Servin, A.L. A Protein Kinase A-Dependent Mechanism by Which Rotavirus Affects the Distribution and MRNA Level of the Functional Tight Junction-Associated Protein, Occludin, in Human Differentiated Intestinal Caco-2 Cells. J. Virol. 2007, 81, 8579–8586. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.-S.; Giménez, R.; Cañas, M.-A.; Vera, R.; Díaz-Garrido, N.; Badia, J.; Baldomà, L. Extracellular Vesicles and Soluble Factors Secreted by Escherichia Coli Nissle 1917 and ECOR63 Protect against Enteropathogenic E. Coli-Induced Intestinal Epithelial Barrier Dysfunction. BMC Microbiol. 2019, 19, 166. [Google Scholar] [CrossRef] [Green Version]
- Ngendahayo Mukiza, C.; Dubreuil, J.D. Escherichia Coli Heat-Stable Toxin b Impairs Intestinal Epithelial Barrier Function by Altering Tight Junction Proteins. Infect. Immun. 2013, 81, 2819–2827. [Google Scholar] [CrossRef] [Green Version]
- Coyne, C.B.; Shen, L.; Turner, J.R.; Bergelson, J.M. Coxsackievirus Entry across Epithelial Tight Junctions Requires Occludin and the Small GTPases Rab34 and Rab5. Cell Host Microbe 2007, 2, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, C.B.; Bergelson, J.M. Virus-Induced Abl and Fyn Kinase Signals Permit Coxsackievirus Entry through Epithelial Tight Junctions. Cell 2006, 124, 119–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drolia, R.; Tenguria, S.; Durkes, A.C.; Turner, J.R.; Bhunia, A.K. Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation. Cell Host Microbe 2018, 23, 470–484.e7. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Qiu, X.; Jiao, C.; Lu, M.; Zhao, X.; Li, X.; Li, J.; Ma, J.; Zhang, H. And Dampens Human Intestinal Barrier Activity in Caco-2 Cell Monolayer Model. Cytokine 2020, 126, 7. [Google Scholar] [CrossRef]
- Wang, H.; Zhai, N.; Chen, Y.; Fu, C.; Huang, K. OTA Induces Intestinal Epithelial Barrier Dysfunction and Tight Junction Disruption in IPEC-J2 Cells through ROS/Ca2+-Mediated MLCK Activation. Environ. Pollut. 2018, 242, 106–112. [Google Scholar] [CrossRef]
- Boyle, E.C.; Brown, N.F.; Finlay, B.B. Salmonella Enterica Serovar Typhimurium Effectors SopB, SopE, SopE2 and SipA Disrupt Tight Junction Structure and Function. Cell. Microbiol. 2006, 8, 1946–1957. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Köhler, H.; Gu, X.; McCormick, B.A.; Reinecker, H.-C. Shigella Flexneri Regulates Tight Junction-Associated Proteins in Human Intestinal Epithelial Cells. Cell. Microbiol. 2002, 4, 367–381. [Google Scholar] [CrossRef]
- Bhat, M.I.; Sowmya, K.; Kapila, S.; Kapila, R. Escherichia Coli K12: An Evolving Opportunistic Commensal Gut Microbe Distorts Barrier Integrity in Human Intestinal Cells. Microb. Pathog. 2019, 133, 103545. [Google Scholar] [CrossRef]
- Bhat, M.I.; Kapila, S.; Kapila, R. Lactobacillus Fermentum (MTCC-5898) Supplementation Renders Prophylactic Action against Escherichia Coli Impaired Intestinal Barrier Function through Tight Junction Modulation. LWT 2020, 123, 109118. [Google Scholar] [CrossRef]
- Troeger, H.; Loddenkemper, C.; Schneider, T.; Schreier, E.; Epple, H.-J.; Zeitz, M.; Fromm, M.; Schulzke, J.D. Structural and Functional Changes of the Duodenum in Human Norovirus Infection. Gut 2009, 58, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Nazli, A.; Chan, O.; Dobson-Belaire, W.N.; Ouellet, M.; Tremblay, M.J.; Gray-Owen, S.D.; Arsenault, A.L.; Kaushic, C. Exposure to HIV-1 Directly Impairs Mucosal Epithelial Barrier Integrity Allowing Microbial Translocation. PLoS Pathog. 2010, 6, e1000852. [Google Scholar] [CrossRef] [PubMed]
- Nava, P.; Vidal, J.E. The CpAL System Regulates Changes of the Trans-Epithelial Resistance of Human Enterocytes during Clostridium Perfringens Type C Infection. Anaerobe 2016, 39, 143–149. [Google Scholar] [CrossRef]
- Strauman, M.C.; Harper, J.M.; Harrington, S.M.; Boll, E.J.; Nataro, J.P. Enteroaggregative Escherichia Coli Disrupts Epithelial Cell Tight Junctions. Infect. Immun. 2010, 78, 4958–4964. [Google Scholar] [CrossRef] [Green Version]
- Philpott, D.J.; McKay, D.M.; Mak, W.; Perdue, M.H.; Sherman, P.M. Signal Transduction Pathways Involved in Enterohemorrhagic Escherichia Coli-Induced Alterations in T84 Epithelial Permeability. Infect. Immun. 1998, 66, 1680–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roxas, J.L.; Koutsouris, A.; Bellmeyer, A.; Tesfay, S.; Royan, S.; Falzari, K.; Harris, A.; Cheng, H.; Rhee, K.J.; Hecht, G. Enterohemorrhagic E. Coli Alters Murine Intestinal Epithelial Tight Junction Protein Expression and Barrier Function in a Shiga Toxin Independent Manner. Lab. Investig. 2010, 90, 1152–1168. [Google Scholar] [CrossRef] [Green Version]
- Fedwick, J.P.; Lapointe, T.K.; Meddings, J.B.; Sherman, P.M.; Buret, A.G. Helicobacter Pylori Activates Myosin Light-Chain Kinase to Disrupt Claudin-4 and Claudin-5 and Increase Epithelial Permeability. Infect. Immun. 2005, 73, 7844–7852. [Google Scholar] [CrossRef] [Green Version]
- Köhler, H.; Sakaguchi, T.; Hurley, B.P.; Kase, B.J.; Reinecker, H.-C.; McCormick, B.A. Salmonella Enterica Serovar Typhimurium Regulates Intercellular Junction Proteins and Facilitates Transepithelial Neutrophil and Bacterial Passage. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G178–G187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gui, S.; Liang, Z.; Liu, A.; Chen, Z.; Tang, Y.; Xiao, M.; Chu, F.; Liu, W.; Jin, X.; et al. Musca Domestica Cecropin (Mdc) Alleviates Salmonella Typhimurium-Induced Colonic Mucosal Barrier Impairment: Associating with Inflammatory and Oxidative Stress Response, Tight Junction as Well as Intestinal Flora. Front. Microbiol. 2019, 10, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, Y.-K.; Vikström, E.; Magnusson, K.-E.; Vécsey-Semjén, B.; Colque-Navarro, P.; Möllby, R. The Staphylococcus Aureus Alpha-Toxin Perturbs the Barrier Function in Caco-2 Epithelial Cell Monolayers by Altering Junctional Integrity. Infect. Immun. 2012, 80, 1670–1680. [Google Scholar] [CrossRef] [Green Version]
- Hering, N.A.; Fromm, A.; Kikhney, J.; Lee, I.-F.M.; Moter, A.; Schulzke, J.D.; Bücker, R. Yersinia Enterocolitica Affects Intestinal Barrier Function in the Colon. J. Infect. Dis. 2016, 213, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Carballeda-Sangiao, N.; Sánchez-Alonso, I.; Navas, A.; Arcos, S.C.; de Palencia, P.F.; Careche, M.; González-Muñoz, M. Anisakis Simplex Products Impair Intestinal Epithelial Barrier Function and Occludin and Zonula Occludens-1 Localisation in Differentiated Caco-2 Cells. PLoS Negl. Trop. Dis. 2020, 14, e0008462. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.; Lambert, D.; Padfield, P.J.; Burt, J.P.H.; O’Neill, C.A. The Mycotoxin Patulin, Modulates Tight Junctions in Caco-2 Cells. Toxicol. In Vitro 2009, 23, 83–89. [Google Scholar] [CrossRef]
- Wu, Z.; Mirza, H.; Tan, K.S.W. Intra-Subtype Variation in Enteroadhesion Accounts for Differences in Epithelial Barrier Disruption and Is Associated with Metronidazole Resistance in Blastocystis Subtype-7. PLoS Negl. Trop. Dis. 2014, 8, e2885. [Google Scholar] [CrossRef] [Green Version]
- Böhringer, M.; Pohlers, S.; Schulze, S.; Albrecht-Eckardt, D.; Piegsa, J.; Weber, M.; Martin, R.; Hünniger, K.; Linde, J.; Guthke, R.; et al. Candida Albicans Infection Leads to Barrier Breakdown and a MAPK/NF-ΚB Mediated Stress Response in the Intestinal Epithelial Cell Line C2BBe1: Epithelial Barrier Breakdown by C. Albicans. Cell. Microbiol. 2016, 18, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Chatterjee, I.; Anbazhagan, A.N.; Jayawardena, D.; Priyamvada, S.; Alrefai, W.A.; Sun, J.; Borthakur, A.; Dudeja, P.K. Cryptosporidium Parvum Disrupts Intestinal Epithelial Barrier Function via Altering Expression of Key Tight Junction and Adherens Junction Proteins. Cell. Microbiol. 2018, 20, e12830. [Google Scholar] [CrossRef]
- Humen, M.A.; Pérez, P.F.; Liévin-Le Moal, V. Lipid Raft-Dependent Adhesion of Giardia Intestinalis Trophozoites to a Cultured Human Enterocyte-like Caco-2/TC7 Cell Monolayer Leads to Cytoskeleton-Dependent Functional Injuries: Giardia Intestinalis-Induced Cytoskeleton-Dependent Intestinal Functional Injuries. Cell. Microbiol. 2011, 13, 1683–1702. [Google Scholar] [CrossRef]
- Morampudi, V.; Graef, F.A.; Stahl, M.; Dalwadi, U.; Conlin, V.S.; Huang, T.; Vallance, B.A.; Yu, H.B.; Jacobson, K. Tricellular Tight Junction Protein Tricellulin Is Targeted by the Enteropathogenic Escherichia Coli Effector EspG1, Leading to Epithelial Barrier Disruption. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuhan, R.; Koutsouris, A.; Savkovic, S.D.; Hecht, G. Enteropathogenic Escherichia Coli-Induced Myosin Light Chain Phosphorylation Alters Intestinal Epithelial Permeability. Gastroenterology 1997, 113, 1873–1882. [Google Scholar] [CrossRef]
- Dean, P.; Kenny, B. The Effector Repertoire of Enteropathogenic E. Coli: Ganging up on the Host Cell. Curr. Opin. Microbiol. 2009, 12, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichner, M.; Augustin, C.; Fromm, A.; Piontek, A.; Walther, W.; Bücker, R.; Fromm, M.; Krause, G.; Schulzke, J.-D.; Günzel, D.; et al. In Colon Epithelia, Clostridium Perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins Which Are Apically Accessible Due to Tight Junction Derangement. J. Infect. Dis. 2018, 217, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.; Saha, T.; Sheikh, I.A.; Chakraborty, S.; Aoun, J.; Chakrabarti, M.K.; Rajendran, V.M.; Ameen, N.A.; Dutta, S.; Hoque, K.M. Zinc Ameliorates Intestinal Barrier Dysfunctions in Shigellosis by Reinstating Claudin-2 and -4 on the Membranes. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Hering, N.A.; Richter, J.F.; Krug, S.M.; Günzel, D.; Fromm, A.; Bohn, E.; Rosenthal, R.; Bücker, R.; Fromm, M.; Troeger, H.; et al. Yersinia Enterolitica Induces Epithelial Barrier Dysfunction through Regional Tight Junction Changes in Colonic HT-29/B6 Cell Monolayers. Lab. Investig. 2011, 91, 301–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuyama, A.; Konno, T.; Shimoyama, S.; Kikuchi, H. The Mycotoxin Patulin Decreases Expression of Density-Enhanced Phosphatase-1 by Down-Regulating PPARγ in Human Colon Cancer Cells. Tohoku J. Exp. Med. 2014, 233, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Liu, J.; Liang, Z. Probiotic Bacillus Subtilis CW14 Reduces Disruption of the Epithelial Barrier and Toxicity of Ochratoxin A to Caco-2 Cells. Food Chem. Toxicol. 2019, 126, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Epple, H.-J.; Schneider, T.; Troeger, H.; Kunkel, D.; Allers, K.; Moos, V.; Amasheh, M.; Loddenkemper, C.; Fromm, M.; Zeitz, M.; et al. Impairment of the Intestinal Barrier Is Evident in Untreated but Absent in Suppressively Treated HIV- Infected Patients. Gut 2009, 58, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Lamb-Rosteski, J.M.; Kalischuk, L.D.; Inglis, G.D.; Buret, A.G. Epidermal Growth Factor Inhibits Campylobacter Jejuni-Induced Claudin-4 Disruption, Loss of Epithelial Barrier Function, and Escherichia Coli Translocation. Infect. Immun. 2008, 76, 3390–3398. [Google Scholar] [CrossRef] [Green Version]
- Simonovic, I.; Rosenberg, J.; Koutsouris, A.; Hecht, G. Enteropathogenic Escherichia Coli Dephosphorylates and Dissociates Occludin from Intestinal Epithelial Tight Junctions. Cell. Microbiol. 2000, 2, 305–315. [Google Scholar] [CrossRef]
- Muza-Moons, M.M.; Schneeberger, E.E.; Hecht, G.A. Enteropathogenic Escherichia Coli Infection Leads to Appearance of Aberrant Tight Junctions Strands in the Lateral Membrane of Intestinal Epithelial Cells: EPEC Induces Tight Junction Protein Redistribution. Cell. Microbiol. 2004, 6, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Dean, P.; Kenny, B. Intestinal Barrier Dysfunction by Enteropathogenic Escherichia Coli Is Mediated by Two Effector Molecules and a Bacterial Surface Protein: Intestinal Barrier Disrupting Proteins of EPEC. Mol. Microbiol. 2004, 54, 665–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Li, Q.; Wang, C.; Liu, X.; Li, N.; Li, J. Enteropathogenic Escherichia Coli Changes Distribution of Occludin and ZO-1 in Tight Junction Membrane Microdomains in Vivo. Microb. Pathog. 2010, 48, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, T.K.; O’Connor, P.M.; Jones, N.L.; Menard, D.; Buret, A.G. Interleukin-1 Receptor Phosphorylation Activates Rho Kinase to Disrupt Human Gastric Tight Junctional Claudin-4 during Helicobacter Pylori Infection. Cell. Microbiol. 2010, 12, 692–703. [Google Scholar] [CrossRef]
- Fiorentino, M.; Ding, H.; Blanchard, T.G.; Czinn, S.J.; Sztein, M.B.; Fasano, A. Helicobacter Pylori-Induced Disruption of Monolayer Permeability and Proinflammatory Cytokine Secretion in Polarized Human Gastric Epithelial Cells. Infect. Immun. 2013, 81, 876–883. [Google Scholar] [CrossRef] [Green Version]
- Popović, N.; Djokić, J.; Brdarić, E.; Dinić, M.; Terzić-Vidojević, A.; Golić, N.; Veljović, K. The Influence of Heat-Killed Enterococcus Faecium BGPAS1-3 on the Tight Junction Protein Expression and Immune Function in Differentiated Caco-2 Cells Infected with Listeria Monocytogenes ATCC 19111. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Lejeune, M.; Moreau, F.; Chadee, K. Prostaglandin E2 Produced by Entamoeba Histolytica Signals via EP4 Receptor and Alters Claudin-4 to Increase Ion Permeability of Tight Junctions. Am. J. Pathol. 2011, 17, 807–818. [Google Scholar] [CrossRef]
- Maia-Brigagão, C.; Morgado-Díaz, J.A.; De Souza, W. Giardia Disrupts the Arrangement of Tight, Adherens and Desmosomal Junction Proteins of Intestinal Cells. Parasitol. Int. 2012, 61, 280–287. [Google Scholar] [CrossRef]
- Barton, E.S.; Forrest, J.C.; Connolly, J.L.; Chappell, J.D.; Liu, Y.; Schnell, F.J.; Nusrat, A.; Parkos, C.A.; Dermody, T.S. Junction Adhesion Molecule Is a Receptor for Reovirus. Cell 2001, 104, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.P.; Wilkins, M.R.; Castaño-Rodríguez, N.; Bainbridge, E.; Sodhi, N.; Riordan, S.M.; Mitchell, H.M.; Kaakoush, N.O. Campylobacter Concisus Pathotypes Induce Distinct Global Responses in Intestinal Epithelial Cells. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.J.; Shieh, J.T.; Pickles, R.J.; Okegawa, T.; Hsieh, J.-T.; Bergelson, J.M. The Coxsackievirus and Adenovirus Receptor Is a Transmembrane Component of the Tight Junction. Proc. Natl. Acad. Sci. USA 2001, 98, 15191–15196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, S.; Hundertmark, T.; Kuester, D.; Kalinski, T.; Peitz, U.; Roessner, A. Helicobacter Pylori Alters the Distribution of ZO-1 and P120ctn in Primary Human Gastric Epithelial Cells. Pathol. Res. Pract. 2007, 203, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Kawauchiya, T.; Takumi, R.; Kudo, Y.; Takamori, A.; Sasagawa, T.; Takahashi, K.; Kikuchi, H. Correlation between the Destruction of Tight Junction by Patulin Treatment and Increase of Phosphorylation of ZO-1 in Caco-2 Human Colon Cancer Cells. Toxicol. Lett. 2011, 205, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Buret, A.G.; Chin, A.C.; Scott, K.G.E. Infection of Human and Bovine Epithelial Cells with Cryptosporidium Andersoni Induces Apoptosis and Disrupts Tight Junctional ZO-1: Effects of Epidermal Growth Factor. Int. J. Parasitol. 2003, 33, 1363–1371. [Google Scholar] [CrossRef]
- Leroy, A.; Lauwaet, T.; De Bruyne, G.; Cornelissen, M.; Mareel, M. Entamoeba Histolytica Disturbs the Tight Junction Complex in Human Enteric T84 Cell Layers. FASEB J. 2000, 14, 1139–1146. [Google Scholar] [CrossRef]
- Koh, W.H.; Geurden, T.; Paget, T.; O’Handley, R.; Steuart, R.F.; Thompson, R.C.A.; Buret, A.G. Giardia Duodenalis Assemblage-Specific Induction of Apoptosis and Tight Junction Disruption in Human Intestinal Epithelial Cells: Effects of Mixed Infections. J. Parasitol. 2013, 99, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Beatty, J.K.; Akierman, S.V.; Motta, J.-P.; Muise, S.; Workentine, M.L.; Harrison, J.J.; Bhargava, A.; Beck, P.L.; Rioux, K.P.; McKnight, G.W.; et al. Giardia Duodenalis Induces Pathogenic Dysbiosis of Human Intestinal Microbiota Biofilms. Int. J. Parasitol. 2017, 47, 311–326. [Google Scholar] [CrossRef]
- Scott, K.G.-E.; Meddings, J.B.; Kirk, D.R.; Lees-Miller, S.P.; Buret, A.G. Intestinal Infection with Giardia Spp. Reduces Epithelial Barrier Function in a Myosin Light Chain Kinase–Dependent Fashion. Gastroenterology 2002, 123, 1179–1190. [Google Scholar] [CrossRef]
- Bertelsen, L.S.; Paesold, G.; Marcus, S.L.; Finlay, B.B.; Eckmann, L.; Barrett, K.E. Modulation of Chloride Secretory Responses and Barrier Function of Intestinal Epithelial Cells by the Salmonella Effector Protein SigD. Am. J. Physiol. Cell Physiol. 2004, 287, 939–948. [Google Scholar] [CrossRef]
- LaRock, D.L.; Chaudhary, A.; Miller, S.I. Salmonellae Interactions with Host Processes. Nat. Rev. Microbiol. 2015, 13, 191–205. [Google Scholar] [CrossRef]
- Berkes, J.; Viswanathan, V.K.; Savkovic, S.D.; Hecht, G. Intestinal Epithelial Responses to Enteric Pathogens: Effects on the Tight Junction Barrier, Ion Transport, and Inflammation. Gut 2003, 52, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Allam, O.; Samarani, S.; Mehraj, V.; Jenabian, M.-A.; Tremblay, C.; Routy, J.-P.; Amre, D.; Ahmad, A. HIV Induces Production of IL-18 from Intestinal Epithelial Cells That Increases Intestinal Permeability and Microbial Translocation. PLoS ONE 2018, 13, e0194185. [Google Scholar] [CrossRef] [PubMed]
- Koshy, S.S.; Montrose, M.H.; Sears, C.L. Human Intestinal Epithelial Cells Swell and Demonstrate Actin Rearrangement in Response to the Metalloprotease Toxin of Bacteroides Fragilis. Infect. Immun. 1996, 64, 5022–5028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, F.G.; Koshy, S.S.; Saidi, R.F.; Clark, D.P.; Moore, R.D.; Sears, C.L. Bacteroides Fragilis Toxin Exhibits Polar Activity on Monolayers of Human Intestinal Epithelial Cells (T84 Cells) in Vitro. Infect. Immun. 1997, 65, 3561–3570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Lim, K.-C.; Huang, J.; Saidi, R.F.; Sears, C.L. Bacteroides Fragilis Enterotoxin Cleaves the Zonula Adherens Protein, E-Cadherin. Proc. Natl. Acad. Sci. USA 1998, 95, 14979–14984. [Google Scholar] [CrossRef] [Green Version]
- Seike, S.; Takehara, M.; Takagishi, T.; Miyamoto, K.; Kobayashi, K.; Nagahama, M. Delta-Toxin from Clostridium Perfringens Perturbs Intestinal Epithelial Barrier Function in Caco-2 Cell Monolayers. Biochim. Biophys. Acta BBA Biomembr. 2018, 1860, 428–433. [Google Scholar] [CrossRef]
- Maldonado-Contreras, A.; Birtley, J.R.; Boll, E.; Zhao, Y.; Mumy, K.L.; Toscano, J.; Ayehunie, S.; Reinecker, H.-C.; Stern, L.J.; McCormick, B.A. Shigella Depends on SepA to Destabilize the Intestinal Epithelial Integrity via Cofilin Activation. Gut Microbes 2017, 8, 544–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, E.; Kelly, S.M.; van der Walle, C.F. Tight Junction Modulation and Biochemical Characterization of the Zonula Occludens Toxin C-and N-Termini. FEBS Lett. 2007, 581, 2974–2980. [Google Scholar] [CrossRef] [Green Version]
- Hering, N.A.; Andres, S.; Fromm, A.; van Tol, E.A.; Amasheh, M.; Mankertz, J.; Fromm, M.; Schulzke, J.D. Transforming Growth Factor-β, a Whey Protein Component, Strengthens the Intestinal Barrier by Upregulating Claudin-4 in HT-29/B6 Cells. J. Nutr. 2011, 141, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Assunção, R.; Alvito, P.; Kleiveland, C.R.; Lea, T.E. Characterization of in Vitro Effects of Patulin on Intestinal Epithelial and Immune Cells. Toxicol. Lett. 2016, 250–251, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Wu, Z.; Teo, J.D.W.; Tan, K.S.W. Statin Pleiotropy Prevents Rho Kinase-Mediated Intestinal Epithelial Barrier Compromise Induced by Blastocystis Cysteine Proteases: Blastocystis Disrupts Intestinal Epithelial Barrier. Cell. Microbiol. 2012, 14, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Nourrisson, C.; Wawrzyniak, I.; Cian, A.; Livrelli, V.; Viscogliosi, E.; Delbac, F.; Poirier, P. On Blastocystis Secreted Cysteine Proteases: A Legumain-Activated Cathepsin B Increases Paracellular Permeability of Intestinal Caco-2 Cell Monolayers. Parasitology 2016, 143, 1713–1722. [Google Scholar] [CrossRef]
- Cuellar, P.; Hernández-Nava, E.; García-Rivera, G.; Chávez-Munguía, B.; Schnoor, M.; Betanzos, A.; Orozco, E. Entamoeba Histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front. Cell. Infect. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Kowalik, S.; Clauss, W.; Zahner, H. Toxoplasma Gondii: Changes of Transepithelial Ion Transport in Infected HT29/B6 Cell Monolayers. Parasitol. Res. 2004, 92, 152–158. [Google Scholar] [CrossRef]
- Barbieri, J.T.; Riese, M.J.; Aktories, K. Bacterial Toxins That Modify the Actin Cytoskeleton. Annu. Rev. Cell Dev. Biol. 2002, 18, 315–344. [Google Scholar] [CrossRef]
- Radhakrishnan, G.K.; Splitter, G.A. Modulation of Host Microtubule Dynamics by Pathogenic Bacteria. Biomol. Concepts 2012, 3, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Roxas, J.L.; Viswanathan, V.K. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens. In Comprehensive Physiology; Terjung, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 823–842. [Google Scholar] [CrossRef]
- Ramalingam, S.; Bahuguna, A.; Kim, M. The Effects of Mycotoxin Patulin on Cells and Cellular Components. Trends Food Sci. Technol. 2019, 83, 99–113. [Google Scholar] [CrossRef]
- Chen, M.L.; Pothoulakis, C.; LaMont, J.T. Protein Kinase C Signaling Regulates ZO-1 Translocation and Increased Paracellular Flux of T84 Colonocytes Exposed to Clostridium Difficile Toxin A. J. Biol. Chem. 2002, 277, 4247–4254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasano, A.; Fiorentini, C.; Donelli, G.; Uzzau, S.; Ding, X.; Guandalini, S. Zonula Occludens Toxin Modulates Tight Junctions through Protein Kinase C- Dependent Actin Reorganization, In Vitro. J. Clin. Investig. 1995, 96, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Uzzau, S.; Fiore, C.; Margaretten, K. The Enterotoxic Effect of Zonula Occludens Toxin on Rabbit Small Intestine Involves the Paracellular Pathway. Gastroenterology 1997, 112, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Uzzau, S.; Goldblum, S.E.; Fasano, A. Human Zonulin, a Potential Modulator of Intestinal Tight Junctions. J. Cell Sci. 2000, 113, 4435–4440. [Google Scholar]
- Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercier-Bonin, M.; Oswald, I.P. Impact of Mycotoxins on the Intestine: Are Mucus and Microbiota New Targets? J. Toxicol. Environ. Health Part B 2017, 20, 249–275. [Google Scholar] [CrossRef]
- Sears, C.L. The Toxins of Bacteroides Fragilis. Toxicon 2001, 39, 1737–1746. [Google Scholar] [CrossRef]
- Popoff, M. Multifaceted Interactions of Bacterial Toxins with the Gastrointestinal Mucosa. Future Microbiol. 2011, 6, 763–797. [Google Scholar] [CrossRef]
- Boehm, M.; Simson, D.; Escher, U.; Schmidt, A.-M.; Bereswill, S.; Tegtmeyer, N.; Backert, S.; Heimesaat, M.M. Function of Serine Protease HtrA in the Lifecycle of the Foodborne Pathogen Campylobacter Jejuni. Eur. J. Microbiol. Immunol. 2018, 8, 70–77. [Google Scholar] [CrossRef]
- Forte, L.R.; Thorne, P.K.; Eber, S.L.; Krause, W.J.; Freeman, R.H.; Francis, S.H.; Corbin, J.D. Stimulation of Intestinal Cl- Transport by Heat-Stable Enterotoxin: Activation of CAMP-Dependent Protein Kinase by CGMP. Am. J. Physiol. Cell Physiol. 1992, 263, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, R.; Kamata, Y.; Nishikawa, Y. Effects of Escherichia Coli Heat-Stable Enterotoxin and Guanylin on the Barrier Integrity of Intestinal Epithelial T84 Cells. Vet. Immunol. Immunopathol. 2013, 152, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhong, Z.; Luo, Y.; Cox, E.; Devriendt, B. Heat-Stable Enterotoxins of Enterotoxigenic Escherichia Coli and Their Impact on Host Immunity. Toxins 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Lépine, A.F.P.; de Wit, N.; Oosterink, E.; Wichers, H.; Mes, J.; de Vos, P. Lactobacillus Acidophilus Attenuates Salmonella-Induced Stress of Epithelial Cells by Modulating Tight-Junction Genes and Cytokine Responses. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Martins, F.S.; Dalmasso, G.; Arantes, R.M.E.; Doye, A.; Lemichez, E.; Lagadec, P.; Imbert, V.; Peyron, J.-F.; Rampal, P.; Nicoli, J.R.; et al. Interaction of Saccharomyces Boulardii with Salmonella Enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection. PLoS ONE 2010, 5, e8925. [Google Scholar] [CrossRef] [Green Version]
- Helmy, Y.A.; Kassem, I.I.; Kumar, A.; Rajashekara, G. In Vitro Evaluation of the Impact of the Probiotic E. Coli Nissle 1917 on Campylobacter Jejuni’s Invasion and Intracellular Survival in Human Colonic Cells. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Wang, L.; Xiong, Y.; Wang, Z.; Qiu, Y.; Wen, X.; Jiang, Z.; Yang, X.; Ma, X. Lactobacillus Reuteri LR1 Improved Expression of Genes of Tight Junction Proteins via the MLCK Pathway in IPEC-1 Cells during Infection with Enterotoxigenic Escherichia Coli K88. Mediators Inflamm. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jariwala, R.; Mandal, H.; Bagchi, T. Indigenous Lactobacilli Strains of Food and Human Sources Reverse Enteropathogenic E. Coli O26:H11-Induced Damage in Intestinal Epithelial Cell Lines: Effect on Redistribution of Tight Junction Proteins. Microbiology 2017, 163, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Paparo, L.; Tripodi, L.; Bruno, C.; Pisapia, L.; Damiano, C.; Pastore, L.; Berni Canani, R. Protective Action of Bacillus Clausii Probiotic Strains in an in Vitro Model of Rotavirus Infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Pandey, N.; Tamiz, A.; Vere, J.; Carrasco, R.; Somerville, R.; Tripathi, A.; Ginski, M.; Paterson, B.; Alkan, S. Mechanism of Action of ZOT-Derived Peptide AT-1002, a Tight Junction Regulator and Absorption Enhancer. Int. J. Pharm. 2009, 365, 121–130. [Google Scholar] [CrossRef]
- Coyne, C.; Bergelson, J. CAR: A Virus Receptor within the Tight Junction. Adv. Drug Deliv. Rev. 2005, 57, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Stadnyk, A.W. Intestinal Epithelial Cells as a Source of Inflammatory Cytokines and Chemokines. Can. J. Gastroenterol. 2002, 16, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Capaldo, C.T.; Nusrat, A. Cytokine Regulation of Tight Junctions. Biochim. Biophys. Acta BBA Biomembr. 2009, 1788, 864–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechuga, S.; Ivanov, A.I. Disruption of the Epithelial Barrier during Intestinal Inflammation: Quest for New Molecules and Mechanisms. Biochim. Biophys. Acta BBA Mol. Cell Res. 2017, 1864, 1183–1194. [Google Scholar] [CrossRef]
- Man, S.M. Inflammasomes in the Gastrointestinal Tract: Infection, Cancer and Gut Microbiota Homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 721–737. [Google Scholar] [CrossRef]
- Ogle, C.K.; Hasselgren, P.O.; Ogle, J.D.; Alexander, J.W. The Gut as a Source of Inflammatory Cytokines after Stimulation with Endotoxin. Eur. J. Surg. 1997, 163, 45–51. [Google Scholar]
- Tazuke, Y.; Drongowski, R.A.; Teitelbaum, D.H.; Coran, A.G. Interleukin-6 Changes Tight Junction Permeability and Intracellular Phospholipid Content in a Human Enterocyte Cell Culture Model. Pediatr. Surg. Int. 2003, 19, 321–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; He, C.; Bu, J.; Luo, Y.; Yang, S.; Ye, C.; Yu, S.; He, B.; Yin, Y.; Yang, X. Betaine Attenuates LPS-Induced Downregulation of Occludin and Claudin-1 and Restores Intestinal Barrier Function. BMC Vet. Res. 2020, 16, 75. [Google Scholar] [CrossRef] [Green Version]
- Rao, R. Oxidative Stress-Induced Disruption of Epithelial and Endothelial Tight Junctions. Front. Biosci. 2008, 13, 7210. [Google Scholar] [CrossRef] [Green Version]
- Buffie, C.G.; Pamer, E.G. Microbiota-Mediated Colonization Resistance against Intestinal Pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libertucci, J.; Young, V.B. The Role of the Microbiota in Infectious Diseases. Nat. Microbiol. 2019, 4, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019, 83. [Google Scholar] [CrossRef] [PubMed]
TJ Proteins | Enteric Pathogens | Ref. | ||
---|---|---|---|---|
Bacteria | Virus | Fungi and Parasites | ||
Occludin | Aeromonas hydrophila (D) Campylobacter jejuni (L/D) Clostridium difficile (L/D) Clostridium perfringens (L) Escherichia coli: EAEC (L), EHEC (L), EPEC (L/D), ETEC (L/D), K12 (E/Q) Helicobacter pylori (D) Listeria monocytogenes (L) Salmonella typhimurium (Q/L) Staphylococcus aureus (Q) Shigella flexneri (Q/L) Vibrio cholerae (D/L) Yersinia enterolitica (Q) | Astrovirus (L) Coxsackievirus B (L) Norovirus (Q) HIV-1 (E/Q) Rotavirus (E/Q/L) | Anisakis simplex (L) Aspergillus, Penicillium (D/Q/L) Blastocystis spp. ST17 (D) Candida albicans (Q) Cryptosporidium parvum (Q) Giardia spp. (L) Toxoplasma gondii (L) | [34,37,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86] |
Tricellulin | EPEC (Q) Yersinia enterolitica (Q) | [80,87] | ||
Claudin family | Aeromonas hydrophila (D) Campylobacter jejuni (L) Clostridium perfringens (D/L) Escherichia coli: EAEC (L), EHEC (L/Q), EPEC (E/D/L), ETEC (D/L), K12 (E/Q/L) Helicobacter pylori (D/L) Listeria monocytogenes (L) Salmonella typhimurium (L) Shigella flexneri (Q/L) Yersinia enterolitica (Q/L) | Astrovirus (L) HIV-1 (E/Q) Rotavirus (L) Norovirus (Q) | Aspergillus and Penicillium (D/L Q) Candida albicans (Q) Cryptosporidium parvum (Q) Entamoeba histolytica (L) Giardia spp. (L) | [49,50,54,60,63,67,68,69,70,71,72,73,75,78,80,84,85,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105] |
JAM-A | Rotavirus | Candida albicans (Q) | [84,106] | |
Zonula occludens 1–3 | Aeromonas hydrophila (D) Clostridium difficile (D/L) Escherichia coli: EAEC (L), EHEC (L), EPEC (E/D/L), ETEC (D/L), K12 (E/Q/L) Helicobacter pylori (L) Salmonella typhimurium (Q/L) Staphylococcus aureus (Q) Shigella flexneri (Q/L) Vibrio cholerae (L) Yersinia enterolitica (Q) | Adenovirus (L/Q) Astrovirus (L) Coxsackievirus B HIV-1 (E/L) Rotavirus (L) | Anisakis simplex (L) Aspergillus and Penicillium (D/Q/L) Blastocystis spp. ST17 (D/L) Candida albicans (Q) Cryptosporidium andersoni (L) Cryptosporidium parvum (Q) Entamoeba histolytica (D) Giardia spp. (D/Q/L) | [34,37,49,50,51,52,53,54,58,59,60,61,62,64,65,66,67,68,69,71,73,74,77,78,79,81,82,85,92,93,94,102,107,108,109,110,111,112,113,114,115] |
Pathogens | Host Cell Receptor (H) and/or Pathogens Elements (P) Involved | Activated Host Pathways in IEC | Junctions and Cytoskeleton Modeling | Ref. |
---|---|---|---|---|
Viruses | ||||
Adenovirus | CAR cell receptor (H) | Nc | ZO-1 (p↓) (L) | [108] |
Astrovirus | Capsid protein (P) | Nc | Occludin, claudin, ZO-1 (L) Actin rearrangement | [51] |
Coxsackievirus B | Epithelial DAF (H) CAR cell receptor (H) Viral particles (P) | Rho GTPases | ZO-1 (p↓) (L) Occludin (L) Actin rearrangement | [61,62,108] |
HIV-1 | TLRA-MD2-CD14 (H), Tat protein (P) | NF-κB (IL-18) MLCK | Occludin, claudin (p↓) F-actin (p↓) | [119] |
gp120 (P) | Nc | Occludin, claudins 1-2, ZO-1 (p and g↓), ZO-1 (L) | [71] | |
Rotavirus | Nc | PKA | Occludin (g↓), phosphorylated form (p↓) | [58] |
Bacteria | ||||
Aeromonas hydrophila | Bacterial aerolysin (P) | Intracellular Ca2+ influx MLCK | Occludin, claudins 1/4/5, ZO-1 (L) F-actin condensation | [54] |
Bacteroïdes fragilis | Fragilysin (P) | Nc | E-cadherin and F-actin disassembly | [120,121,122] |
Campylobacter concisus | Zot toxin (P) | NK-κB Pro-inflammatory cytokines | ZO-1 (g↓) Cytoskeleton rearrangement | [107] |
Campylobacter jejuni | Proteases (P) | None. Direct action | Occludin and E-cadherin (L) | [55] |
Serine protease HtrA (P) | None. Direct action | Occludin (L) | [56] | |
Clostridium difficile | Toxins A and B | Rho GTPases | Occludin, ZO-1/2, E-cadherin (L), Actin rearrangement | [37] |
Clostridium perfringens | Nc | CpAL system | Occludin, claudin 3 (L) | [72] |
CPE Enterotoxin (P) | Binding to claudins 3/4 | Claudin 4 (p↓) (L) | [90] | |
Delta toxin (P) | ADMA10 | E-cadherin (p↓) | [123] | |
E. coli EAEC | Nc | AAF/II action | Occludin, claudin1, ZO-1 (L) | [73] |
E. coli EHEC | Shiga/vero toxins (P) | MLCK | Occludin, claudin 3, ZO-1 (L) Claudin 2 (p↓) | [74,75] |
E. coli EPEC | EspG1 effector (P) | Nc | Tricellulin (p↓) | [87] |
EspF, EspI, EspG, Map, CNF-1, Tir effectors (P) | MLCK | Occludin, claudin 1 and ZO-1 (L) Actin-myosin ring contraction | [88,89,97,98,99,100] | |
Extracellular vesicles and secreted factors (P) | Nc | Occludin, claudins, ZO-1/2 (g↓) Occludin, ZO-1 (L) F-actin rearrangement | [59] | |
E. coli ETEC | Stb toxin (P) | Nc | Occludin, claudin 1, ZO-1 (L) | [60] |
Helicobacter pylori | VacA and CagA factors (P) | Nc | ZO-1 (L) | [109] |
Unspecified | MLCK | Occludin, claudins 4/5 (L) | [76] | |
IL-R1 receptor (H) Bacteria contact (P/H) | ROCK activation | Claudins 1/4, ZO-1 (L) | [101,102] | |
Listeria monocytogenes | Hsp60 cell receptor (H) LAP protein (P) | NF-κB, MLCK Secretion TNFα IL6 | Occludin, claudin 1, E-cadherin (L) | [63] |
Salmonella typhimurium | SopB, SopE, SopE2, SipA factors (P) | Rho GTPase IL-8 | Occludin, ZO-1 (L) Actin (L) | [66] |
Nc | PKC | ZO-1 and pZO-1 (p↓) Claudin 1, ZO-2 (L) | [77] | |
Staphylococcus aureus | Alpha toxin (P) | Nd | Occludin, ZO-1/3, E-cadherin (p↓) | [79] |
Shigella flexneri | T3SS protein injection effector (P) | Nd | Occludin, p-occludin (p↓) Claudin 1 and ZO-1 (p↓) (L) | [67] |
SepA (P) | LIMK1 (g↓) Cofilin | Actin modification | [124] | |
Nd | ERK1/2 | Claudins 2/4 (L) | [91] | |
Vibrio cholerae | Hemagglutinin protease HA/P (P) | Nd | Occludin, ZO-1 (L) Actin rearrangement | [52,53] |
PAR2 receptor (H) Zot (P) | PLC PKC | Occludin, ZO-1 (L) Myosin phosphorylation Actin polymerization | [34,125] | |
Yersinia enterolitica | Nd | MAPK (JNK) | Claudins 2/3/8/10, ZO-1 (p↓), Claudins 3/4/8 (L) | [126] |
Fungi and parasites | ||||
Aspergillus and Penicillium | Ochratoxin (P) | MLCK ROS response [Ca2+]c increase | Claudin 1, ZO-1 (p↓) Occludin and ZO-1 (L) | [65,94] |
DEP-1 cellular protein (H) Patulin (Pat) (P) | DEP-1 (g↓) PPARγ protein (p↓), p-MLC-2 (p↑) | Occludin, ZO-1 (p↓) Claudin 4 (L) | [82,93,110,127] | |
Blastocystis spp. | Galactose residues on cell surface (H) | Nd | Occludin, ZO-1 (p↓) | [83] |
Cathepsin B (P) | ROCK p-MLC | ZO-1 (L) | [128,129] | |
Candida albicans | Nd | MAPK | Occludin, claudins 1/3/4, JAM-A (p↓) | [84] |
Heat-killed yeasts (P) | NLRP3/NLRP6 | Occludin and ZO-1 (p/g↓) | [64] | |
Entamoeba histolytica | Cystein proteinases (P) | Nd | ZO-1 (p↓) ZO-1/ZO-2 (L) | [112] |
Secreted Prostaglandin E2 (P) | Nd | Claudin 4 (L) | [104] | |
rEhCP112 proteinase (P) | Direct interaction | Claudins 1/2 | [130] | |
Giardia spp. | Nc | MLCK | ZO-1 (L) Actin rearrangement | [86,105,113,114] |
Toxoplasma gondii | Extracellular loops of occludin (H) | Direct interaction | Occludin (L) | [57,131] |
Probiotics | Pathogens | TJ Protein Modulation | Ref. |
---|---|---|---|
Lactobacillus acidophilus | Salmonella typhimurium | Modulation of 26 genes linked to TJ integrity | [147] |
Saccharomyces boulardii | Salmonella typhimurium | Interference on Rho GTPase activation | [148] |
Escherichia coli Nissle 1917 | Campylobacter jejuni | Increase of gene expression of the claudins 2/4/11 | [149] |
Lactobacillus reuteri (LR1) | EPEC | Inactivation of MLCK pathway | [150] |
Lactobacillus plantarum (GRI-2) Lactobacillus rhamnosus (LG6) Lactobacillus fermentum (FA-1) Lactobacillus salivarius (GPI-1) | Maintenance of membrane localization and gene expression of ZO-1, occludin, claudins 1/4 and JAM-A | [151] | |
Bacillus subtilis (CW14) | Fungal ochratoxin A | Prevention of ZO-1 destruction | [94] |
Bacillus clausii | Rotavirus | Overexpression of occludin and ZO-1 proteins | [152] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradis, T.; Bègue, H.; Basmaciyan, L.; Dalle, F.; Bon, F. Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 2506. https://doi.org/10.3390/ijms22052506
Paradis T, Bègue H, Basmaciyan L, Dalle F, Bon F. Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. International Journal of Molecular Sciences. 2021; 22(5):2506. https://doi.org/10.3390/ijms22052506
Chicago/Turabian StyleParadis, Tracy, Hervé Bègue, Louise Basmaciyan, Frédéric Dalle, and Fabienne Bon. 2021. "Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells" International Journal of Molecular Sciences 22, no. 5: 2506. https://doi.org/10.3390/ijms22052506
APA StyleParadis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. International Journal of Molecular Sciences, 22(5), 2506. https://doi.org/10.3390/ijms22052506